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Magnetic hyperfine structure in muonic x rays is calculated for several models of the nu-

clear magnetism and compared to experimental values for In, I, Cs, La, Pr, Eu,iis i27 i33 i39 ' i4i isi

03T]. 20~Tl, and 209Bi. The results are excellent for the realistic models in most cases, and

all but one of the nine cases agree within better than two standard deviations with the experi-

ments. For the realistic models, the hyperfine energy is substantially reduced (by about 30%

in most cases) from its point-nucleus value. In these models, the single-particle magnetism

distribution is modified by the addition of configurations resulting from various residual nu-

clear interactions, the interaction strength being adjusted in each case to produce the experi-

mental value for the magnetic moment.

I. INTRODUCTION

The hyperfine splitting of levels in electronic
Rnd muonlc atoms ls due to the intel Rctlon of the

nuclear magnetism with the magnetic field of the

orbiting electron or muon. The energy of interac-
tion depends on the relative orientation of the nu-

clear magnetism and the field. For a point dipole

of strength p, in R field B the energy is

8'= -p ~ B.

Two isotopes have a nearly identical electronic
structure, and therefore the magnetic field at the

nucleus is the same for each isotope. The hyper-
fine splitting mill be different for the two isotopes
because the nuclear moments are different. How-

ever, the ratio of the nuclear moments should

equal the ratio of the splittings if the nucleus is a
point dipole.

In j.947 Bittex"' made a very accux'ate measure-
ment of the ratio of the magnetic moments of two

rubidium isotopes using magnetic-resonance tech-
niques. This ratio diffex'ed slightly from the x'atio

of the hyperfine structure splittings, indicating
Eg. (l) is incorrect. Bitter' suggested that the
dlscx'epRQcy was due -to RQ extended distribution of

nuclear magnetism. Bohr and VYeisskopf3 made

the first detailed calculations of this "hypexfine
anomaly" in 1950, and the effect is sometimes
called the "Bohr-Vfeisskopf" effect. Since then,

many mox'e hyperfine anomalies have been mea-
sured, making possible a systematic investigation
of t.he effect. '

More recently, the hyperfine structure of muonic

atoms has been measured for several cases. ' 9 A

muonic atom is formed by stopping negatively
charged muons in a target. The muon is captured
by an atom and makes Auger and radiative (x-ray)
txansitions dorm through the atomic orbits until it
xeaches the 1s state. It is then either captured by

the nucleus via the weak interaction, or it decays.
Since the muon is 206 times heavier than an elec-
txon, its orbits are 206 times closer to the nucleus
than the equivalent electron orbits. The muon en-
ergy levels are thus quite sensitive to the nuclear
structure. By observing the x rays given off in the
tl RnsltloQS one cRQ 16Rrn something Rbout QucleRx"

structure. In particular, the hyperfine structure
of the x rays depends on the distribution of mag-
netism of the nucleus and differs from that calcu-
lated for a point nucleus by as much as 50%.

The hypex'fine structux'e in muonic atoms is usu-
ally observed as a broadening of the x ray given
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II. HYPERFINE INTERACTION ENERGY

Since the nucleus is not a point dipole magnet,
we must integrate over the volume of magnetiza-
tion to find the energy in a magnetic field:

M R ~ 8Rd R. (2)

Bohr and Neisskopf' calculated this hyperfine in-
teraction energy using relativistic perturbation
theory for an electron or muon in an s», or p, q&

state. The total energy due to magnetic hyperfine
interactions is given by

W=X[Z(Z+ 1) -I(I+1)-J(J+ 1)]/(2IJ),
A

A = —J 1"g J[d'R g*(R)[(g,,L, , +g, .S,, )

off by the atom when the muon makes a transition.
The experimental resolution is good enough so
that it is possible to make fits to the broadening
by folding in the hyperfine components with the
correct intensities and line shape. In 2'3T1 and
2o5Tl the nucleus can be excited in the muon-cas-
cade process. ' The lifetime of this state is such
that the muon reaches the 1s state before the nu-
cleus deexeites to the ground state. The y ray of
the nuclear decay is given off with the muon in the
1s state and it is found to be split into two com-
ponents due to the hyperfine structure of the nu-
cleus-muon system. This splitting is well resolved
by solid-state detectors, because of the good ab-
solute resolution at the energies of the nuclear y
ray (-200 keV).

