
PHYSICAL BEVIEW C VOLUME 2, NUMBER 4 OCTOBER 1970
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Slater determinants used in a standard Hartree-Fock calculation and built with parity-
mixed single-particle orbitals do not have a definite parity; a parity projection after the var-
iation is needed, in general. A different solution is investigated here, in which the projec-
tion is performed before the variation. Conditions are studied for the case where the solu-
tion is still a Slater determinant. The results of explicit calculations for both methods are
compared in the case of a three-nucleon system. A larger binding energy is obtained in the
case of projection before variation, and in the corresponding solution (which is not a Slater
determinant) considerable parity mixing in single-particle wave functions is allowed.

I. INTRODUCTION

In recent years the Hartree-Fock (HF) approxi-
mation has been widely used in nuclear physics.
However, among the very many possible solutions
of HF equations, only those with some given syrn-
metry have been investigated, as a matter of com-
putational simplification. Most calculations, in
fa,ct, have been done for 4n nuclei (i.e., with an
equal even number of protons and neutrons); only
for these nuclei can the largest symmetry be pre-
served, as the usual symmetry group of the total
nuclear Hamiltonian (invariance under three-di-
mensional rotation-inversion group and under time
reversal, in addition to cha, rge independence) is
also a symmetry group of the HF Hamiltonian, i.e.,
it is a consistent symmetry.

' However, imposing
symmetry conditions means that one restricts one-
self to those solutions which have the given sym-
metry; thus, it may happen that the absolute ener-
gy minimum is not reached. Moreover, the con-
sistent symmetry group of the HF Hamiltonian
need not necessarily be the same group of sym-
metry of the total Hamiltonian. In particular, in
the HF Hamiltonian a parity violation is allowed,
in principle, by the presence of tensor forces and
of the one-pion exchange potential (OPEP) in a.

complete realistic nucleon-nucleon interaction.
Then, the ground-state energy may be obtained if
parity conservation in single-particle (s.p. ) wave
functions is suppressed. ' Much theoretical work
has been done on the basis of this hypothesis.

However, in the particular case of 4n nuclei, it
has been shown recently' that parity mixing in s.p.
orbitals is prevented if the s.p. densities are taken
to be invariant under the following consistent sym-
metries:
(i) time reversal T;
(ii) reflection through a plane, e.g. , the x-z plane,
Pe 41fJ'y

(iii) rotation by v about an axis in the plane of re-
flection symmetry, e.g. , the z axis, e"~~,
where P in (ii) is the parity operator.

In actual realistic HF calculations' ' for 4n nu-
clei up to "Ca, good parity solutions were, indeed,
found to be energetically favored. This can be un-
derstood also from a physical point of view; in a
4n nucleus, contributions from short-range cen-
tral forces surely dominate with respect to tensor
forces and OPEP, and the lowest states have se-
niority zero. 6' 7

When the symmetries (i)-(iii) are violated, par-
ity mixing in s.p. orbitals can also be obtained for
4n nuclei. ' In the case of an odd nucleus, sym-
metry (i) does not hold, snd an approximate HF
solution presents parity mixing. '

In addition, a simple model based on the hypoth-
esis of parity mixing in s.p. orbitals applied to the
study of direct reactions' seems to be preferable
to any other proposed models in the case of two-
nucleon transfer reactions" such as '2C(sHe, p)i4N.
It must be noted that the spectroscopic factor for
this reaction is sensitive to the details of the wave
function of the odd-odd ' N nucleus, for which a
HF parity-mixed solution exists. '

In the case of parity mixing, the Slater determi-
nant (SD) solution of the HF problem is built with
s.p. orbitals without definite parity. This means
that the state function of the nucleus so obtained
does not, in general, possess a definite parity
either. This situation is similar to that of other
quantum numbers which have to be good quantum
numbers of the nucleus, and is a peculiarity of the
use of SD's. Let 0 be an operator which com-
mutes with the total Hamiltonian, and co the rela-
tive quantum number associated with the symme-
try properties described by Q. In general, the HF
solutions mix several values of co; the description
of a nuclear level thus requires the use of a pro-
jection operator (f'z which extracts from the HF
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wave function the component of a good quantum
number v. This method can be called "projection
after variation" (PAV) . It does not, in gene ra 1,

give the same results as "projection before varia-
tion" (PBV), i.e., a variational calculation based
on trial wave functions obtained after projecting
the good quantum number ~ from the initial SD.

