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The energies, spins, decay modes, and lifetimes of the first three excited states of Ca
have been determined. The results are: 3.832 MeV (2%), 0.053 +0.024 psec; 4.284 MeV (0%),

322+16 psec; and 4.507 MeV (37), 8.833:2 psec.

In the shell-model sense, the nuclei %0, “°Ca,
and **Ca are doubly magic. In the case of °0 and
4°Ca, one-particle—one-hole (1p-1h) states of posi-
tive parity involve promotion of particles across
two or more subshells. Consequently, positive-
parity multiparticle-multihole (zp-xzh) states lie be-
low these 1p-1h states. The lowest positive parity
levels of these nuclei exhibit collective character-
istics and have been adequately described as com-
binations of Op-Oh and deformed 2p-2h, and as 4p-
4h excitations.! Even negative-parity levels, which
to first approximation can be 1p-1h states, exhibit
decay properties which indicate the importance of
collective effects.? An alternative description of
80,3 involving a detailed microscopic shell-model
calculation rather than a deformed basis descrip-
tion, successfully accounts for many of the ob-
served properties and gives further indication of
the np-xh nature of many of the states. Models®*'®
involving 1p-1h excitations in the 2s-1d, 2p-1f,
and 1g,,, shell-model configuration space have
been applied to *®Ca. The known spectrum of nega-
tive-parity levels can be successfully reproduced,
but attempts to describe positive-parity levels in
a like manner indicate, as in '°0 and *°Ca, a more
complicated structure.

The properties of excited states in **Ca have been
investigated through (p,p’),® (o, @’),” (t,p),® and
(e,e’)® reactions. The inelastic a-particle and elec-
tron scattering work has determined E2 and E3
transition probabilities for the decay of the 2* and
3~ states to ground. Gorodetzky ef al.'° have mea-
sured the branching ratio of the 3™ state in a
(p,p'y) experiment. This paper describes the re-
sults of (p,p’y) angular-correlation studies which
unambiguously identify the spins of the 3.832- and
4.507-MeV levels as 2 and 3, respectively, and of
Doppler -shift-attentuation measurements of the
mean lifetimes of these states. In addition, the
mean life of the 4.284-MeV state was measured by
a delayed-coincidence technique; its spin and pari-

2

ty were assigned as 0% by the observation of an EQ
pair decay to ground.

EXPERIMENTAL PROCEDURES

The levels of *®Ca were excited via the (p,p’) re-
action at bombarding energies from 7 to 9 MeV. In
all experiments, protons backscattered near 170°
were detected in an annular surface-barrier de-
tector. An 0.8-mg/cm? target of 97% enriched “*Ca
evaporated on a 10-ug/cm? carbon foil was used to
obtain excitation functions to determine proton bom-
barding energies appropriate to maximum excita-
tion of a given level. This target was also used for
the angular-correlation and direct-timing experi-
ments. A 2-mg/cm? self-supporting target was
used for the Doppler-shift measurements. Details
of the target chamber, counter geometry, and elec-
tronics have been published previously.!!

The ‘angular-correlation measurements were
done in the standard method II geometry described
by Litherland and Ferguson,'® and were analyzed
using the phase conventions of Rose and Brink.'*

v rays in coincidence with backscattered particles
were detected in a 3-in,-diam by 3-in.-long Nal(T1)
scintillation counter. For the Doppler-shift mea-
surements, a 30-cm?® coaxial Ge(Li) detector
placed at 30 and 150° with respect to the beam was
used to detect the y rays. The formalism of Lind-
hard, Scharff, and Schidtt for electronic and nu-
clear stopping powers'* and of Blaugrund for large-
angle scattering corrections'® was used to extract
the lifetimes from the measured Doppler shifts.

An electronic slowing down time a=1.65 psec was
extrapolated from experimental stopping-power
data; this value is 20% smaller than the theoretical
estimate.' Details of the technique have been pre-
sented by Bertin ef al.™*

In the delayed-coincidence measurement of the
lifetime of the 4.284-MeV (07) level, a 1-in.-diam.
by 1-in.-long NaI(T1) crystal was used for y-ray
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detection. The scintillator was mounted on an
Amperex XP-1021 photomultiplier tube. The asso-
ciated fast-electronics apparatus was identical to
that used by MacDonald ef al.'® The 4.284-MeV
state decays mainly to the 3.832-MeV (2%) state
which in turn decays to ground. As the latter tran-
sition is essentially prompt, a y-ray-energy win-
dow covering the range 3 to 4 MeV was set, and
time spectra were taken for protons populating the
0* state (delayed) and the 2* state (prompt). A full
width at half maximum of typically 540 psec was
obtained for the prompt-time distribution.