LeBellac" first calculated the effect in muonie
atoms for a few cases. These measurements of
muonic hyperfine spectracan be used to distinguish
between nuclear models which are approximately
equivalent in other respects, and lead to greater
under standing of nuclear structure.

p,„is the nuclear magneton, and

If = v(J+ -,') for J= / a &

where the nucleon spin S and rank-2 spherical
harmonic are coupled to form a rank-1 tensor.

The relativistic muon wave functions f (r) and

g(r) are calculated by numerical integration of the
Dirac equation using the Fermi form for the nu-
clear charge distribution which gives the best fit
to the K and L muonie x-ray energies. Then Eq.
(3) is used to calculate the hyperfine splitting for
the various nuclear wave functions.

III. NUCLEAR MODELS

Most of the nuclear models used in this work
have previously been used to calculate nuclear
magnetic moments. Here we extend the applica-
tion of the models by calculating hyperfine struc-
ture. In this way we hope to differentiate between
models which give the same moment.

A. Single-Particle Model

The single-particle or Schmidt model, assumes
the magnetism is due entirely to the last odd par-
ticle in the shell model. This particle is usually
assumed to have its free-particle spin gyromag-
netic ratio of 5.5858 and -3.826@„, for protons
and neutrons, respectively. In general this model
does not do well in predicting magnetic moments,
but provides a good zeroth-order approximation
for other models. The contribution of a single
nucleon is obtained from Eq. (3) with a single-
particle nuclear wave function. The result is"

r g r dr+ g, , L, . +g,, &&,. R; 3

Ri
(3) 2I -1

+
8(I+ 1) s & i 5 tg +(I —')g K for I-=l+—2 j

rgrrdr R,
0

where r is the electron or muon radial coordinant,
R represents the nuclear coordinants including
spin, P is the nuclear wave function, f andg are
the Dirac radial wave functions, and J is the angu-
lar momentum of the electron or muon. I is the
nuclear angular momentum, E is the total angular
momentum, L, . and S, are the nucleon-orbital and

i
spin-angular-momentum operators, g& and g, . are
the nucleon orbital and spin gyromagnetic ratios,

2eKp„g, 2I+ 3
J'+1 2(I+1) 2(I+1) '

2I+3 2I+3
(I+1) 8+2(I+1)gr

K,=- R„,'R R'dR r gr dr,

z
K, =- R„g'(R)R 'dR f (r)g(r)r'dr.

0 0

(6a)

(6b)
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B. Configuration-Mixing Models

Arima and Horie" and Blin-Stoyle" proposed a
model which introduces configuration-mixing cor-
rections to the Schmidt model. They assume the
magnetism is due to the last odd particle plus
particle-hole excited states which are admixed
into the ground state of the system by a short-
range residual interaction. In perturbation theory
the unnormalized ground-state wave function be-
comes

where lg, & is the unperturbed ground state,
are particle-hole excited states, and E, and E,. are
the respective unperturbed energies. The expec-
tation value of any operator I in lowest order is

&yl&Ie& =
&t)I, I&lt.&+2 Re+a,&|),l&le&,

i

~;= &0;Ivl 0.&i(E. E,). -
(8)

If F is the magnetic-moment operator, the first
term is just the single-particle moment and the
second term is the correction. The off-diagonal
matrix elements of p can be large compared to the
Schmidt moment. In such eases small admixtures
can give substanital contributions to the moment.

We may also calculate contributions of these
particle-hole excited states to the hyperfine struc-
ture. In this case the operator Ii in Eq. (8) is the
hyperfine-structure operator whose expectation
value is given in Eq. (3). The first term of Eq.
(3) is similar to the moment expectation value.
The correction to the single-particle contribution
for the first term is then the same as the correc-
tion to the single-particle moment except for the
radial integrals. The second term is also very
simple. It can be shown that for hi=0 transitions

where 5p, , is the correction to the magnetic mo-
ment due to a particle-hole admixed pair with or-
bital angular momentum l.

The a operator also connects states which differ
in orbital angular momentum by 2. We find this
correction to be about two orders of magnitude
smaller than the other corrections.

