¹⁷J. A. Harvey, G. G. Slaughter, J. R. Bird, and G. T. Chapman, Argonne National Laboratory Report No. ANL 6797, 1963 (unpublished), p. 230.

¹⁸B. R. Mottelson, in *Proceedings of the International* Conference on Nuclear Structure, 1960, Queen's University, Kingston, Ontario, edited by D. A. Bromley and E. W. Vogt (University of Toronto Press, 1960), p. 525.

¹⁹I. Bergqvist, B. Lundberg, and N. Starfelt, Argonne National Laboratory Report No. ANL 6797, 1963 (unpublished), p. 220.

²⁰B. B. Kinsey, in *Encyclopedia of Physics*, edited by S. Flugge (Springer-Verlag, Berlin, Germany, 1957), Vol. XL, p. 302.

²¹J. E. Draper, C. Fenstermacher, and H. L. Schultz, Phys. Rev. <u>111</u>, 906 (1958).

²²C. A. Fenstermacher, J. E. Draper, and C. K. Bockel-

man, Nucl. Phys. 10, 386 (1959).

²³J. R. Huizenga and R. Vandenbosch, Phys. Rev. <u>120</u>, 1305 (1960).

²⁴W. P. Pönitz, Z. Physik <u>197</u>, 262 (1966).

²⁵D. Sperber and J. W. Mandler, Nucl. Phys. <u>A113</u>, 689 (1968).

²⁶K. J. Wetzel and G. E. Thomas, Phys. Rev. C <u>1</u>, 1501 (1970).

²⁷R. E. Bell, in *Alpha-, Beta-, and Gamma-Ray Spectro-scopy*, edited by K. Sieghahn (North-Holland Publishing Company, Amsterdam, The Netherlands, 1965), Vol. 2, p. 905.

²⁸L. M. Bollinger, in *International Symposium on Nuclear Structure*, *Dubna*, 1968 (International Atomic Energy Agency, Vienna, Austria, 1969), p. 317.

²⁹P. Axel, Phys. Rev. <u>126</u>, 671 (1962).

PHYSICAL REVIEW C

VOLUME 2, NUMBER 3

SEPTEMBER 1970

γ -Vibrational and Ground-State Rotational-Band Mixing in ²³⁸Pu

J. M. Palms, R. E. Wood, and P. Venugopala Rao Emory University, Atlanta, Georgia 30322

(Received 26 November 1969; revised manuscript received 29 June 1970)

The intensities of the high-energy γ rays in the 2.1-day decay of ²³⁸Np to ²³⁸Pu are measured using a high-resolution Ge(Li) detector (full width at half maximum of 1.7 keV at 1333 keV). The branching ratios for the transitions from the γ -vibrational band are found to be consistent with values of $(26.5 \pm 7.8) \times 10^{-3}$ for z, the band-mixing parameter for the ground-state rotational and γ -vibrational bands, and $\approx -7 \times 10^{-3}$ for $z_{\beta\gamma}$, the parameter for the mixing of β - and γ -vibrational bands.

I. INTRODUCTION

It is now well established that the branching ratios for the E2 transitions from γ -vibrational bands to ground-state bands indicate a small mixing of these bands.¹ The rotational-vibrational interaction is usually characterized by the coupling parameter z.^{1,2} A single value of z is expected to explain all the observed intensities of the transitions between the two bands in a nucleus. Considerable work has been done in support of such a description in the case of deformed nuclei of the rare-earth region, ³⁻¹¹ as well as heavy deformed nuclei.¹²⁻¹⁷ The strong excitation of two K = 2 vibrational levels at 1030 keV (2^+) and 1071 keV (3^+) in ²³⁸Pu was well established by previous work.¹⁷⁻²² Borggreen, Nielson, and Nordby¹⁷ determined the branching ratios for the transitions deexciting these two levels from conversion-electron intensities assuming a theoretical α_{κ} for pure E2 transitions. They found an average value of $z \approx 0.025$. In the present work the relative γ -ray intensities are measured using a high-resolution Ge(Li) detector with calibrated relative efficiency in order

to study the deexcitation of 2⁺ and 3⁺ γ -vibrational states.

