0o

The isotopic ratios "Li/®Li and *'B/*°B calculat-
ed using Rudstam’s relation are shown in Tables
VI and VII, together with the experimental values
for those ratios. In fact, since ®He is a 8 emitter
and “Be decays by electron capture to “Li, we have
determined also the isotopic ratio ("Li+"Be)/(®*He
+°%Li); such ratios are of interest for the study of
nucleosynthesis of the Li, Be, and B elements. In
a like manner, by assuming °B to be the decay
product of the Be isotope on a cosmic time scale
(T~108 yr), and since '°C and *'C are B emitters,
we have determined the isotopic ratio (*'B+C)/
(**Be + B +°C) in the case of boron.
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CONCLUSION

Since the cross-section values determined for
spallation reactions with o particles in medium-
mass nuclei are greater than those values for pro-
tons, we point out that the contribution of the «
particles to the synthesis of Li, Be, and B ele-
ments is not insignificant compared with that of
protons, particularly near the threshold of forma-
tion, even though the universal abundance of heli-
um is about 10%. For that reason, it is interesting
to study the cross sections for the production of Li,
Be, and B elements by « particles at different en-
ergies.
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The new method of Truelove and Nicholls for obtaining reaction matrix elements for nuclear-
structure calculations is discussed. In this method, the Bethe-Goldstone wave function is ex-
panded in terms of eigenfunctions of two interacting nucleons bound in a common potential
well., The Bethe-Goldstone equation, which is written in terms of an expansion over noninter-
acting two-particle states, is then solved iteratively. In practice, the method is most easily
applied when a harmonic-oscillator basis is used; the Pauli operator @ can then be treated
exactly. The convergence of the Truelove-Nicholls iteration scheme and of the above two ex-
pansions is investigated. It is shown that the original method is incorrect for nucleon-nu-
cleon potentials with an infinite hard core. A simple way of correcting the method is pre-

sented.

I. INTRODUCTION

Nuclear-structure calculations based on realistic
nucleon-nucleon potentials are, in general, pertur-
bation expansions involving the nuclear reaction
matrix G. The precise form of the expansion can
vary depending upon the particular nuclear proper-
ties being calculated and the model space in which
one chooses to work, but in all cases a central

task is the evaluation of the appropriate reaction
matrix elements to use in the expansion.

The defining equation for G can always be cast
in the form

Q

G((,u)=V+Vw_H0

G(w). (1)

Here V is the nucleon-nucleon potential, the Pauli
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operator @ forbids scattering into states within the
model space, H, is the sum of two single-particle
Hamiltonians which define the basis states of the
perturbation expansion, and the energy parameter
w is specified by the particular problem being
studied.

A fundamental problem facing reaction matrix
calculations is the choice of the unperturbed Hamil-
tonian H,. This should be chosen so that the pertur-
bation expansion (either Brueckner-Goldstone or
Bloch-Horowitz) converges as rapidly as possible
and so that the reaction matrix elements can be
easily and accurately calculated. The final solu-
tion of this problem must await more accurate eval-
uation of three-body cluster and higher-order dia-
grams. However, both of the above criteria can
probably be satisfied by taking H, to be a harmonic-
oscillator (HO) Hamiltonian with arbitrary shifts in
the oscillator eigenvalues.?

A second problem which arises is purely a nu-
merical one. The nucleon-nucleon potential V is
usually defined in the relative coordinate system,
while the Pauli operator @ is diagonal in the direct
product space of two single-particle states. The
usual approximation made is to treat @ as diagonal
in relative and center-of-mass (rcm) coordinates.
Some studies® and improvements® on this approxi-
mation indicate that the errors involved might be
quite large.

The above two problems are related because @
and H, appear only in the ratio @/(w -~ H,). When
(w—HO) is small, any error in @ becomes more
important. In addition, errors in the treatment of
@ mask the dependence of G(w) on H,. Clearly one
needs a method of finding G(w) which treats @
exactly.

