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We apply the unitary pole approximation (UPA) to a number of spin-dependent local poten-
tials and use the separable potentials obtained to calculate the three-nucleon binding energy
and scattering lengths. Excellent agreement is found between the binding energies obtained
v, ith the separable potentials and those calculated by Malfliet and Tjon using the local poten-
tials. Simple analytic approximations are given for the UPA form factors, and comparisons
are made between the local and the UPA two-body phase shifts.

I. INTRODUCTION

In this paper, we investigate the validity of the
separable approximation for local interactions.
Separable potentials were first' used in ca1.cula-
tions on the nuclear three-body system because of
the simplifications they brought about in the numer-
ical treatment of the three-body equations. Later,
a justification of the separable potential approach
using pole-dominance arguments was given by
Lovelace. ' Early calculations used Yamaguchi'
shapes or simple modifications of them. Such po-
tential shapes, however, are not in keeping with
the pole-dominance arguments of Lovelace, since
they correspond to separable approximations to
purely attractive local potentials, and it is mell
known that the two-nucleon interaction contains
some type of short-range repulsion. In calcula-
tions of three-body binding energies, Kok, Erens,
and Van Wageningen showed that for purely attrac-
tive local potentials the separable approximation is
not very good. Calculations' by Levinger's group,
however, gave good results when a one-term sep-
arable approximation was made to a two-term sep-
arable potential containing repulsion. Recent in-
vestigations" on separable approximations to spin-
independent local potentials containing repulsion
have produced very encouraging results, giving an
order of magnitude better agreement than that ob-
tained with purely attractive local potentials.

In this paper we investigate the validity of the
separable approximation for spin-dependent local
potentials. A particular separable approximation
called the unitary pole approximation" (UPA) is ap-
plied to the 1oca1 spin-dependent potentia1s of Mal-
fliet and Tjon' (MT). We use the separable poten-
tials obtained to calculate the binding energy of the
three-nucleon system and compare our results to
those of MT, finding excellent agreement. Results
for other three-body parameters are also given.

In Sec. II we present the separable approxima-
tions used, giving a convenient analytic approxi-

mation for the form factors. The two-body scat-
tering parameters of the local and separable poten-
tials are compared. In Sec. III the results of our
three-body calculations are given and compared
with the results of MT.

II. DETERMINATION OF THE SEPARABLE
POTENTIALS

The approximation we use is the UPA, which has
been investigated by a number of authors. ""In
this section we outline how our separable approxi-
mation is obtained, referring to Ref. 7 for more
details.

The solutions of the homogeneous Lippmann-
Schwinger equation

if.& =x.«.(s)14.&

may be used as a complete set of functions with
which to expand the two-body potential. " If the
two-body system possesses a bound state and s is
taken as -8 where B is the two-body binding ener-
gy, then Eg. (1) will have a solution with A, , = l.
The corresponding eigenfunction iP, & will be re-
lated to the bound-state wave function

i x, ) by

(-&-&)Ix,'&,

where K is the kinetic energy operator. The UPA
for a partial wave with a bound state is then

~u =
I kg &(6 I ~

where we have chosen the normalization

(g IGo(s)lg ) =-l.

If there is no bound state but an antibound state,
then choosing s =0 in Eq. (1), we find that there is
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a A, ", slightly greater than 1. This may be seen
from Eq. (1), which says that the potential X„V
gives a bound state at the energy s, and if an anti-
bound state is present, we need a slightly stronger
potential than V to bind the system. The UPA for
the antibound-state case is then given by

Local
potential ~

Scattering length
(F)

Local UPA

Effective range
(F)

Local UPA

TABLE I. Comparison of the scattering lengths and
effective ranges of local potentials and the UPA to them.

1

xi" +&0", IG.(E)IO,"& '

(6)

Singlet I
Singlet II
Beid
Triplet III
Triplet IV

23 03

-2303
1701
5.45
5.45

-23.6
23 0 1
17 02

5.55
5.63

2.8
2.8
2.8
1.8
1.8

2.86
2.77
2.66
1.95
2.03

where the normalization of Eq. (6) is again chosen.
It may easily be shown' that the VPA T matrix in

the bound-state case reproduces exactly the bound-
state pole in the actual T matrix. The T matrix of
Eq. (7) does not reproduce the antibound-state pole
exactly, but is expected to come close. As we shall
see, the method gives excellent results. It should
be noted that this reproduction of the poles of the
T matrix is the major justification for the separa-
ble approximation.

