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The penetrability is computed exactly for a fission barrier V(e) defined in terms of two para-
bolic peaks connected smoothly with a third parabola forming the intermediate well. The po-
tential is specified by the peak energies El and E3 and the minimum energy E2 of the connect-
ing curve, along with the constants @~j, &~3, and h~2 related to the curvatures of the three
parabolas. For an incident wave of unit amplitude, the amplitude of the transmitted v ave is
determined by requiring that the wave functions (expressed exactly in terms of parabolic-cyl-
inder functions) and their first derivatives match at the points where the parabolas are con-
nected. The penetrability is then obtained from the amplitude of the transmitted wave. The
transmission is essentially an increasing exponential function exhibiting narrow resonances
at the positions of quasibound states in the intermediate well. The widths of these resonances
are extremely small (-&0 eV) for the levels near the bottom of the well but increase dramati-
cally as the energy increases. This trend continues in some cases above the top of the barri-
er, producing broad peaks in the penetrability function. The exact penetrabilities are accu-
rately reproduced by the WEB approximation for energies well below the barrier tops, but for
energies near the barrier tops the WEB approximation is found to overestimate the penetra-
bility for the cases studied.

I. INTRODUCTION

A semiempirical method for describing the influ-
ence of single-particle shell effects on nuclear
ground-state masses and deformations was intro-
duced a few years ago by Myers and Swiatecki. '
Soon after this development, Strutinsky proposed
a systematic technique for determining the magni-
tude of these shell effects as they varied with nu-
clear deformation. ' When this method was applied
to the large deformations appropriate to fission in
aetinide nuclei, peaks and depressions became ap-
parent in the potential energy of deformation.
From these theoretical results, a more complicat-
ed picture of the fission barrier began to emerge.
An idealization of this potential barrier is two
peaks separated by an intermediate well.

Several recently observed fission phenomena
have been interpreted in the light of these theoreti-
cal predictions of an intermediate well in the nu-
clear potential energy of deformation. The lowest-
lying state in this intermediate well was theorized'
to be the source of the spontaneously fissioning iso-
mer of ' 'Am first observed by Polikanov et al. '
Still additional experimental evidence began to ap-
pear. Clusters of subthreshold fission were ob-
served in the neutron-induced fission of '4'Pu and
'"Np target nuclei. ' ' lt was observed that the
resonance grouping of these subthreshold levels
could be explained by a modulation of fission
strength through broad resonances near the top of
the intermediate well. ' 7

Anomalies have long been apparent in fission
cross-section data. For example, the sharp struc-
ture observed in the "4U(n, f), '"Th(n, f), and

'"Pu(d, Pf) reaction data' "near the fission
threshold had never been adequately explained.
The presence of broad levels near the top of this
intermediate well can qualitatively explain this
anomalous structure.

Investigators involved in systematic searches for
the short-lived spontaneously fissioning isomers
have recently disclosed the existence of these iso-
mers in many of the a.ccessible a,ctinide nuclei. " "

Further theoretical studies of shell effects on
the fission barrier" "have corroborated the early
work, and strongly indicate the presence of at
least one —and possibly two —intermediate wells
in the nuclear potential energy of deformation. Ex-
tensive discussions of the consequences of the two-
peaked character of the fission barrier have been
provided by Lynn' and by Bje'rnholm and Strutin-
sky. "

Central to the description of the consequences of
a two-peaked fission barrier is the quantitative
problem of calculating the probability that the nu-
cleus will penetrate a barrier of this shape. The
well-known Hill-Whee1, er formulation" for the pen-
etration of a single parabolic barrier no longer
serves as an adequate description of the fission
process. Several alternative penetrability calcula-
tions have recently been presented. A numerical-
integration method' was used in a model to de-
scribe structure observed in fission probabilities
obtained in recent (d, Ipf) experiments. " A tech-
nique utilizing the WKB (quasiclassical) approxima-
tion has been proposed as an alternative method
for computing the penetrabilities of two-peaked
barriers having a completely general shape. ""