In the case of the total angular momentum, the
PBV method has already been extensively and suc-
cessfully used" and also compared with the corre-
sponding PAV method. "

In this work we shall investigate the advantages
of the PBV method connected with the parity pro-
jection from a SD built with s.p. orbitals without
definite parity.

In Sec. II the two methods (PBV and PAV) are
discussed for the case of using initial SD as a
trial wave function. Section III is devoted to some
conditions which are necessary for the solution of
the PBV method to still be a SD. The general for-
malism of parity PBV is developed in Sec. IV and

applied to the case of a three-nucleon system in
Sec. V, where comparison with PAV and the stan-
dard HF approximation is also done. The conclu-
sions are drawn in Sec. VI.

II. PROJECTION BEFORE AND AFTER VARIATION

Let V be an rn-dimensional vector space formed
by the complex linear combinations of a set (yj
of m linearly independent s.p. wave functions; then

is an element of V. According to Navon and Bose,"
let K~ be the space formed by all the SD's of order
N which can be constructed, each starting from N

linearly independent s.p. wave functions g;. It is
clear that K„ is not a vector space, because a lin-
ear combination of two SD's is not, in general, a
SD: if and only if the two SD's differ by at most
one s.p. wave function, is such a linear combina-
tion still a SD. Then any elementary continuous
variation in the space K„can be expressed as the
sum of two SD's differing from each other by only
one orbital; and the variational principle restrict-
ed to the space K~ leads to the well-known Brillou-
in condition and to the HF equations. The topolog-
ical structure of K„ is thus responsible for the nu-
clear s.p. properties, which are so well reproduced
in the HF approximation.

In order to reach a correlated ground-state func-
tion it would be preferable, from a strict theoreti-
cal point of view, to use the method of superposi-
tion of configurations. " In this case the variation-
al procedure is applied to a trial antisymmetric
wave function which may be expanded in SD's built

up from a complete s.p. basis set. Even in the
simplified version of a multiconfiguration HF the-
ory, "such a program is obviously very difficult to
perform with a realistic Hamiltonian.

In any case, at the end of the calculation one al-
ways meets the other difficulty: that the single SD
of the HF approximation and the superposition of
SQ's do not have, in general, the required definite
quantum numbers, and a PAV is needed.

An approach, whose difficulty is intermediate be-
tween standard HF and multiconfiguration theory,
is the method of PBV. Let us denote by K„ the
space of all state functions obtained by applying
the projection 6'z to all the elements of K„. Of
course, K~ is also not a vector space. Further-
more, let us suppose that Kc is the set of all state
functions which belong both to K~ and to K~:

Kc =K~~K

The solution of the variational method in the PBV
theory, which must be found in K~, will not neces-
sarily be in K~. It is still an antisymmetric state
function (as in the multiconfiguration method) and,
moreover, has the required symmetry, i.e., ~ is
a good quantum number.

In order to see the power of the PBV method, let
us consider the case of a HF solution in Kc: the
HF method is then equivalent to that of PAV, as ~
is already a good quantum number for the final so-
lution. When performing the method of PBV, the
same solution (in Kc) or one with lower energy (in
that part of K~ complementary to Kc) must be
found.

On the other hand, if the HF solution is not in

Kc, then in order to obtain the good quantum num-
ber co a projection must be performed, and a final-
state function belonging to K~ is obtained. (If, e.g. ,
0 is the parity operator, it has been shown" that a
gain in the binding energy is also possible by this
projection. ) However, the same result (but, in
general, a better result) is achieved by a PBV
which allows us to explore the whole K~ space.

Thus, in any case, PBV is preferable to PAV.

III. PARITY PROJECTION AND SI.ATER DETERMINANTS

A system of N Fermi particles can be described,
as usual, by the following SD:

where g,. is of the form of Eq. (1), and i =1,. . . , N.
4 is thus an element of K„. It is easy to recognize
that 4 can always be expanded as
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where

C, =(N!) '" detfy„} (4)
where the parity projection operator is:

represents the kth SD of order N built with a sub-
set of N functions y from among all M possible
SD's of this kind. The expansion coefficients C~
a,re known if the Nxm matrix A. (whose matrix ele-
ments are A;„=X/ is known. In fact, C, is the de-
terminant of order N derived from this matrix:

C, = det(X'„}, (5)

where the set of indices {a~}is the same which ap-
pears in the construction of the corresponding 4~.