II. EXPERIMENTAL PROCEDURE

A few μ g of ²³⁸Np were irradiated in the thermalneutron beam from the Lockheed reactor. The γ ray spectra were measured with a high-resolution (full width at half maximum of 1.7 keV at 1333 keV) Ge(Li) photon spectrometer. The detector and electronic circuitry have been discussed elsewhere.^{23,24} The photopeak efficiency calibration of the detector was made using International Atomic Energy Agency calibrated sources.

III. RESULTS

A typical γ -ray spectrum of the high-energy region is shown in Fig. 1. The decay of each of the photopeaks was followed over several half-lives. The unidentified γ rays in the spectrum did not belong to the decay of ²³⁸Np. The closely spaced doublet of 1027.4- and 1029.9-keV γ rays is clearly resolved. The energies and relative intensities of the γ rays measured in the present experiment are presented in Table I. γ rays at 990 and 1034 keV corresponding to transitions from a level at 1034

FIG.1. High-energy γ -ray spectrum from the 2.1-day ²³⁸Np \rightarrow ²³⁸Pu decay taken with a Ge(Li) detector having an FWHM of 1.7 keV at 1333 keV. The energies are in keV.

keV in ²³⁸Pu proposed by Albridge and Hollander²² were not found, and upper limits were set for their presence. Assuming the theoretical value of 8.96×10^{-3} for α_{κ} for the 1029.9-keV (2, 2⁺-2, 0⁺) transition, which is expected to be pure E2, the values for α_{κ} for the four other transitions observed in the present work are calculated with the aid of our γ -ray intensities and the conversionelectron intensities from the work of Borggreen, Nielson, and Nordby. The experimental values are compared with the theoretical values of α_K for pure E2 given by Hager and Seltzer²⁵ in Table I. No substantial evidence was found for any M1 mixing. A revised decay scheme, incorporating the present relative γ -ray intensities and the earlier work on the β spectrum and conversion electrons, is presented in Fig. 2. For the branching of the soft component, earlier β -spectrum studies^{17,18,20,21} assigned values of (58±4)%, 53%, 55%, and 59%, respectively, and an average value of 56% is adopt-

Transition	Energies (keV)	Relative	$10^3 \times \alpha_{\kappa}$		
$K I_i \rightarrow I_f$		intensities	Experiment ^a	Theory (E2) ^b	
2 2 ⁺ → 4 ⁺	884.6	3.3 ± 0.4	11.9	11.9	
2 3 ⁺ → 4 ⁺	925.4	11 ± 0.7	9.3	10.9	
$2 2^+ \rightarrow 2^+$	985.8	100	9.1	9.7	
$2 3^+ \rightarrow 2^+$	1027.4	32 ± 2	9.0	9.0	
$2 2^+ \rightarrow 0^+$	1029.9	69 ± 5	9.0	9.0	
	990	<0.15			
	1034	<0.15			

TABLE I. Energies, relative γ -ray intensities, and α_K for the transitions in ²³⁸Pu.

^aValues are obtained from the conversion-electron data of Borggreen, Nielson, and Nordby (Ref. 17).

^bValues are obtained from the work of Hager and Seltzer (Ref. 25).

FIG. 2. Revised decay scheme of $^{238}Np \rightarrow ^{238}Pu$.