Equation (1) for G(w) is generally not solved di-
rectly. The usual approach is to define a perturbed
wave function ¥ 5°(w), known as the Bethe-Gold-
stone (BG) wave function, such that*

($51G(w) ¢ o) =(Ps|VIE(W) . (2)
It then follows from Egs. (1) and (2) that ¥ %(w)
satisfies the equation

(3)

= V¥ 5w
\ng(w)=¢a+; Qp¢p§u¢£|€“| o ( )> )
Here the basis function ¢, is a two-particle eigen-
state of H, with eigenvalue €,, and ,=0 or 1 de-
pending upon whether the state ¢, is inside or out-
side the model space, respectively. The wave func-
tion ¥ X°(w) and the matrix elements (¢, |V |¥5°(w))
depend émplicitly on the energy parameter w.5 The
problem of evaluating G matrix elements now be-
comes the problem of solving Eq. (3) for ¥5(w).
Recently Truelove and Nicholls® (TN) have pro-
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posed a new method of solving the BG equation,
which treats @ exactly in a HO basis. Their pro-
cedure follows a suggestion by Butler ef al.” that
¥ %(w) be expanded in terms of the eigenfunctions
of H,+V, rather than in terms of eigenfunctions of
H, alone. Since the basis eigenfunctions thereby
already contain the effects of the short-range cor-
relations caused by V, it is expected that this ex-
pansion for ¥2°(w) will converge rapidly. TN then
solve Eq. (3) by iteration.

The TN method is interesting for a number of
reasons. First the summation over intermediate
states ¢, in Eq. (3) is carried out explicitly. Con-
sequently, the Pauli operator @ may be treated ex-
actly and the energies €, can be shifted by an arbi-
trary amount in a straightforward manner. In ad-
dition, the convergence of this summation can show
how important the highly-excited intermediate
states are in a calculation of ¥5(w) and G(w).
Secondly the method generates the coefficients of
a rapidly converging expansion for the BG wave
function, ¥55(w), as mentioned in the previous
paragraph. Finally the method gives a completely
independent check on the results of other calcula-
tions that use different approximations.

In Sec. II of this paper we briefly review the
methods of Butler ef al. and TN and then show how
the latter may be extended to include arbitrary en-
ergy shifts in the intermediate-state spectrum.
Next we discuss the convergence of the summation
over intermediate states in the TN method. It is
shown that the sum can be truncated at some upper
limit, provided this upper limit is chosen with re-
gard to the point of truncation of the eigenfunction
expansion of the BG wave function. Finally we
show that the convergence of the TN iteration
scheme is closely related to that of an iterative
procedure for finding the inverse of a matrix. A
condition for the convergence of this inversion pro-
cedure is given.

In Sec. III, we use the differential form of the BG
equation to show that the expressions for the G ma-
trix elements given by Butler et al. and TN are in-
correct for potentials with infinite hard cores but
are valid for all other potentials. The reason for
this error is that the above authors effectively in-
terchange two limiting processes in a nonuniform-
ly convergent sum for the G matrices. We con-
clude the section by extending the TN method to
treat potentials with infinite hard cores.

II. ITERATIVE METHOD FOR SOLVING
THE BETHE-GOLDSTONE EQUATION

To obtain a solution of the BG equation [Eq. (3)]
in a HO basis, Butler et al.” and TN® expand the
BG wave function ¥ 26(w) in terms of the complete
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set of eigenfunctions ¥, ,
‘1’5G(w)=2 d,-,x(w)ll)i . (4)
13
In the above equation

am(w)=<¢i|‘1’36(w)>, (5)

and ¥; is an eigenfunction of the Schrédinger equa-
tion,

Ho+ V)Y =E; (6)

for two interacting particles bound in a HO well.
The eigenvalues and eigenfunctions of the two-par-
ticle HO Hamiltonian H,, are given by

HO(Z)&EHhodJa:Ead)a- (7)

Because H,+V is separable in rcm coordinates,
the wave function y; may be written as the product
of a HO wave function for the c.m. coordinates and
an eigenfunction for the relative part of Eq. (6).2
The latter function and the eigenvalues E; can be
found numerically. It follows from Eqs. (4)—(7)
that Eq. (3) can be written in the form®

s b. G
am(w)=bm+z Qﬂwt—y 4 o(w) ’ ®)
1 1

where G, o(w) is the reaction matrix defined by Eq.
(2), and

bicx=<¢il¢)o¢> . (9)