Conversely, given a (complex) matrix A with m
columns (a = 1, . .. , m ) and N rows (i = 1, . . . , N),
with elements A; =X' such that

and given a set of m linearly independent s.p. wave
functions jpJ (o. = 1, . . . , m), one can construct
all possible C,'s and 4,'s according to Eqs. (4) and

(5). Then one finds that

Qc,e,=C,
k=1

(7)

where 4 ' is a SD and belongs to K„. In addition,
the numbers X' assume the meaning of expansion
coefficients for the s.p. wave function, as in Eq. (1).

It may happen, of course, that some C, in Eq. (7)
vanishes, since two rows (columns) can be made
proportional to each other. This case is frequent
if there are many elements equal to zero in the
original matrix A. In any case, Eq. (7) always
holds.

Then, from Eqs. (3) and (7) we may state the fol-
lowing theorem: A superposition of SD's, Q„C~4~,
is still a SD if and only if:
(i) There is an ¹&mmatrix A [whose elements are
subject to the condition (6)] such that the C, 's are
given by Eq. (5).
(ii) There is a set of m linearly independent s.p.
wave functions $yj such that the 4', 's are given by
Eq. (4).
(iii) 0= 1, . . . , M, as in Eq. (3).

Condition (i) is always satisfied if m =N+ 1, ac-
cording to Theorem III of Foldy, "where general
(laborious) criteria are also devised to insure that

a completely antisymmetric function of N variables
be a SD.

Now, let us consider the parity operation. If the
functions of the set (pj are not all of the same
parity, 4 has no definite parity. A state function
with good parity can be obtained as

IV. PARITY PROJECTION BEFORE VARIATION

In this section we give the general formalism
necessary for the case of parity projection before
doing the variational calculation. Similar ap-
proaches have already been proposed by Zeh' and
Ebenhoh" without considering any computational
details. A direct application of these methods
seems, indeed, very laborious.

Our variational problem lies in the minimization
of the following expectation value:

&~l~) 1~ &~II 14)

TABLE I. The ground-state energy E (in MeV) for
3He and H, as computed in the HF approximation and in
the PBV method.

b

(fm)

Z('He)
HF PBV HF

Z('H)
PBV

1.4
1.5
1.6

0.88
0.80
0.61 -0.89

-0.16
-0.22
-0.36 -1.91

It is clear that the following expansion is possi-
ble:

4=+ C~4„ (10)

where the symbol Q means that the sum is only
over all SD's C, with the same parity as 4. (Here
and in the following we shall omit the labels + when

confusion is impossible. )
The operation indicated by Eq. (8) is thus equiva-

lent to dropping some (in general nonvanishing)
terms in the expansion (3). By the above theorem,
therefore, 4 is, in general, an el.ement of K~, but

not of K„.
When dealing with PBV and PAV methods, it is

important to know whether or not the final solution
belongs to K~, i.e., whether or not it fulfills the
conditions of the above theorem. Here, we are
on1y able to suggest a direct inspection of the set
(yg, with which the 4,'s in Eq. (10) are built, and

of the matrix A which generates the correspond-
ing C~'s.

A particular case is that of a matrix A with so
many vanishing elements that all C~'s of the
"wrong" parity are zero; then, 4 =—4. This is the
case for the HF solutions of Refs. 4, 5, and of our
Sec. V.
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Let us first consider how to calculate &4 IPIC». PC
is also a SD, which we denote by 4:

Thus,

&4 IC) =detO. (14)
@ = (N I )

- i j2
de tQ .) (12)

where, to be consistent, we have defined g,. =Pgi
Since &4r lrfr& is the overlap of two SD's, it is known"
that it equals the determinant of the overlap ma-
trix 0 defined by its matrix elements

(13)