	γ - and g.sband coupling only				β - and γ -band coupling included		
Transition	B(E2) Rat Experiment 1	Theory $(z=0)$	factor <i>f</i>	1 <i>Z</i>	factor f	z	<i>^z</i> βγ
$\frac{2 \rightarrow 0}{2 \rightarrow 2}$	0.57 ± 0.04	0.7	$\left(\frac{1-z}{1+2z}\right)^2$	0.036 ± 0.010	$\left(\frac{1-z+2z_{\beta\gamma}}{1+2z-3z_{\beta\gamma}}\right)$	2	
$\frac{2 \rightarrow 4}{2 \rightarrow 2}$	0.057 ± 0.007	0.05	$\left(\frac{1+9z}{1+2z}\right)^2$	0.010 ± 0.008	$\left(\frac{1+9z+12z_{\beta}\gamma}{1+2z-3z_{\beta}\gamma}\right)$	0.025 ± 0.012	≈-0.007
$\frac{2 \rightarrow 0}{2 \rightarrow 4}$	9.9 ±1.2	14	$\left(\frac{1-z}{1+9z}\right)^2$	0.018 ± 0.009	$\left(\frac{1-z+2z_{\beta\gamma}}{1+9z+12z_{\beta\gamma}}\right)$	2	
$3^+ \gamma \frac{3 \rightarrow 4}{3 \rightarrow 2}$	0.58 ± 0.04	0.4	$\left(\frac{1+6z}{1-z}\right)^2$	0.028 ± 0.010	$\left(\frac{1+6z}{1-z}\right)^2$	0.028 ± 0.010	

TABLE II. B(E2) ratios for the decay of γ -vibrational band.

ed. The following values for the β branching to levels at high energy are obtained: 1071 keV (11%), 1034 (<0.08%), 1030 keV (45%), and 984 (<0.16%). The present work yields a limit for the feeding of the level at 1034 keV much lower than the value of 7% from the work of Albridge and Hollander.²²

IV. DISCUSSION

The ratios of B(E2) values are calculated from the experimental relative intensities and energies for the transitions deexciting the 2⁺ and 3⁺ γ levels, assuming pure E2 character, and are listed in Table II. The theoretical B(E2) ratios for z = 0and the values of the coupling parameter z to explain the observed ratios are also presented. The correction factors f that enter into the expression for B(E2) values, i.e.,

$$B(E2, I_i \rightarrow I_f) = B(E2, I_i K = 2 \rightarrow I_f K = 0) f(z, I_i, I_f)$$

are also listed. In spite of the large error limits involved, the z values seem to have a wide range, thus apparently not subscribing to the single-parameter band-mixing theory. This discrepancy cannot be attributed to any M1 admixture in the transitions, as is evident from the K-conversion coefficients presented in Table I. The smallness of *M*1 admixture is well established both in the rare-earth region and the region of the present interest. The possibility of substantial *E*0 admixture in the transition of the type $\Delta I = 0$ is also not evident from the agreement between the experimental value of α_{κ} and the corresponding theoretical value of $\alpha_{\kappa}(E2)$ for the 985.8-keV $(2, 2^+ \rightarrow 0, 2^+)$ transition.

The presence of a possible level at 984 keV belonging to the β -vibrational band raises the question whether there is any coupling between β - and γ -vibrational bands. The β and γ interaction is taken into account by introducing an additional parameter $z_{\beta\gamma}$, and the correction factors $f(z, z_{\beta\gamma}, I_i,$ I_f) are listed in the work of Lipas.²⁶ The parameter $z_{\beta\gamma}$ enters only into the correction factor for the branching of the $2^+ \gamma$ level and not the $3^+ \gamma$ level. From the data on the $2^+ \gamma$ level in Table II, $z_{\beta\gamma}$ is estimated to be about -0.007, while the new value of z is 0.025 ± 0.012 , which is in agreement with 0.028 obtained for the branching of the $3^+ \gamma$ level. Thus the mixing of the γ -vibrational and ground-state rotational bands can be explained by a single parameter z, the average value of which is 0.0265 ± 0.0078 , if we include a small amount of β and γ interaction.

¹P. Gregers Hansen, O. B. Nielsen, and R. K. Sheline, Nucl. Phys. <u>1</u>2, 389 (1959).