For states 7 which are not coupled by the tensor
force in the nucleon-nucleon interaction, the quan-
tity b;, is obtained simply by multiplying the usual
Talmi-Moshinsky bracket by the radial overlap in-
tegral of the relative part of y; with a relative HO
wave function with the same angular momentum.
For coupled states ¢, b;, is the sum of two such
terms. It can also be shown that for potentials
without an infinite hard core’

G pa(@)= 2 ao(@)byp(E; ~ €p). (10)

In practice, the sums over ¢ in Egs. (4) and (10)
are truncated at some upper limit ¢, .. This will
be discussed further in Sec. IIL

At this stage Butler et al. make the approximation

aia:nabia ’ (11)
where
i max
g 20 bit=1, (12)

1

and use Eq. (10) to calculate the reaction matrix
elements. Equation (12) follows from the require-
ment (¢, |[¥5°) =1, which in turn follows from Eq.
(3). This simple approximation gives G matrix
elements and BG wave functions with no depen-

dence on w and is thus of limited applicability.
Truelove and Nicholls, however, truncate the sum
over . in Eq. (8) and then use this equation togeth-
er with Eq. (10) and the self-consistency equations
for w to set up an iteration scheme to solve for
a;,(w), G,q(w), and w. Obviously their procedure
can readily be adapted to solve for a;,(w) and
G, o(w) for any specified value of w.

We now observe that it is also possible to trivi-
ally modify the TN method to deal with the shifted
HO Hamiltonian

HoEHhoJ"Z?CsiﬁbB)@s‘ . (13)

Because
(Hh0+ZB>CBI¢B> <¢B|)¢a=(€a+ca)¢aa (14)

the eigenfunctions ¢, of this Hamiltonian are iden-
tical to those of H,,, but the corresponding eigen-
values are e,, where

€x=€qtC, . (15)

The original TN method cannot be used directly
with this new H,, because it does not separate
readily into rcm coordinates. This problem can
be overcome by continuing to define the eigenfunc-
tions y; using the unshifted HO Hamiltonian H,
rather than H, itself in Eq. (6). The form of Eq.
(10) remains unchanged, but «;,(w) is now given
by the equation obtained by replacing €, by e, in
Eq. (8).

We now turn our attention to the truncation of the
infinite sum over g in Eq. (8). Assuming that the
sum over i in Eq. (10) has alveady been truncated
at the upper limit ¢ _,,, we substitute Eq. (10) into
Eq. (8) and interchange the orders of summation
to obtain

imax
aia(w)=bia+ E Bij(w)aja(w) , (16)
i
where
— (E; —€
B,.j(w)=Z:<——wa_€ Qubiuby, - (k)
M M

The interchange is valid provided the sum in Eq.
(17) is absolutely convergent. For large €,, the
terms of this sum fall into two categories. The
first category contains terms corresponding to
states p which consist of one particle in an ex-
cluded single-particle state and the other in a
highly excited one; these terms are zero because
Q“ is zero. The terms in the second category have
both particles in excited states and are approxi-
mately equal to b;,b;,, since @, is 1 and the ener-
gy-difference ratio tends to unity for €, much
larger than E; and w. Therefore, it can easily be
shown, using the Schwartz inequality, that the sum
is indeed absolutely convergent.
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In order to perform numerical calculations, one
must truncate the infinite sum over p in Eq. (17)
at some upper bound ., . It is obvious that this
upper bound can be chosen independently for each
i,j pair. However, the iterative procedure used in
the TN method forces one to select a fixed value of
Mmax for all i and j less than i_,,. Since it is found
empirically that for any given j the overlaps b,
are largest when €, is approximately equal to E;
and since the maximum possible value of E; in-
creases with ¢, , a higher value of u_,, should be
used if 7, is increased. It is probable that the
anomalous convergence of the TN procedure as a
function of p_,, for two different values of ¢,
(see Fig. 1 of Ref. 6) is a result of choosing these
upper limits independently. The above discussion
is also applicable to the shifted Hamiltonian of
Eq. (13).