Concurrent efforts have provided an exact meth-
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FIG. 1. An illustration of a two-peaked fission barri-
er parametrized by portions of three smoothly joined
parabolas. The connecting points a and b define three
regions of the potential energy. The locations L; of the
quasibound levels are indicated. The dashed curve rep-
resents a comparable single parabolic barrier. Parame-
ters for this barrier are listed in Table I.

od of calculating the penetrability function for bar-
riers that are constructed of three connecting pa-
rabolas to define two peaks with an intermediate
well. '~ " Such an exact calculation has been in-
corporated into a fission model that was used to
describe direct-reaction fission data. "" How-
ever, these previously published works have in-
cluded only brief mention of the computational tech-
nique; we intend here to describe the calculation
in sufficient detail so that it can be used by others.

A second purpose of this paper is to explore the
influence of variations of the shape of the potential
barrier on the penetrability, and to relate the con-
sequences of these variations to general observa-
tions in experimental data. In addition, the exact
calculations are compared with results of the WEB
(quasiclassical) approximation" "for both sym-
metric and asymmetric barrier shapes. A brief
discussion of the penetrabilities of rectangular two-
peaked barriers is also included.

II. PENETRABILITY CALCULATION

Consider a one-dimensional potential barrier con-
structed of three connected parabolas. If one as-
sumes that the inertial parameter is constant in
each of the three regions separated by the connect-
ing points of the parabolas, an exact solution of
the Schrodinger equation of the system is possible.

The energy-dependent probability that a penetra-
tion will occur for a single assault on this potential
barrier —the penetrability function —can then be
determined from the solutions of the Schrodinger
equation.

A typical potential barrier to be considered for
this computation is shown by the solid line in Fig.
i. The equation for this potential is

V(e)=E;k 2pQp; (e —e;), i=1, 2, 3,

where e denotes the nuclear-deformation coordi-
nate in the fission degree of freedom. The three
regions i=1, 2, 3 are separated by the connecting
points a and b of the three parabolic curves shown
in Fig. 1. The minus sign in Eq. (1) refers to the
two peak regions (regions I and III in the figure),
and the plus sign refers to the region of the inter-
mediate well (region II). The energies E, are the.
maximum or minimum values of the potential at
the deformations e,. ; the "frequencies" (d; deter-
mine the widths of the individual portions of the
barrier. The inertial parameter p, represents the
effective mass of the system with respect to dis-
tortions in the e direction.

We have chosen to connect the three parabolas
smoothly by requiring the first derivatives of V(e)
to be continuous at the two connecting points a and
b. This reduces the number of parameters re-
quired to completely specify the potential energy of
deformation from nine to seven. In addition, the
potential is translationally invariant, and this can
be used to further reduce the number of parame-
ters to six. These six parameters are chosen to
be the three energies F; and the three frequencies

The values e, of the deformation correspond-
ing to the three extrema in the potential, as well as
the two connecting points a and b, are then deter-
mined in terms of these six basic parameters.
This is discussed in more detail in the Appendix.

The Schrodinger equation for this system can be
written as

—,@(e) + , [E —V(e) ]@(e) =—0. (2)

The solutions of this equation are expressed as lin-
ear combinations of parabolic-cylinder functions,
selected to clearly identify and separate transmit-
ted waves from reflected waves. There exists a
right-left degeneracy in this system, and the solu-
tions to Eq. (2) are chosen to allow the initial wave
of amplitude A to impinge on the barrier from left
to right. The solutions for the three regions are
then

Ag, (-)+BP,(-), e ~a
4'(e) = C6, +Dq, , a &e &b

T0.(-), b &c,

where the direction of the phase velocity is indicat-
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III. RESULTS OF CALCULATION

The penetrability function for the two-peaked po-
tential barrier of Fig. 1 is given by the solid curve
in Fig. 2. The energy and maximum penetrability
of the subthreshold fission resonances are indicat-
ed by the vertical lines. The enhanced penetra-

TABLE I. Parameters for the fission barriers of Fig. 1.