C. BCS Models

We may also use BCS" theory to treat the short-
range interaction on a more fundamental basis.
The simple pairing force gives no correction to
the magnetism. However, the complete 5 force
may be treated in perturbatipn theory as an inter-
action between the quasiparticles. The resulting
three-quasiparticle admixtures to the one-quasi-
particle ground state of an odd nucleus give cor-
rections which are analogous to the particle-hole
admixtures used by Arima and Horie. The cor-
rections differ from those derived by Noya, Arima,
and Horie. '4 For example, in the Type-I correc-
tion [Eq. (4.11) of Ref. 14] the factor involving the
particle numbers n„n„which represents the
probability of the fullness of state c times the
probability of the emptiness of state b, becomes
the U, V factor in the quasiparticle representation:

n, (2j~+1 —n~)

(2j,+ 1)(2j,+1)

= (UqV, ) —2U~V, U, V~+ (U, V~)

(12)

The quasiparticle factor is the same for the other
types of corrections. The first term of this fac-
tor, U„'V, , is just the probability of the fullness
of c times the probability of the emptyness of
states b. The third term U, 'V, ' is the opposite of
the first term and allows contributions from down-

ward-jumping particles, schematically repre-
sented in Fig. 1.

&jll all j'&= —'&jll sll j'&. (10)

Thus the second term of Eq. (3) gives a correction
to the hyperfine structure which, except for the
radial integrals, is the same as the moment cor-
rection with g,' replaced by ~g, . The correction
for the EE = 0 mixing terms is

5A, = — "5p, [~t R„„.(R)R„,„.(R)R2dR fgdr.
1 R

+ '
~l R„„(R)R„„'(R)R'dR fgrsdr],

0

FIG. 1. Schematic representation of U~ V& .

The cross term will be interpreted after the dis-
cussion of the projection method below.

The BCS calculations were carried out only over
valence particles. However, there are important
contributions from transitions between spin-orbit
partners which cross shell boundaries. For ex-
ample, the 1g,&, level is in the shell below magic
number 50, and the 1g„,level is above. In these
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cases a level below the shell in consideration was
taken to be full U=O and V=1 A level above the
shell in consideration was taken to be empty: V=O

and U=1.
Another approach used by Kisslinger and Freed"

is to project out the component of the BCS wave
function which has the correct number of particles,
and to treat the 5-function interaction, in perturba-
tion theory using the projected wave functions:

using this wave function is given by Eq. (15) plus
the following cross terms:

even
nl+ n2+

I!C.dd&
=

ttl+tt2+ eee+P' tto

lg,„,„& is the wave function for the nucleon type
(neutrons or protons) with an even number of
particles and lg, dd& is the wave function for the
type with an odd number of particles. n, is the
number of particles in the ith state, and p is the
number of particles in the state of the odd nucleon.
This state is a linear combination of all configur-
ations in the valence shell having the correct num-
ber of both types of particles. The admixture
amplitudes are given by

Kisslinger and Freed neglect these terms. They
are included in the quasiparticle method in the
cross term of Eq. (12). Vfe expect these correc-
tions to the projection method to be very small in
most cases, since the amplitude for states like
(d,q,)'(d», )' and (d», )'(d», )' will be small. The
only states with large amplitudes will have the
upper level of the spin-orbit pair empty or the
lower level full.

Equation (11) is used to calculate the hyperfine
structure for the quasipax'ticle and projection
models. In general there are more levels con-
tributing to the cox rection term in these two mod-
els than in the simple configuration-mixing model.

D. Pairing-Plus-Quadrupole Model

Kisslinger and Sorensen" (KS) have investigated
the effect of a long-range quadrupole force on the
magnetic moments. They diagonalize an interac-
tion between the quasiparticles and phonons which
can create or destroy one phonon and scatter the
odd quasiparticle. The resulting wave function is
a linear combination of one quasiparticle, one
quasiparticle coupled to one phonon, and one
quasiparticle coupled to two phonons:

even

In(e) I2 —[pl+(0) Im]
-1 g p j+21)- ye)e)U2P)+P |-

odd fv j

Kisslinger and Freed take the moment to be

+ g Is(e) I25~(e)+ Q (g(e) I25p(e)
even odd

5p~' and 5p.,'~ are calculated exactly the same as
in Ref, 14 for each configuxation. The sums are
over configurations.