We conclude this section with a discussion of the
convergence of the TN iteration scheme. We first
recast the theory in matrix form; Eq. (16) then
becomes

[I-B(w)]as(w)=b,, (18)

where the matrix elements of B are given by Eq.
(17). Provided the energy w is specified, the ex-
pansion coefficients a;,(w) can be found by matrix
inversion. For large matrices, it is more con-
venient to solve Eq. (18) iteratively, using the
scheme

ay’ =b,,
(19)
al) =D, Blw)al ™ .
For a fixed w, the above scheme reduces to
al’ =(I+B+ -+ +B")b,, (20)

which is a variant of the familiar Gauss-Seidel
iterative method® for solving matrix equations. A
sufficient condition for the convergence of this
method is that all of the eigenvalues of B have
modulus less than unity. On the other hand, if we
determine w, and hence B(w), at each iteration
step, Eq. (19) is precisely the TN iteration
scheme. Since the matrix _I_B_(w) is not altered ap-
preciably by changes in w within the range of inter-
est for a shell-model calculation, the convergence
of this latter scheme would be expected to be es-
sentially equivalent to that of Eq. (20).

III. TREATMENT OF INFINITE
HARD-CORE POTENTIALS

If the reaction matrix elements defined by Eq.
(2) are to be finite for potentials with an infinite
hard core, the wave function \Ing(w) must be zero
within the region of the hard core, and V\I/(EG(w)

within this region must be specified by a limiting
process. This, in turn, implies that the reaction
matrix elements, the BG wave function, and the
coefficients a;, are also determined by this same
limiting process. It is clear that we should study
the limit of these quantities for potentials V¥ with
large but finite repulsive cores of the same range
¢ as that of V, but which are otherwise equivalent
to V. Quantities calculated using V¥ will be de-
noted by a superscript F.

We first transform the BG equation for the po-
tential V¥ into an integrodifferential equation by
operating on both sides of Eq. (3) with (w - H,) to
obtain®®

(w=H)[¥ F(w)]*
=(w=€)¢, + Z_‘,Qp¢>u(q>p |VF|[\Ing(w)]F> .
B
(21)

Because the ¢, form a complete set, we have after
rearrangement

Ho+VF = w)[¥ 5 (w)]”
= (g~ W¢at 2 (1-Q,)0,(p, IVF[¥E(w)]) .
u
(22)

By dividing the range of integration of the relative
coordinate in Eq. (2) into two regions, i.e., 7

= ['1:1 - ;2[ < (c+€)and > (c +€), where € represents
an infinitesimal distance, we can use Eq. (22) to de-
rive the relation

Ghol(w)=(pp V¥ ()]

:ff d_f‘dﬁ{(w —€B)¢e*[‘l’gG(w)]F

+(€q=w)pp*pa+ D (1-@Q,)
n
X (ul VAL @) dp*ey
+ gffdﬂ(?)dﬁ{rzcbB*:—y[\IIZG(w)]F
@) o= 66 H e
[ dEaRegvIEE@F, @)

where the integrations over T are confined to the
specified regions and include spin summations;
Q(7) has been used to denote the angular coordi-
nates of ¥; and R denotes the c.m. coordinates.!

If we now define the reaction matrix elements for
the infinite hard-core potential V by

Gpolw)= lim G§ (v) , (24)
viov

Eq. (23) can be used to establish a definition of
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VEES(w) for r<c, i.e.,
V\IIEG(‘U): (ea - w)d)a"'z; (1 "Qp)¢ucpa(w)
m
r<c, (25)

n? 9
BG - .
V¥ 57 (w) = ;n_ ]-}rm 5 [‘I’gc(w)]Flr=c+56(7 -c),
VY >y

r=c,

since ¥E(w)=0 for »<c. This expression is the
same as that for the corresponding quantity in the
reference-spectrum approach,’? apart from the
term involving the sum over @, which represents
the Pauli correction.

Having established the appropriate limiting be-
havior of V\IlgG(w), we now consider the expansion
of ¥8%(w) in terms of known eigenfunctions, as dis-
cussed in Sec. II. If V is an infinite hard-core po-
tential, then we can write

¥ol(w)= lim [¥6W))"=lim Dai, ()i,
vEsy vEoy i
(26)
where y¥ is the eigensolution of
Ho+ VW =E{Y] (27)

and the infinite sum over ¢ is uniformly convergent
with respect to the height of the core of VF for all

7. Since the sum is uniformly convergent, we can
interchange the limit and the sum, so that

V(W) =5 aje (@) (28)

where a;,(w) and ¥; are the limits as V¥~V of
afa(w) and ¥, respectively. Consequently, no
problems arise in the expansion for ¥5%(w) in the
limit of infinite hard-core potentials.