The branching ratio for the monopole pair decay
of the 4.284-MeV (0*) state was measured using,
as a target holder, an aluminum cylinder of radius
8 mm with a 6-mm-diam. channel for beam trans-
mission. Positrons from the monopole decay were
stopped in the cylinder. The resulting annihilation
radiation and other decay y rays were detected in a
3-in. by 3-in. NaI(T1) crystal in coincidence with
back-scattered protons exciting the 0" state.

RESULTS

3.832-MeV Level

This level was excited at a proton bombarding
energy of 7.60 MeV. The particle-y angular cor-
relation obtained at this energy results in an unam-
biguous assignment of spin 2 to the state. Ge(Li)
y-ray spectra, taken at 30 and 150°, yield a Dop-
pler shift of (26.9+0.8) keV for the 3.832-MeV vy
ray. This shift corresponds to an attenuation fac-
tor F(7)=0.93+0.03 and a mean lifetime 7=53+24
fsec. The error includes the statistical error in
the measured Doppler shift and the effect of a pos-
sible +15% uncertainty in the stopping-power ex-
pressions used to calculate the F(7) curve.!

4.284-MeV Level

The 4.284-MeV level was observed to decay via a
451.9+0.5-keV y-ray transition to the 3.832-MeV
(2%) state and by internal pair creation to the
ground state. The existence of the latter decay
mode is the basis for an assignment of J"=0" to
this level. Figure 1 shows y-ray spectra obtained
in coincidence with protons populating the 0" states
at 4.284 and 5.353 MeV in *Ca and “°Ca, respec-
tively. The spectrum obtained from the latter
state, which deexcites entirely by pair decay, was
used to determine the positron detection efficiency
for the target holder described above. The decom-
position of the *Ca spectrum into peaks at 0.452
and 0.511 MeV is indicated in Fig. 1. The 0.511-
MeV peak is due to both the internal pair decay of
the 0" state and external pair formation from the
high-energy y ray of the dominant 4.284-MeV (0")
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FIG. 1. Gamma-ray spectra in coincidence with pro-
tons inelastically scattered from 0* states of %Ca and
0a. The dashed line is the contribution to the 0.511-
MeV peak from external pair production of the 3.832-
MeV cascade v ray. The dotted curve shows the 0.452~
MeV v ray; the crossed curve represents the contribu-
tion to the 0.511-MeV peak from the internal pair decay
of the 0" state.

~ 3.832-MeV (2*)~0 (0*) cascade decay. The con-
tribution to the 0.511-MeV peak due to external
pair formation was determined by accumulating a
y-ray spectrum in coincidence with protons ex-
citing the 3.832-MeV state, normalized to the same
number of 3.832-MeV y rays as seen in the 4.284-
MeV state decay. The EO crossover decay was de-
termined to be (22.5+0.8)%. The mean lifetime of
this level was extracted from the proton-y-ray
time spectra shown in Fig. 2; a mean life 7=322

+ 16 psec was obtained from the slope of the de-
layed curve.

4.507-MeV Level

This level decays (27+2)% via a crossover tran-
sition to the ground state and (73 +2)% via a cas-
cade 674.5+0.4-keV y-ray transition to the 3.832-
MeV (2%) state. A simultaneous fit to the three-par-
ticle y-ray angular correlations results in an as-
signment of J=3 to this level and a quadrupole/di-
pole mixing ratio 6=0.00+0.03 for the cascade
transition. Measurement of the Doppler shift of the
0.675-MeV y ray yields an attenuation factor F(7)
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FIG. 2. Prompt and delayed time spectra as gated by
protons exciting the 3.832-MeV (2%) and 4.284-MeV (0%)
states, respectively.

=0.050+0.018 corresponding to a mean life 7
=8.813:5 psec.
DISCUSSION

Table I summarizes the spectroscopic informa-
tion obtained for the first three excited states of
“Ca. The spin assignments are in agreement with
those from previous reaction studies®~'° as are the
present parity assignments which result from con-
sideration of transition strengths. Positive parity
is indicated for the 3.832- and 4.284-MeV levels as
negative -parity assignments would result in un-
reasonably strong M2 transition strengths. Simi-
larly, the 4.507-MeV level is assigned negative
parity on the basis of the observed strength of the
octopole ground-state transition.