Two-peaked
barrier

Single
parabolic
barrier

ed by the arrows in parentheses. We are consider-
ing only those cases for which the reflection ampli-
tude in region III is zero. It is not important to
identify the direction of the phase velocity for the
wave functions 6, and g, in the intermediate region
(region II), since their amplitudes do not enter the
penetrability problem explicitly. The requirement
that these wave functions and their derivatives be
continuous at the connecting points a and b yields
four linear equations containing five unknown ampli-
tudes. These equations are then solved for the
ratio of the transmitted amplitude T to the incident
amplitude A and substituted into the relationship
which determines the penetrability,

P = ((u, /cu, )"'
i T/A i'.

The curvature parameters w, and +, appear in the
formula because of the conservation of probability
currents. The energy dependence of the penetra-
bility is obtained by evaluating T/A for different
values of incident energy. Barrier parameters
that were used in this sample calculation are listed
in Table I. A more detailed development of these
results is outlined in the Appendix.

If the effective mass p, in Eqs. (1) and (2) is as-
sumed to be constant over the entire region, the
penetrability function is independent of p, and its
only purpose is to scale the potential energy of de-
formation. The value used for p, was obtained from
the semiempirical result'6' 2

p =0.0540'"'8'/MeV,

where A is the nuclear mass number.
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FIG. 2. A linear plot of the calculated penetrability
through the two-peaked barrier of Fig. 1. Note the sharp
resonances at the positions of the quasibound levels in the
intermediate well. To illustrate the influence of experi-
mental resolution, the solid points represent the results
of folding the calculated penetrability with a Gaussian
function having a full width at half maximum of 100 keV.
The dashed curve gives the penetrability for the single
parabolic barrier of Fig. 1.

tion at these points is a direct result of the exis-
tence of the quasibound states I., through I., in the
intermediate well of the potential shown in Fig. 1.
The resonances due to the low-lying levels are
typically very narrow (see the column labeled
FWHM in Table II). For the levels near the top of
the well the resonances are broader. The reso-
nance parameters for this example are listed in
Table II; the peak values of the penetrabilities are
given in the column labeled P „. These resonance
parameters were determined by a procedure that
selects the Lorenzian curve that best fits the cal-
culated penetrabilities at every resonance.

To demonstrate the effect that experimental reso-
lution broadening might have on these peaks in the
penetrability functions, the calculated penetrabili-
ty was broadened with a normalized Gaussian func-
tion of 100 keV full width at half maximum (FWHM).
These experimentally broadened results are indi-
cated by the points in Fig. 2.

As the incident energy E approaches the peak en-
ergies of the potential barrier (approximately 5
MeV in this ease), the penetrability becomes a
smoothly increasing function to its maximum value
of unity. There is mild structure, however, in

Nuclear mass number A

Ru&

E)
Ku&

E3
%03
Spontaneous-fission

half-life
Isomeric half-life

240
5.50 MeV
1.25 MeV
2.00 MeV
1.00 MeV
5.00 MeV
0.50 MeV

2.45 x10 yr

48 nsec

240
5.50 MeV
0.40 MeV

3.3x10 yr

none

Level
Energy
(MeV)

FWHM

6 ev) +max

L(
L2
L3
L4

2.492
3.430
4.215
4.811

=0.01
=0.10

0.196
9.464

0.699 x10 6

0.349 x10 3

0.115
0.785

TABLE II. Subthreshold fission resonances for the
two-peaked barrier of Table I.
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this energy region, as illustrated by the "step" be-
ginning at 5.25 MeV. This feature corresponds to
a very broad unbound level which lies below the
higher peak but above the lower peak in the poten-
tial energy of deformation. A structure similar to
this is observed in the (n, f) cross section for sev-
eral nuclei.

The dashed curve in Fig. 2 shows the familiar re-
sults corresponding to penetrating a single parabol-
ic barrier, as discussed by Hill and Wheeler, '

P(E) = (1+exp[2vr(E, —E)/(h ~,)]j
Here P(E) is the energy-dependent penetrability,
E, is the peak height of the barrier, E is the inci-
dent energy, and @co, is the curvature parameter
of the barrier. This single parabolic barrier is
shown in Fig. 1 by the dashed curve. Values of the
barrier parameters used in this calculation are al-
so listed in Table I. Although this barrier is com-
parable to the two-peaked barrier, in the sense of
having the same height and predicting approximate-
ly the same spontaneous-fission lifetime, there
are notable differences in their penetrability func-
tions. In addition to the obvious absence of any
resonance penetration, the single-barrier penetra-
bility rises much more rapidly than the penetra-
bility for the two-peaked barrier.