To find the VPA, we must therefore solve Eq.
(1) for the two-body potentials of interest. This
was done using a variational method. Defining the
vector Ix„) in analogy with Eq. (2) by

Potentials I-IV are from Bef. 8. I and IH contain a
soft-core repulsion, while II and IV are purely attractive.

The Reid potential is from Bef. 11. We use his soft-
core singlet potential.

system of linear equations

Ga =A, Va

with

(G)„=&y„[s-fcl y &

(8)

it is easy to show that lx „)satisfies the equation

(s -If)[x.& =&. p'I x.&,

i.e. , the Schrodinger equation with the potential
A.„V. Contracting Eq. (9) with (X„I, we obtain the
expression k, (P) = &PIP,& =&pl (s -ff)lx,&. (16)

For the potentials of interest here, all integrals
could be performed easily in coordinate space.
The linear system was solved by an iteration meth-
od,

Once we have found the a„ for the desired X, we
obtain g, (P) from

&x.ll'lx. &

~. &x.ls-E[x.&' (10)

which may easily be shown to be a variational ex-
pression for 1/I„.

As our trial functions, we used the linear com-
bination

i.o-

x (r) =pa„y„(r)

with P„given by
0.5-

cy'
~ -ttpt'

4.(r) = (12)

with e =4-s. Our variational parameters are thus
the a„and the range p. . In practice, p ' was cho-
sen as the range of the two-body potential. When
the expression (11) is inserted in the variational
principle and the a„varied, we obtain the following

l00
F(Mev)

200 300

FIG. 1. Local ( ) and UPA (- —-) phase shifts
for the triplet potential III of MT.
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FIG. 2. Local ( ) and UPA (- —-) phase shifts
for the singlet potential I of MT.

We find that

1
41(P) Q II 2

( )2 I
n

(17)

TABLE II. Coefficients for the UPA form factors. W'e
give the coefficients for the UPA form factors to poten-
tials I and III of Ref. 8. The form factors are given in
terms of the C„and p by [Eq. (17)]

9

A&P) =Q ~np2, („„)2~

The quantity A,, is the singlet strength [Zq. (6)] . Form
factors are normalized according to Eq. (5).

where the c„are simply related to the a„.
We wish to compare separable-potential calcula-

tions with the local-potential three-body calcula-
tions of MT. ' These authors use four different lo-
cal potentials: two potentials containing soft-core
repulsion and fit to singlet (potential I) and triplet
(potential Ill) two-nucleon data, and two purely

attractive Yukawa potentials fit to the low-energy
singlet (potential II) and triplet (potential IV) data.

In Table I we give the low-energy properties of
these potentials and compare them with the low-
energy properties obtained with the UPA. The
strength of the UPA to potential II was adjusted to
give rough agreement with the local-potential scat-
tering length. Also included are results for the
Reid singlet soft-core two-nucleon potential.

Phase shifts obtained with the UPA's to the soft-
core potentials are compared in Figs. l and 2 with
the MT local-potential phase shifts. In making the
UPA, we have neglected both attractive and repul-
sive parts of the local potential, and to some ex-
tent it is the partial cancellation of these neglected
components which makes the UPA a good approxi-
mation. "' The effects of these neglected parts of
the interaction are separated in the two-body
phase shift, since at intermediate energies the
UPA phase shifts are less than, and at higher en-
ergies greater than, the corresponding local-poten-
tial phase shifts.

The coefficients c„ for the momentum-space
UPA form factors [see Eq. (17)] obtained with po-
tentials I and III are given in Table II, as is the
singlet strength Isee Eq. (6)]. Form factors are
normalized according to Eq. (6). We plot the vari-
ous form factors used in Figs. 3 and 4.

I.O

O

j 05

Triplet
Cn

Singlet

2.240 754
95.920 87

-900.3338
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-12438.34
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-24 903.14
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-3553.804

3.937232
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-902.8878
4484.466
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p =1.55 F '

O. I

tel
t.o
P(F )

IO

FIG. 3. UPA form factors for the triplet potentials
III (- —-) and IV ( ) of MT. Potential III contains
a soft-core repulsion.
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FIG. 4. UPA form factors for the singlet potentials I
(- —-) and II ( ) of MT and for the singlet S soft-
core potential of Reid (- — -). Potential I and the Reid
potential contain a soft-core repulsion.