Equation (15) does not include any cross terms
between different configurations. To see how

these terms can contribute, consider six particles
to be put in pairs in two 1evels which are spin-or-
bit partners. For example consider the levels to
be a d», and a d,&~. The configurations are (d», )',
(d,g, ) (d„,)', and (d„,)'(d», )'. The projected
wave function mill be a linear combination of
these three states. The correction to the ~oment

The notation is that of K8: C','„~ is the amplitude
for a quasiparticle of angular momentum j' cou-
pled to n phonons with angular momentum J to
make a state of angular momentum j, and values
are tabulated by KS. It is also assumed that the
moment operator ean be divided into one part op-
erating only on quasiparticles and one operating
on phonons:

op ~gp ~R +g t

where R is the phonon angular momentum and gR
is the phonon gyromagnetic ratio.

The expectation value of this moment for the
state given by Eq. (16) is
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(y,.lv„lq,.) = (cj„)'v„(tj)+~, + v. , (18)

where p, , is the contribution of the one-phonon
states and p, is the contribution of the two-phonon
states given by KS.

The contribution of the collective states is
small according to KS. The main effect is to
change the amplitude of the one-quasiparticle
states and mix other one-quasiparticle states in-
to the ground state. The phonons themselves con-
tribute very little, because of their small ampli-
tude in most cases and the small gyromagnetic
ratio, which must be of the order of

[ft,„,„.„(ft)['=
0

(20)

where Ro is the nuclear radius.
The phonon contribution to the hyperfine struc-

ture is

late hyperfine structure. Here, by analogy with
the moment calculation, we separate the contribu-
tion of the quasiparticles and the phonon. The
phonon contribution is taken to be a surface cur-
rent with angular momentum 2 and a gyromagnet-
ic ratio of g~. The radial wave function of the
phonon is:

g„=Z/A .

In order to get reasonable agreement with the
experimental moments it is again necessary to in-
clude the 6-function force. KS do this in an approx-
imate way by replacing p~&(lj) by the quasiparticle
moments calculated by the projection method.

We may also use the quadrupole model to calcu-
I

(21)

The quasiparticle contribution is taken to be that
corrected by the 5-function interaction. Also in-
cluded are the 2 l= 0, +2 contributions of the long-
range quadrupole force. The hyperfine structure
for the wave function given by Eq. (16) is

1

+2+ C, i+ i~~ Cg ~ i~~ (g,' g, )(U,—I, ~ U, , i+ V), ~~ V), 1) — A", + K~ (g, -g, ) (22)

&1&& &2&& i j ig iy ip J+ 12(2l' +l)(j+ 1)

„[(j+j,+2)(i +i, —2)(j,+2-j )(j +2-j,)]"
j'(j +1)

The form for the radial integrals E, and E, is
given in Eq. (Ga, b), except that 8„,' is replaced by
the product of the two radial wave functions of the
particle-hole pair. A~(lj) is the single-particIe
contribution corrected by the 5-function interac-
tion using the projection method as discussed
above.

E. Choice of Paramefers

We have calculated muonic hyperfine structure
and the hyperfine anomaly using the configuration-
mixing model of Arima and Horie, the pairing
model corrected by a 6-function interaction, and

the pairing-plus-quadrupole model also corrected
by the 5-function interaction. Conventional Woods-
Saxon wave functions were used to calculate the
radial integrals.

The parameters for the pairing calculation were

@(nfj)= [41A (pf+ &)+7.'0A ~ (j+ &)

—0.02A "'l(l+ 1)] MeV, (22)

for j= l + &, N= 2n+ l —2 .

In addition to the difference in single-particle en-
ergies, a pairing energy E~ must be added, since

taken from KS, The strength of the quadrupole
force was chosen in each case by fitting the aver-
age energy of the 2+ first excited state of the two

neighboring even-even nuclei using the random-
phase approximation as discussed by KS. For
semimagic +I nuclei, the 2+ energy of the neigh-
boring semimagic nucleus only was fit. Two-
phonon admixtures were neglected. The energy de-
nominators were calculated using a single-particle
energy given by
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a pair is broken in the hole state. %e approxi-
mate this energy by

Ep= —(j+~) 60/A MeV,

where j is the angular momentum of the broken
pair. For all cases of interest, each particle-
hole pair is in the same harmonic-oscillator shell.
Only in the sma11 hl = 2 terms does the last term
of Eq. (23) enter. Therefore the spin-orbit split-
ting term is the only important one.

IV. RESULTS

The results for muonic hyperfine structure are
given in Table I for the single-particle model, a
point nucleus, the configuration-mixing model,
the pairing model, and the pairing-plus-quadru-
pole model. with a phonon gyromagnetic ratio of
0 and Z/A, and the quasipartiele moments cor-
rected by the 5-function force using the projec-
tion method. The results of the quasiparticle
method are almost identical to those of the pro-
jection method and are therefore not px esented
here.