To state it in another way, a single fission bar-
rier allows a much more rapid opening of the fis-
sion channels or transition states than does a com-
parable two-peaked barrier. The influence of this
effect is observed in experimental fission proba-
bilities at excitation energies near the top of the
barrier. ""For all of the nuclei studied in the ex-
perimental work cited, the slopes of the fission
probabilities are considerably smaller than the
slopes predicted by penetration through a realistic
single barrier.

Additional information can be obtained from this
parametrization of the fission barrier which corre-
lates with existing experimental information. The
known spontaneous-fission lifetimes of the various
nuclei can be used to provide a measure of the bar-
rier area. These half-lives can be calculated with
the barrier model and compared to measured val-
ues as outlined in the Appendix. The half-lives de-
termined for the sample barriers of Fig. 1 are
listed in Table I. The value of 2.45&10" yr for
the two-peaked barrier is in general agreement
with the spontaneous-fission half-lives for Pu and
U isotopes.

As mentioned earlier, the short-lived spontane-
ously fissioning isomers can be understood on the
basis of a two-peaked potential. These shape iso-
mers are situated at a deformation corresponding
to the intermediate well. The half-life of this iso-
meric state can be computed from the parameters

of the potential barrier described in this study.
Details of these computations are outlined in the
Appendix. The calculated isomeric half-life for
the sample barrier in Fig. 1 is 48 nsec, as listed
in Table I. Recent experiments involving the
search for such isomers have discovered isomeric
half-lives ranging from 10 ' to 10 sec. It was in-
dicated earlier that the penetrability calculations
are insensitive to a right-left orientation of asym-
metric barriers; i.e., mirror-image barriers
have the same penetrability. There is, however,
a selective mechanism inherent in the isomer de-
cay that could eliminate this right-left degeneracy.
The isomeric lifetime must be determined from
both modes of decay from the intermediate well:
y decay to the left and spontaneous fission to the
right. It has been pointed out, "however, that the

y decay from the shape-isomeric state is inhibited
relative to spontaneous fission by a factor of ap-
proximately 10' because of the competition between

y decay to a final ground state and a return to the
intermediate well. Decay from a symmetric bar-
rier is therefore almost exclusively spontaneous
fission. On the other hand, the asymmetric barri-
er would have a much shorter isomeric lifetime if
the thinner peak were on the right —toward the
scission direction —rather than on the left, as in
the sample barrier of Fig. 1.

IV. EFFECTS OF PARAMETER VARIATIONS

As suggested earlier, the general size of the fis-
sion barrier can be determined experimentally by
fission cross-section measurements and fission
probability measurements (which determine the ap-
proximate height of the barrier) and spontaneous-
fission lifetime measurements (which determine
the total area of the barrier). It further appears
that right-left degeneracies can be resolved for
the asymmetric barriers by measured lifetimes of
the shape isomers. These factors constitute the
constraints which must be met in defining a realis-
tic potential energy barrier for the fission of heavy
nuclei.

It remains then to explore the effects that vary-
ing the barrier shape has on the penetrability func-
tion, within the bounds of the above general cri-
teria.

In contrast to the asymmetric barrier of Fig. 1,
the symmetric barrier yields uniform peak heights
closely approximating unity in the computed pene-
trability at the resonance energies. An example of
a symmetric barrier and the resulting penetrabili-
ty is shown in Fig. 3. The potential energy of de-
formation is shown on the left and the logarithm of
the penetrability, calculated by the exact method,
is indicated by the solid line on the right. The pa-
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ing primarily to the experimental need for reason-
able counting rates, most of these data are nonex-
istent at energies of more than 200-300 keV below
the highest peak in the fission barrier.