Lifetimes of the 2* and 3~ states obtained in the
present measurements show good agreement with
those extracted from recent inelastic electron scat-
tering experiments,® |M|z2=1.7+0.2 Weisskopf
units (W.u.) and |M|,,>=6.8+1.0 W.u. The present
4.507-MeV (37)~0 (0*) transition strength is con-
sistent with that obtained from inelastic a-particle’
(|M]55°=8.0+1.2 W.u.) and proton® (|M|z*=10.25
W.u.) scattering data. However, the present 3.832-
MeV (2*)- 0 (0*) transition strength is in marked
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disagreement with that extracted from the (o, a’)”
(IM|g,2=4.9+0.8 W.u.) and (p,p")° (|M|z,2=1.7T W.u.)
data. Similar discrepancies exist for transitions
in *Ca!® and **Ni.’® The decay mode of the 4.507-
MeV (37) state obtained in the present experiment
(the table) is in only fair agreement with previous-
ly published work which gave crossover decays of
15% ° and 20%.° The discrepancy may well be due
to angular-distribution effects in the previous work.

The 3.832-MeV (2])—- 0-MeV (07) transition
strength is compatible with essentially a 1p-1h de-
scription of the 2 state., It further appears that
neither the E1 nor the E3 decay of the 4,507-MeV
(37) state provide much insight as to the structure
of these states, as their decay strengths are com-
patible with a number of models. Indeed, Jaffrin
and Ripka,* assuming a closed-shell core for “®Ca
in which pairing correlations play a small role,
have calculated E3 transition probabilities with
various models (Tamm-Dancoff and random-phase
approximations and restricted configuration space)
and for different forces. They obtain reduced E3
transition rates between 4.5 and 9.75 W.u., in fair-
ly good agreement with experiment. Blomgqvist and
Kuo® have also calculated the energies and transi-
tion probabilities of odd-parity states in “°Ca and
“Ca, using the Hamada-Johnston interaction with
and without the inclusion of core polarization.

They find that core-deformation components are
essential to predict the “°Ca experimental level
energies, but are not as crucial for agreement
with the **Ca low-lying states.

The decay of the 4.284-MeV (0,) state, however,
seems more interesting. The E2 decay strength to
the 2] state implies reasonable overlap of wave-
function components for the two states, whereas
the monopole pair decay to ground is relatively
weak. The monopole “strength parameter” p'’ is
smaller in *®Ca (p=0.084) than in *°Ca (p=0.16),
and both are much smaller than in *Ca (p =0.41).
The wave function of the 0" state involves at least
two-particle-two-hole excitations. Thus, the 0*-
state decay mode may indicate mixing of n-particle—
n-hole amplitudes in wave functions of the low-
lying levels.

TABLE I. Summary of the spectroscopic data for the first three excited states of “®Ca. The uncertainty in excitation
energy is 2 keV in each case.

Level energy Decay mode Tm [m|?
(MeV) J" % To (psec) oL (W. u.)
3.832 2% 100 0 0.053+0.024 E2 1.8+0.8
4.284 o+ 77.5+£0.81 3.832 322+16 E2 9.8+ 0.5
22.5+0.8 0 EO (p=0.084)
4.507 3~ 732 3.832 8.8%3% E1l 2.0%5:%) x 10~
27+2 0 E3 10,1763

-3.3
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The presence of dynamical deformations in the ground-state charge distributions of the cal-
cium isotopes provides a basis for understanding two well-known but very different effects ob-
served in elastic electron scattering from these isotopes.

The first, seen at low momentum transfer, is the anomalous isotope dependence of the nu-
clear charge radius. It is shown that there is a deformation-dependent contribution to the
rms radius, whose magnitude can be obtained from inelastic electron and o -particle scatter-
ing via a sum rule and which leads to a prediction of the isotopic dependence in substantial
agreement with experiment.

The second observed effect, visible at high momentum transfer, is the appearance of oscil-
lations in the *’Ca and *®Ca charge distributions, as revealed by fits to the elastic electron
scattering data at 750 MeV. It is shown that an additional contribution of dynamical deforma-
tions to monopole elastic electron scattering, observable only at high momentum transfer,
may be interpreted as due to an effective spherically symmetric “modulating charge” distri-
bution superimposed upon the smoothly varying distribution obtained at lower energies. This
modulating charge is calculated explicitly and exhibits an oscillatory behavior.

I. INTRODUCTION

In a previous paper' we developed a general phe-
nomenological theory for the calculation of both
elastic and inelastic transverse and longitudinal

form factors for electron scattering from de-
formed nulcei. It is our purpose in this paper to
concentrate on the effect of the presence of dynami-
cal deformations on the Coulomb elastic monopole
form factor, and the resultant consequences for