Since the hyperfine structure is strongly de-
pendent on the moment, only models yielding the
experimental magnetic moment should be com-
pared with experimental results for the hyperfine
structure. The moment must be fit in a physical-
ly reasonable way. %e fit the experimental mo-
ment in all realistic models (except the single-
particle model which has the Schmidt value for
the moment) by varying the singlet strength of the
&-function interaction. This calculation is not in-
tended to take into account meson-current effects,
but probably gives a good estimate of the distri-
Oution of magnetism due to meson effects. We
expect these to be associated mainly with the val-
ence particles, since the particles of the core
are paired to angular momentum zero. The
range of the effects will be small, since the vir-
tual mesons have only a short range compared to
the diameter of the nucleus. Therefore the mag-
netism due to meson effects will be localized
around the valence particles. This magnetism
may be simulated by configuration mixing, since
the mixing involves only valence particles, and
since the 4l =0 adnuxtures mainly change the dis-
tribution of spin magnetism of the valence parti-
cles."

Magnetic hyperfine structure has been measured
in nine muonic atoms. In indium, iodine, cesium,
lanthanum, praseodynium, and bismuth the agree-
ment of experiment with the reasonable models
is very good. The deviation from a point moment
is quite large (14 standard deviations in the case

of Pr"'). However, except for the single-parti-
cle model, which has the wrong moment, and the
point nucleus, the models all give similar re-
sults, making it impossible to make a judgment
among the reasonable models in these cases.

In "'Eu the agreement is not good. "'Eu is on
the edge of the deformed region. The other stable
isotope '"Eu has a rotational spectrum and a
large quadrupole moment. The moment is well
predicted by all the models, but this may be just
an accident, since the moments of the odd pro-
methium and san1arium isotopes, "and the hyper-
fine structure of "'Eu are poorly fit. The pair-
ing-plus-quadrupole model with a gyromagnetic
ratio of Z/A. is worse than the other models.
However, the measured gyromagnetic ratios of
2+ states in samarium and gadolinium are 0.25
to 0.4, less than Z/A.

In the thallium isotopes the agreement is only
fair. These isotopes are predicted to have very
small phonon amplitudes in the ground state. The
single-particle strengths found by transfer-reac-
tion experiments in thallium indicate stronger
quadrupole coupling. " Covello and Sartoris"
have made intermediate-coupling calculations for
the thallium isotopes which fit the transfer-reac-
tion experimental data very well. They require a
large coupling strength between the odd-proton
hole and the core vibrations. We have repeated
the calculations in thallium with the pairing-plus-
quadrupole model using a greater quadrupole
force strength which would give rise to a phonon
energy of 0.4 MeV in the neighboring lead isotopes.
The resulting wave functions are very similar to
these obtained by Covello and Sartoris. These
wave functions improve the agreement with experi-
ment with a phonon gyromagnetic ratio of 0, but
make it worse with a ratio of Z/A.

Also in Table I are the calculations for some
other isotopes which may have measurable mag-
netic hyperfine structure. We include calcula-
tions for the ~+ excited state in "'Eu. It may be
possible to observe the 22-keV nuclear y with the
muon in the ls state, since the ~7+ state is ex-
cited in the muon cascade.

V. CONCLUSlON

Muonic hyperfine structure and the hyperfine
anomaly can offer new information on nuclear
structure. Nuclear models which fit magnetic
moments will not necessarily correctly predict
hyperfine structure. We have obtained excellent
agreement in six of nine measured cases. Al-
though all the models of distributed magnetism
which fit the moment give results too similar to
be distinguished by the experimental values of the
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TABLE I. The magnetic hyperfine structure constant in keV. The upper row for each isotope is for the muon in the
s f/2 state and the lower row for a p f/2 muon. Column 1 lists the calculated value for the single-particle model with the
Schmidt moment. The other columns (2-6) list the calculated values for models all adjusted to have the experimental
moment listed under the isotope identified in the column headings. Models in columns 3-6 include the 4 interaction.