We have used the WKB method to calculate the
penetrability through a fission barrier described
by three smoothly connected parabolas and have
compared the results with the exact penetrabilities.
Examples of such comparisons are shown in Figs.
3 and 4 for symmetric and asymmetric barriers,
respectively. The parameters used to describe
these barriers are listed in Table III. The results
of the exact calculation are shown by the solid
lines, and those of the WKB approximation by the
solid points.

Considering first the symmetric case of Fig. 3,
it is ayparent that in general both methods agree
very well. However, there are two basic differ-
ences apparent in the comparison, and both occur
near the top of the well. First, the %KB method
predicts level positions at the yoints where the
phase is given by

y=(n+ g)m, n=0, I, 2, . . . .

This prediction is correct for an infinite parabolic
well, where there is no possibility of leakage
through the sides. When the well if finite, as in
the case in question, these levels are depressed by
an amount which can be determined from first-or-
der perturbation theory. The magnitude of this ef-
fect is small, but visible in Fig. 3. The second dif-
ference is more apparent in the figure. The %KB
penetrability is greater in the valleys just above
the resonances in the upyer part of the well. This
is the region where this formulation of the %KB
method is reaching its upper limit of applicability.

With few exceptions, the comparison for the
asymmetric case of Fig. 4 displays the same char-
acteristics as have been discussed for the symmet-
ric case. Notably different in the asymmetric case
are the peak heights and the lower upper limit of
the WKB formulation. It can be seen from Eq. (3)
that in the %KB formulation the maximum penetra-
bility at the peaks is given by

As indicated in Fig. 4, these peak values agree
with those predicted by the exact calculation.

In the course of this study, the penetration of
rectangular-shaped barriers was also briefly con-
sidered. Appropriate barriers were constructed
to predict isomeric and spontaneous-fission life-
times which were comparable to predictions of the
smooth barriers of Figs. 3 and 4. An exact calcu-
lation of the penetrability of these barriers was
carried out as before, by matching wave functions

and their derivatives. At incident energies below
the peak heights, the penetrabilities were general-
ly not unlike those computed for the smooth barri-
ers. For instance, the symmetric rectangular bar-
rier predicts resonances that are spaced at in-
creasing intervals, which correspond to the levels
predicted by Eq. (4) of the WKB method. The pri-
mary difference observed in a comparison of rec-
tangular barriers to smooth barriers is the oscil-
latory character of the penetrability through rec-
tangular barriers at incident energies above the
peaks. This is due primarily to the effect of the
sharp corners on the potential curve. In analogy,
this effect is similar to light transmission in thin
refracting layers. When the product of the wave
number and the individual barrier thickness is
equal to odd multiples of w/2, interference char-
acteristics inhibit transmission.

Both theory and experiment have recently sug-
gested that the fission barriers of actinide nuclei
are two peaked. We have considered here the cal-
culation of the penetrability through two-peaked
barriers, defined in terms of smoothly joined por-
tions of three parabolas. This parametrization of
the barrier was made for two reasons; First, the
penetrability through such a ba,rrier can be com-
puted exactly in terms of known functions. Second,
such a barrier is described by a total of six pa-
rameters —three heights and three widths —which
are the number and type of quantities that can be
related to experimental data.

The penetrabilities computed for this six-param-
eter potential, by this relatively simple method al-
lows one to explore the influences of a wide vari-
ety of fission barrier shapes as they apply to ex-
perimental information. A few examples of indi-
vidual-parameter variations and their relation to
experimental data were discussed in Sec. IV.

The exact penetrabilities were compared in Sec.
V with results of a WKB (quasiclassical) approxi-
mation for both symmetric and asymmetric barri-
ers. Although both methods produce similar re-
sults at energies well below the peaks, increasing
differences appear in the yenetrabilities as the in-
cident energy approaches the top of the barriers.

Future analyses of experimental fission data, wiU
require a consideration of the two-peaked nature
of the barrier. It is hoped that our calculations of
the penetrability through two-peaked barriers will
prove useful for this purpose.
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APPENDIX. DETAILS OF THE CALCULATION

The probability that a potential barrier V(e) is
penetrated at a given incident energy E is deter-
mined from the probability current for the system
under consideration, which in turn is obtained by
solving the Schrodinger equation.