Unfortunately a similar statement is not true for
the product of V¥2(w). Expressing V¥5°(w) as
above, i.e.,

V(@)= lim 7 af, @)V, (29)
vy i

we see that it is invalid to interchange the limiting
process with the infinite sum for » <c, because this
would lead to the spurious result V¥2(w)=0 for
r<c. This spurious result follows from Eq. (27)
and the fact that

lim ¢ =0 forrs<c. (30)

vEoy
Since this interchange would be permitted if the
sum had a finite number of terms, any truncation
of the sum in Eq. (28) automatically leads to the
omission of the contribution to the reaction matrix
element from the region » <c, i.e., the “inner-
core” term. On the other hand, if we take a suffi-
cient number of terms in the ¢ sums to give an

adequate representation of ¥2°(w) in the region
¥ >c, the contributions to the reaction matrix ele-
ment from ¥ >c¢ and from the “core edge,” v =c,
will be included properly. The latter result follows
directly from Eq. (25), which implies that the
“core-edge” term depends only on the form of
¥ (w) immediately outside the core.

The “inner-core” term can be included in the fol-
lowing manner. We write Eq. (28) in the form

BG imax
\pa (w)=2a(w)+ E aio((w)d)i ) (31)
1
where the ¢ sum is truncated at some upper bound
imax and ¥, (w) represents the remainder of the sum.
Then

* max

V(W) =V (@) + 25 aia(@)VY; , (32)
where
V)= lim 3 al @V (33)

VF—>V >4 max

Because Eq. (28) is uniformly convergent, by a
suitable choice of i,, we can make ¥, (w) arbitrari-
ly small for all values of . Then for r=c, V¥,(w)
can be approximated by zero. For 7 <c we have the
exact result

Vga(w): (Ea - w)¢a+2(1 - Qu)(puGua(w) ’
u
r<c, (34)

which follows from Eqs. (25) and (32). It should be
noted that it is the eigenstates which have energies
approximately equal to the height of the repulsive
core of the potential that give the inner-core term,
because only these eigenfunctions are appreciable
and slowly varying in the region of the core.

Substitution of Eq. (32) into the definition (24) of
the reaction matrix gives'®

Gsa(w)-‘- (€q=w)0ps+25(1 _Qp)oﬁqua(w)
m

+ 27 Gio(w)bip(E; —€p), (35)
where
Ogo =ff<c d—fdﬁ¢ﬂ*¢a- (36)

The first two terms of Eq. (35) were omitted in
the inert-core shell-model calculations of Refs. 6
and 7. However, it should be noted that these
“inner-core” contributions to G are usually a very
small fraction of the total reaction matrix element,
and their inclusion would not affect the results of
the shell-model calculations. On the other hand,
in calculations of the total binding energy or calcu-
lations involving off-energy-shell G-matrix ele-
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ments, the relative importance of the inner-core
terms increases, and they should be included.

The inner-core term in Eq. (35) could be calcula-
ted by truncating the sum over p and solving the
resultant set of equations by matrix inversion. Be-
cause of the small size of the overlaps Og,, it is
probably more than adequate to substitute

1‘1'1'13)(
Guu(w)z (Ea _w)oya’*' 2 aicx(w)biu(Ei - 6“)
1
(37)
into the right-hand side of Eq. (35) to obtain
“lTIBX
("‘Bct(w)z (eoc - w)[oﬂa + Z) (1 "Qy)oﬂpoua]
In
imax
+ 2 a;()bip(E; —€p)
1
K max
+ 25 (1-Q,)0p,0,,(E; —€,)]. (38)
M

This last equation can be used to calculate directly
the nth approximation to the coefficients a;,. The
TN method can, therefore, be extended to infinite
hard-core potentials by replacing Eq. (10) by Eq.

BARRETT, HEWITT, AND McCARTHY

o

(38) in the iteration procedure.

Finally, we observe that it is still possible to in-
clude arbitrary shifts in the intermediate-state
energies. However, the procedure involves more
than simple changes in the energy denominators.
Our final expression, Eq. (35), for the G matrix
must be modified by adding the extra term

"2 QpCuOBp(w—ep)ﬂGpa (39)
u

to the right-hand side, leaving all other terms
unchanged.
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