Slngle- Pairing-plus- Pairing-plus-
particle Point Configuration Pairing quadrupole model quadrupole model Measured
model nucleus mixing model g~=0 @~=z/a values

4iwb 2+9

p, =6.1671
ii3 9
49In 2+

p = 5.5233

i2i 55iSb 2+
p, =3.359
i23 Z„Sb —,+
p =2.546

i2Z 5
53I 2+

p =2.8091

iNC Z+
tS s2

p =2.5789
i38 Z
nzLa 2+

p =2.7781

'"Zu &+83

p =3.463

203
8iTl 2+

p =1.61169

203 iaiTl 2+
((u =0.4)

20&T1

p, =1.62754
20) 1
8iTX 2+

(cu =0.4)

209 ~ 983Bl 2

p =4.0794

1.63
0.365

1.91
0.556

1.91
0.555

1.44
0.436

0.847
0.226

1.47
0.476

0.908
0.277

0.944
0.304

1.61
0.598

1.67
0.680

1.02
0.389

1.16
0.613

1.15
0.612

1.64
0.893

2.32
0.426

2.61
0.637

2.60
0.637

1.64
0.431

1.23
0.326

1.40
0.399

1.34
0.405

1.50
0.481

2.41
0.811

2.04
0.772

1.52
0.575

1.19
0.631

1.19
0.635

3.04
1.67

1.48
0.332

1.58
0.457

1.58
0.457

1.04
0.312

1.07
0.297

0.940
0.296

1.21
0.378

1.29
0.429

1.47
0.541

1.23
0.499

1.30
0.503

0.768
0.407

0.774
0.411

2.06
1.12

1.48
0.331

1.58
0.456

1.58
0.457

1.04
0.313

1.07
0.297

0.930
0.294

1.18
0.369

1.30
0.431

1.4V

0.544

1.24
0.503

1.31
0.508

0.774
0.410

0.779
0.413

1.48
0.331

1.58
0.456

1.57
0.457

1.04
0.313

1.05
0.293

0.918
0.291

1.17
0.367

1.30
0.431

1.47
0.544

1.23
0.498

1.27
0.493

0.770
0.408

0.779
0.413

0.710
0.377

1.55
0.347

1.67
0.481

1.66
0.481

1.18
0.354

1.17
0.327

1.11
0.352

1.21
0.380

1.30
0.432

1.48
0.544

1.43
0.583

1.51
0.576

0.777
0.412

0.823
0.430

0.779
0.413

0.824
0.437

1.65+0.15 a
0.55 +0.20

0.87+0.09
0.33 +0.08

1.16 + 0.17 a
0.55+0.22

1.22 +0.15 b

1.52 +0.06 c

0.80 +0.27 d

0.665+0.075 e

0.580 +0.015 e

1.92+0.14 f

Heference 9; report of work prior to publication.
bA. C. Thompson, Ph.D. thesis, Carnegie-Mellon University, 1969 (unpublished).
'Heference V.
clHeferences 5, 6.
'Heference 8.
Heference 6; H. B. Sutton, private communication.

hyperfine structure~ this fact does g1ve us coIl-
fidence that the theoretical description of the dis-
tribution of magnetism is quite good for heavy
spherical nuclei.

H. H. Stroke has pointed out that a theoretical
study of hyperfine structure has potential appli-
cations in atomic physics. If a nuclear model can

be found which consistently fits the muonic hyper-
fine structure, this model can be used to test elec-
tron wave functions in the calculation of hyperfine
anomalies.

We have also performed calculations of hyper-
fine anomalies for ordinary atoms using un-
shielded electron wave functions " These calcu-
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lations agree moderately well with experiment
only fox single s-state electrons outside closed
shells. In more complicated cases we obtain
large deviations from experiment, including the
wrong sign in some cases. Our calculations also
indicate that such anomalies can only be due to
s», and P», electrons, since the anomalies calcu-,

lated for P,q, states are six orders of magnitude
smaller than measured values of isotopes with
electrons in P»2 states. The success of the muon
calculations suggests that these nuclear models
do satisfy Stroke's criterion, and can be used to
test Hartree- Fock or configuration admixed elec-
tron wave functions.

*Dork supported in part by the National Science Foun-
dation, first reported by J. J. at the 1969 Washington
meeting of the American Physical Society, Bull. Am.
Phys. Soc. 14, 538 (1969).

&Work done in partial fulfillment of the requirements
for the Ph. D. degree at Carnegie-Mellon University.
Present address: Kenyon College, Gambier, Ohio 43022.
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