A. Potential Energy

Consider first the nuclear potential energy V of
the system as a function of the deformation e, as
illustrated in Fig. 1,

V(e) =E, ——,'~r'(e —e,)', e ~ a,
E2+ ~M2 (~ ~2) ~

a&a &b,

B. Wave Functions

The Schrodinger equations for this potential are
written as

= Eg —
lpga//3 (6 —ts}, fr + 6 .

The energies E, and E, are the maximum values of
the potential Bt the deformations E'y and 6'3 respec-
tively, and E, is the minimum value at e,. The
curvatures at these points are IL(w, ', p~, ', and p~, ',
respectively, where p, is the effective mass for mo-
tion in the e direction; it is assumed to be con-
stant for all values of e.

The barrier defined by Eq. (6) is seen to contain
a total of nine parameters, three to describe each
of the three parabolas. Two of the nine parame-
ters are eliminated, however, by the requirement
that the outer parabolas join smoothly at the inter-
section points a and b, rather than with discontinu-
ous first derivatives. Another parameter is elimi-
nated if one allows an arbitrary choice of the ab-
solute location of the barrier on the e axis. This
reduces the number of parameters required to
specify the barrier to six. These are chosen to be
the three energies E„E„and E, and the three
frequencies ~„co„and co,. By arbitrarily setting

V(e) =0 at e =0,

the remaining quantities can be expressed in terms
of the six basic parameters as follows:

e, = (2E,/pcs, ')'/2,

a = e, + [2(E, —E,)/p(d, ']"' (1+ (u, '/rd, ') "',
e, =a+[2(E, —E,)/p(d, ']"'(1+rd, '/u&, ') "',
b = c, + [2(E,—E,)/p(o, ']"' (1+ a),'/(u, ') "',
E = fr y [2(E E )/prd 2]r/2 (1+ & 2/QJ 2)-1/2

and

d'y /du'+ (~4' —n)y = 0

d'y/dv' —(~'+ n)y = 0.

(Sa)

(6b)

The solutions to these equations are Weber's para-
bolic-cylinder functions. " To reduce the Schro-
dinger equations (6) to this form, we make the sub-
stitutions

u = (2p(u, /6)r/' (e —e,), n, = (E, —E)/h(u„

v = (2~,/k}r/' (e —e,), n, = (E, —E)/Ir rd„

u/ = (2~~/k) (E —E'~), n, = (E, —E)/Ird, .

It is essential to select the proper linear combina-
tions of parabolic-cylinder functions for the wave
functions g; (-) and q, («) of Eqs. (7) in regions I
and III to clearly identify the directions of phase
velocity. The asymptotic behavior of the functions
at large values of positive and negative e indicates
the proper combination of functions.

The wave functions for regions I and III become

q (-)=E "(n -u)

yr(-)=E(nr -u)

g,(-)=E(n„u),
where the function E(n, x) is the complex linear
combination

E(n, x) = k '"W(n, x)+-fk"'W(n, -x)

of the fundamental parabolic-cylinder function
W(n, x) "; the quantity k is defined by

where the plus sign applies when i refers to region
I or III in Fig. 1 and the minus sign applies when i
refers to region II. There is a right-left degener-
acy inherently associated with a one-dimensional
Schrodinger equation. The case for initial momen-
tum transfer from left to right has been arbitrarily
selected, yielding solutions to Eqs. (6) of the form

er =Ay, (-)+ESr,(-), c ~a,

4 „=C6, +Dg„a & c & tr,

+ rrr
= ~43(

where the functions g; (-) represent wave packets
with phase velocity moving to the right, and the
function cp, (-) represents a reflected component
traveling to the left. The functions 5, and g, in the
region of the intermediate well can each be mix-
tures of waves traveling in both directions, since
the final result does not contain the amplitudes C
and D explicitly.

The Schrodinger equations (6) represent a gener-
al class of second-order differential equations
which in standard form are

, 4, + —, [E —E, + —,g(u; (e —e&) ]+,=0,1 2 2 (6) k —(1+ e2ra}1/2 e re
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In region II, the solutions to the schrMinger equa-
tion can be written in the form of the standard
parabolic-cylinder solutions U and V" for the dif-
ferential equations (8), namely,

The wave functlGQS ax'8 conveniently evaluRted 1D

practice by Use of their known series expansions. "
Penetrability

If the probability cuxrent is conserved, it follows
that the penetrability is given by

P = ((o,/(o, )"'
i
T/A i'.

