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The expansion developed previously for the derivation of the relation between the transmis-
sion coefficient and the ratio of the average width to the average spacing is reexamined. By
rewriting the series in a more convenient form, not only is the objection raised against the
expansion removed, but also an estimate of the smallness of the terms which are usually
thrown out can be easily made.
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for the case of the single channel, given in Ref. 4,
is not correct, since the terms in the expansion
used there may not be small. Following along the
lines of Ref. 4, an alternative proof is then sug-
gested' for relation (2). The purpose of the present
note is to examine the validity of the objection of
Ref. 5 to the derivation given in Ref. 4.

The starting point of the derivation of relation (2)
is the expression for the energy average (S„&, ob-
tained using the averaging technique of Feshbach,
Kerman, and Lemmer. ' Apart from a, phase factor

An important relationship in the theory of aver-
age cross sections' is the connection between the
transmission coefficient T, defined as

r, =1 —[&S„&[',

where (S,,) is the energy average' of the low-ener-
gy scattering matrix S, and the ratio of the average
width (I"„& to the average spacing D. Because of
the difficulties of the unitarity constraint on S, two
kinds of models have been used for this purpose:
(1) the picket-fence model, ' which contains an in-
finite number of resonances having the same width
I' and a constant spacing D, and (2) the finite reso-
nances model, 4 in which the individual widths and
spacings are not restricted to constant values, but
the number of resonances are taken to be finite. A
comment has been made' that the derivation of the
relation

for the single-channel case, it is given by
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with I = 26E/w, Z„=e„—2I'„, and the product is to
be evaluated for the N resonances in AE.

Expression (3) is rewritten in Ref. 4 as
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which can be expanded to yield

where (e„& is written for (e„&= (1/N)g„c„= Eo
The objection raised in Ref. 5 is that if we ex-

amine the part of the second term in the above ex-
pansion which is of the form [1/(())E)']Q„(e„—(e„&)',
then for a resonance c„which happens to fall at the
end of the interval AE this term will be of the or-
der of unity, making the expansion invalid. But the
same argument applied to the similar part of the
fourth term again gives a contribution of the same
order but with the opposite sign. In fact, the suc-
cessive even-order terms alternate in sign. It is
easy to show that we can easily get rid of these al-
ternating terms by rearranging expression (4). To
achieve this we express (S„& in the form
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We see from expression (6) that the terms which
were alternating in character have now disappeared,
thus removing the objection raised in Ref. 5. So far
we have not said anything about the statistical dis-
tributions of e„, I'„. Further evaluation of the ex-

pansion terms in expression (6) needs their knowl-
edge. Let us first consider the case when the dis-
tribution of e„, I'„ is such that all their statistical
moments have an upper bound which is less than
4E. If we denote by Q„any combination of &„I'"„,
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then the variable statistics of the quantities Q„ im-
plies' that a term like (1/ZE)gs(~'Q„should be
replaced by

Since all Q„ in AE are treated statistically alike,
we find that if the density of p, in hE is taken to be
constant =fV(OE)/BE= 1/D, as has been done earli-
er,"then this term becomes (Q„)/D. Using this
result in expression (6), together with our assump-
tion of an upper limit on the statistical moments
less than AE, we get the earlier result

(S„(EO))~=e '& ~&' (7)

Next let us suppose that e„=pB, that is, poles
are uniformly spaced and all I'& = I'. This corres-
ponds to the picket-fence model (p.f.m. ) which uses
fixed resonance parameters. The expansion terms
in expression (6) can again be evaluated by using
the expressions for summations of the type Q'„".
If these summations are carried out in expression
(6), then we find that, irrespective of the value of
(vI'/D), we do not get the result given by (7) but in-
stead arrive at the result

(s..(z,)) =~ vI-('D) p 2, , (2)
(8)

We remark here that the same result will be ob-
tained from Eq. (2.19) of Feshbach, Kerman, and
Lemmer' if one uses the resonance parameters of
the picket-fence model. Since it is well known'
that for small values of (Iv'„)/D, (S„)is given by

(S„)= 1-v(r „)/D,

we can ask why we arrive at the incorrect result
(8) if we use p.f.m. resonance parameters in ex-
pression (6). The explanation for this is the com-
plete coherence of resonances in the p.f.m. , which
does not allow us to separate the resonances in 2E
from the ones which are outside this interval.

Since our objective here is not to discuss the
problem of averaging using the p.f.m. and Lorentz
energy-resolution function, we conclude this note
with the following remarks:
(1) The energy-averaging prescription of Feshbach,
Kerman, and Lemmer' gives correct results pro-
vided all the statistical moments of e„, I'„have an
upper bound which is less than AE.
(2) The expansion used in Ref. 4 can be rearranged
to get rid of the terms against which the objection
was raised in Ref. 5.
(3) For the coherent model, like the p.f.m. , the
energy-averaging prescription' can be used pro-
vided the effect of the resonances outside ~E is
taken into account. If this is done then one gets ex-
pression (7) instead of the incorrect expression
(8). Because of the built-in coherence of this model,
it cannot be used either to check the usual energy-
averaging prescription' or the derivation given in
Ref. 4. Detailed numerical calculations for the
p.f.m. using various energy-resolution functions
are carried out which check our point of view.
These calculations are intended to be published
later.
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