N N

e=Qr, + .' g. -V.. . (16)

it turns out that

As the Hamiltonian IJ consists of a one-body and

a two-body part,

&@IIfl @& = g (-)'"&0;17'Itj&(@;Ic j&+ 2 g(-)""""&0;t,lvl tjtg&c', .I c,.&,
i&r j&s

where

@;=I.(N-1)'1 "'det4„. . . , 4; „0„,. . . , 0 ),
't 1-1/2i=i'( N-2). ] det{4». . . rtj Jrkj+]-r ' ~ ' r(n JrPt+i~ r~ '' rPN jr

(16)

(17)

(16)

and (g, t/r„I VI ii'j, gg is the antisymmetrized matrix element.
Expanding the orbitals (; as in Eq. (1) (using, e.g. , a set of harmonic-oscillator wave functions), one has

E, = &gib;j~(-)"' „&4;I4,&1&@,ITIC„&x',*x'„+Z g Ib;jb„,+(-)""""„,&@;,I@j&j
iq Xp i&r Ap vp

j&s
-1

x&p~p, IVI' „q ~&X'~ X",*X'„X~ 1*N 'Q(-)'"gX'~ Xj~ii~&C,.IC j& (19)

where Pp~ =m ~+~.
The minimum of E, can be found, in principle,

by solving simultaneously the set of coupled non-
linear equations

ceding considerations.
Our s.p. wave functions are

Ni = ~jmr(ri) QXnl9 nijmr(ri) r (21)

Q 1 ri ~ ~ o (20)

As an illustration of the preceding considerations
we have performed numerical computations both
with the HF approximation and with the PBV meth-
od. The choice of the particular nuclear system is
very limited if one has to look for the minimum of
expression (19), as the number of free parameters
probably cannot exceed 30. Therefore, in order to
have a reasonably large s.p. space and to study an
odd nucleus, we have restricted our investigations
to a three-body system (SHe and ~H), for which the
ground-state good quantum numbers are (total spin)

(isospin) T = —,', and positive parity. Of course,
other refined approaches are more suitable for the
description of such a system. " However, this ex-
ample is already sufficient to illustrate our pre-

under the condition (6) for the unknown complex
coefficients X'. However, such a solution is very
complicated from a computational point of view,
so it seems to be easier to make use of a comput-
er code which minimizes directly the expression
(19) as a function of X'„'s, as has already been
done in the case of angular momentum projection. "

V. NUMERICAL COMPUTATIONS

where the principal quantum number n can take the
values 0, 1, 2; the orbita1 angular momentum l =0, 1;
the total s.p. spin j is kept fixed at the value 2,' and
7 2 ( p) specifies protons (neutrons). Owing to
the Pauli principle, the third component of the spin
j is m =+2 for identical nucleons. Moreover, we
have chosen m = —, (= J ) for the unpaired nucleon
(proton for 'H and neutron for nHe).

We are then left with 18 complex coefficients X',
which can be reduced to 30 independent real param-
eters if we choose Xoo to be real and utilize the nor-
malization condition (6).

In the total Hamiltonian of 3He, the Coulomb en-
ergy has been taken into account. In addition, the
intrinsic Hamiltonian of the nucleus has been used,
i.e. , we have subtracted the c.m. kinetic energy
according to Gunye. " The nuclear two-body inter-
action has been simulated by the effective force de-
rived by Elliott et al. ' Since matrix elements in
the harmonic-oscillator basis of this force are tab-
ulated for discrete values of the oscillator size pa-
rameter b = (5jm&u)'", we have chosen b =1.4, 1.5,
and 1.6 fm as reasonable values in the HF approx-
imation. When dealing with the PBV method, b is
fixed at the value for which the corresponding HF
energy has been found to be lowest.
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TABLE II. Expansion coefficients X„& as obtained in the PBV method for He. For comparison, the X„& obtained in the
HF approximation are given in parentheses, when different from zero. i is the imaginary unit.