²O. Nathan and S. G. Nilsson, in *Alpha-, Beta-, and Gamma-Ray Spectroscopy*, edited by K. Siegbahn (North-Holland Publishing Company, Amsterdam, The Nether-lands 1965), Chap. X.

³C. J. Gallagher, Jr., O. B. Nielsen, and A. W. Sunyar, Phys. Letters <u>16</u>, 298 (1965).

⁴O. B. Nielsen, in *Proceedings of the Rutherford* Jubilee Conference, edited by J. B. Berks (Academic

Press Inc., New York, 1961), p. 317.

 $^5 \rm Y.$ Yoshizawa, B. Elbek, B. Herskind, and M. C. Olesen, Nucl. Phys. $\underline{73},\ 273$ (1965).

- ⁶R. Graetzer, G. B. Hagemann, K. A. Hagemann,
- and B. Elbek, Nucl. Phys. <u>76</u>, 1 (1966).
- ⁷C. Gunther and D. R. Parsignault, Phys. Rev. <u>153</u>, 1297 (1967).
- ⁸L. Varnell, J. D. Bowman, and J. Trischuk, Nucl. Phys. <u>A127</u>, 270 (1969).
- ⁹L. L. Riedinger, N. R. Johnson, and J. H. Hamilton, Phys. Rev. <u>179</u>, 1214 (1969).
- ¹⁰J. H. Hamilton, A. V. Ramayya, and L. C. Whitlock, Phys. Rev. Letters <u>23</u>, 1178 (1969).
- ¹¹E. Bodenstadt, in *Proceedings of the International Conference on Radioactivity in Nuclear Spectroscopy*, *1969* (Gordon and Breach, Science Publishers, Inc., New York, to be published).
- ¹²E. Arbman, S. Bjornholm, and O. B. Nielsen, Nucl.

Phys. <u>21</u>, 406 (1960).

- ¹³J. M. Hollander, C. L. Nordling, and K. Siegbahn, Arkiv Fysik <u>2</u>3, 35 (1962).
- ¹⁴S. Bjornholm, F. Boehm, A. B. Knutsen, and O. B. Nielsen, Nucl. Phys. <u>42</u>, 469 (1963).
- ¹⁵P. H. Stelson, R. W. Lide, and C. R. Bingham, Nucl. Phys. <u>A144</u>, 254 (1970).
- ¹⁶M. R. Schmorak, C. E. Bemis, Jr., M. Zender, F. F. Coffman, A. V. Ramayya, and J. H. Hamilton, Phys.
- Rev. Letters 24, 1507 (1970).
- ¹⁷J. Borggreen, O. B. Nielson, and H. Nordby, Nucl. Phys. <u>29</u>, 515 (1962).
- ¹⁸M. S. Freedman, A. H. Jaffey, and F. Wagner, Jr., Phys. Rev. <u>79</u>, 410 (1950).
- ¹⁹H. Slatis, J. O. Rasmussen, and H. Atterling, Phys. Rev. <u>93</u>, 646 (1954).
- ²⁰J. O. Rasmussen, H. Slatis, and T. O. Passell, Phys. Rev. <u>99</u>, 42 (1955).
- ²¹S. A. Baranov and K. N. Shlyagin, J. Nucl. Energy <u>3</u>, 132 (1956).
- ²²R. G. Albridge and J. M. Hollander, Nucl. Phys. <u>21</u>, 438 (1960).
- ²³J. M. Palms, P. Venugopala Rao, and R. E. Wood, Nucl. Instr. Methods <u>64</u>, 310 (1968).
- ²⁴J. M. Palms, P. Venugopala Rao, and R. E. Wood,
- IEEE Trans. Nucl. Sci. <u>16</u> (No. 1), 36 (1969).
- ²⁵R. S. Hager and E. C. Seltzer, Nucl. Data <u>A4</u>, 1 (1968).
 ²⁶P. O. Lipas, Nucl. Phys. <u>39</u>, 468 (1962).