FIG. 5. The triplet part of the doublet spectator func-
tions obtained in calculations of the doublet scattering
lengths in cases A ( ), C (- —-), and 0 (- —~ -)
of Table III.

III. THREE-BODY CALCULATIONS

The three-body binding energies and scattering
lengths were calculated in the UPA to the local po-
tentials described above, and the binding energies
were compared with the local-potential results of
MT. The scattering and bound-state equations with

separable interaction are well known.

In Table III we compare the UPA separable-po-
tential calculations with the local-potential results
of MT. Excellent agreement is found in the cases

where the UPA is made to a potential including re-
pulsion (cases A and 8). Case C, however, where
the UPA is made to a purely attractive potential,
shows a discrepancy of the order of 14%. This is
in agreement with previous results, both for po-
tentials with repulsion, "' and for purely attractive
potentials. This discrepancy would indicate that
the UPA is not as effective in the case of purely
attractive potentials as it is if a certain amount of
repulsion is included. This is partly because er-
rors in the approximation tend to cancel them-

TABLE III. Comparison of separable-potential calculations with the local-potential results of Malfliet- Tjon. The lo-
cal potentials I through IV are from Ref. 8. I and III contain short-range repulsion, while II and IV are purely attrac-
tive pukawa potentials. The UPA binding energies and scattering lengths are obtained from the separable potentials dis-
cUssed jn Sec. II of this work. We include results obtained with a separable approximation to the Reid singlet S soft-
core potential (Ref. 11).

Singlet Triplet

Binding ene rgy
(MeV)

UPA Local potential

Scattering lengths
(F)

4a

A
B
C

I
I
II

Reid

IlI
IV
IV
III

8.464
8.378

10.409
8.741

8.3 +0.1
8.4 + 0.1

12.1 +0.1

0.92
0.78

-1.11
0.53

6.47
6.57
6.57
6.47

See Ref. 8. See Ref 11
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selves if repulsion is included, whereas they are
unable to do so in the attractive case. Also, the
UPA gives a fairly good approximation to the local-
potential T matrix for potentials with repulsion. @'

From Table II it is seen that the UPA to the Reid
singlet potential (case D) gives a, greater binding
energy than the UPA to the MT soft-core singlet
potential (case A). The UPA to Reid is seen from
Table I to give a smaller effective range than that
from the UPA to potential I. A smaller effective
range is usually associated with a greater three-
body binding energy. Alternatively, we can try to
explain this difference between the binding energies
in terms of the difference in the shape of the UPA
potentials [see Eg. (6)]. A comparison of the ap-
propriate form factors in Fig. 4 shows that while
the MT form factor is larger at low momentum,
the absolute value of the Reid form factor is great-
er at high momentum than that of the MT form fac-
tor, reaching a relative maximum at about 3 F '.
It would seem, then, that the higher binding energy
of the Reid potential depends on the high-momen-
tum behavior of the form factor, and therefore the
far off-shell T matrix becomes important in the
three-body calculation. This conclusion is strength-
ened when we consider the phase-space enhance-
ment at high momentum appearing in the three-
body equations.

In Fig. 5 we plot the triplet spectator functions
obtained in the calculation of the doublet scattering
lengths for cases A, C, and D of Table III, The

doublet scattering lengths are proportional to the
spectator functions evaluated at zero momentum.
The fact that the spectator function varies rapidly
in the low-momentum region indicates why the dou-
blet scattering length is sensitive to the interaction.
The scattering lengths obtained here are in agree-
ment with those obtained with potentials producing
similar three-body binding energies.

IV. SUMMARY

We have applied the UPA to a number of local po-
tentials. The binding energies obtained with the
separable approximation give excellent agreement
with those obtained using the local potentials, es-
pecially in the case of potentials containing repul-
sion. This is in agreement with previous results. "
The advantage of the separable approximation is
that it may easily be extended to calculations of
other aspects of the three-body problem, including
scattering and three-body breakup, as has been
done in this work in the calculation of the three-
body scattering lengths. The analytic approxima-
tions given here for the UPA form factors should
be useful in such ealeulations.
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