The wave-amplitude ratio T/A is determined by re-
quiring that the wave functions [given by Eqs. (7)]
and their derivatives with respect to the deforxna-

tlon coox'dlDRte 6 be continuous Rt the coDDectlDg

points 8 Rnd 6. These condltlons Rre expressed ln

terms of four linear equations which can be solved

by Cramex's rule for the desired amplitude ratio.
The result ls conveniently expressed Rs the px'od-

uct of two %ronskians dlvlded by the determinant
of R 4X4 matrix,

e' u'
W[ E*( n„u), E-(n„-u)]W[ U(n„v}, V(n„v}]

E,(n„-u) —V, (n„v) —U, (n„v) 0

-u'E&-" &(n„-u) -z 'V,'"' (n„U)

U& (n2~ &) En (n-s~ u')

v'U" (n n) u'E -(n w)

The primes on the variables u, e, and ie indicate
differentiation arith x espect to the deformation pa-
rameter e and are simply constants, the symbol 8'

denotes the %'Fonskians of the indicated functions,
and the subscripts a and b on the parabolic-cylin-
der functions indicate the points where the func-
tions are to be evaluated. First-order differentia-
tion with I'espect to the RFgunleDt Q, 8, GF sv ls in-
dicated by a superscript inside parentheses. The
values of the two %ronskians appearing in the nu-
mex'Rtor RFe constRQts Rnd Rx'6 equal to 2$ Rnd

&2/m, ~espectively.
It is of interest to point out that the effective

mass p. enters the ratio T/A only through the con-
stRnt p, 3ppeRFlng ln the del"lvRtlves 5 Q and K

this factors and cancels out of the ratio in Eq. (12),
whi. ch makes the penetrability independent of the

choice of effective IDRSS.

D. Decay Half-Lives

The spontaneous-fission decay half-life from the
ground-state level Eo can be written as

T,"= (ln2)(2w/(o, )[P(E,)] ',
where P(E,) is the barrier penetrabibty at E, and

2w/&u, is the time required for a single assault on

the barrier. A reasonable estimate of the fre-
quency u&0 is 1 MeV/8, which when substituted into

the Rbove equRtlon yields

T sf —10-2a.o[ P(E

The spontRQeous-flsslon hRlf-life for the nucleus
lQ question ls deterIQlned by computing the zero

energy penetrability from Eq. (12) and substituting
this value into Eq. (13).

The lifetime of the spontaneously fissioning iso-
mex depends upon the penetrability through each
of the two peaks surrounding the secondax'y mini-
mum. These penetrabilities are computed from
the %KB approximation

gN 2 1/2

P(E)= 1+exp 2 2 [V(e) E] de-

The integration limits z' and e" are the values of
e on either side of the appropriate peak Rt which

the integx and, vanishes. The characteristic decay
time in the fission direction —to the right from the
intermediate mell in Fig. 1 —is then determined
from the equation

Tsf (E ) 10 28.
0[P sf (E }]-&

where P"(E, ) is the penetrability through the
right-hand peak from the energy E; of the isomer-
ic state in the intermediate mell. Furthermore, it
has been shown in Ref. 29 that the half-life for y
decay fFGIQ the isomeric stRte —decay bRck to the
left from the intermedi. ate well in Fig. 1 —can be
estimated according to the equation

Tg(E, )= 10 "'[P~(E,}] ' yr,

where Pg(E }represents the~ penetrablllty through
the barrier to the left from the isomeric level E, .
The increased time fox' y decay relative to spon-
taneous-fission decay reflects the required cou-
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pling of two processes —penetration and y decay-
to return to the ground state. This asymmetry
factor can help determine the left-right asymmetry
of the barrier shape.

The total isomeric half-life is then given in

terms of the partial half-lives by

1 1
7'~(E, } T"(F, }
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