Xpp Xpg Xio X20

HF energy
(MeV)

1 1
2 2

1 1
2

0.938
(0.997)

0.889
(0.995)

0.957
(0.999)

0.339i

0.449'

0.280i

-0.044
(-0.064)

-0.051
(-0.081)

-0.033
(-0.035)

-0.050i

-0.056i

-0.055i

0.027
(0.040)

0.038
(0.059)

0.016
(0.020)

0.016$

0.019i

0.016i

-6.66

-6.13

-7.99

Our computer codes for the HF approximation
are based on the usual iterated diagonalization of
the HF Hamiltonian. In the case of the PBV meth-
od we have used the subroutine OPTNOV in the li-
brary of the 1108 Univac computer at the Centro di
Calcolo of the University of Pavia. This subrou-
tine finds the extremum of a given function without
calculating its derivatives.

In Table I the energy minimum is given for the
different cases. A considerable gain in the bind-
ing energy is evident for the PBV method. There
are probably two reasons for the large discrepan-
cy with experiment (E = -7.78 MeV for 'He and
-8.49 MeV for 'H) in both cases. First, neither
method is the most appropriate for studying a
three-nucleon system, as the trial wave functions,
though dependent on many parameters, are not
very flexible. Second, the nuclear interaction used,
though realistic, seems to underbind light nuclei
appreciably. "

However, as can be seen from Tables II and III,
it is remarkable that in the HF approximation all
"wrong" parity components vanish, so that our HF
solution is in K, as in other calculations, ' ' and
is coincident with the PAV result. In contrast,
considerable parity mixing in s.p. wave functions
is allowed in the PBV method, and the final solu-
tion (in Kz) is not a SD. This result has been ob-
tained in spite of the fact that our force is known
to underestimate S, matrix elements and, there-
fore, spin-orbit splitting and all other nuclear

properties depending on the noncentral part of the
interaction. "

Another interesting fact can be seen from Ta-
bles II and III. All "wrong" parity components are
characterized by a pure imaginary coefficient, al-
though our PBV solution is not invariant under
time reversal.

Finally, in order to have an indication about the
parity doublet, ' i.e. , about the difference E -E+,
we have found, by minimization of E in Ecj. (19),
that E = 5.5 MeV for H and E =6.1 MeV for He.
Also, a considerable amount of parity mixing in
s.p. orbitals is present in the state function de-
scribing this excited level of negative parity.

VI. CONCLUSIONS

The use of SD's in a standard HF calculation has
been shown to be very limited, as the appropriate
symmetry properties of the nuclear ground state
are not taken into account. Therefore, we have

again proposed the projection of the desired good
quantum numbers from the trial SD before perform-
ing the variational calculation, instead of doing a
projection after variation. The former procedure,
indeed, gives better results in general (see Sec. II).

In particular, we have considered the problem of
parity projection when single-particle wave func-
tions with undefined parity are used. Such parity
mixing is shown to be possible in the frame of a
PBV method and in the case of an odd nucleus ( He

TABLE III. Results for 3H. The notation is the same as in Table II.

Xoo Xox Xxo Xgg X2o X2i
HF energy

(MeV)

1 1
2 2

1 1
2 2

1 1
2 2

0.961
(0.999)

0.886
(0.996)

0.939
(0.998)

0.269'

0.459i

0.338i

-0.026
(-0.028)

-0.033
(-0.063)

-0.028
(-0.046)

-0.047i

-0.046i

-0.042'

0.015
(0.020)

0.035
(0.056)

0.026
(0.038)

0.013'

0.017'

0.014i

-8.25

-7.25
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and ~H). A final solution which is a. superposition
of SD's, has, in fact, been found to give a larger
binding energy than in the case of HF approxima-
tion. This seems to agree with the present trend
of describing nuclei by a mixture of configurations.

In our investigation we were limited in the choice
of the nuclear system by the number of free param-
eters. It would be desirable to perform similar
calculations for the case of systems composed of
a larger number of nucleons.
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The mean life of the 275-keV second excited state of Ne'~ was measured to be 61.4+3.0 psec.
The He3(Ne, n)Ne~~ reaction and the gas-target recoil-distance technique were used. The
275-keV state decays by El emission to the ground state. The strength of this &1 transition
is equal within errors to that of the mirror transition in F~~. This result is discussed.

I. INTRODUCTION

A mell-known consequence of charge symmetry
is that corresponding E1 transitions in conjugate

nuclei (whether AT =0 or +1) have equal strengths. '
The rule for AT =0 transitions follows from the
vanishing of the isoscalar E1 matrix element. %e
can most easily test this rule by comparing corre-


