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In this paper we evaluate the radiative photon spectrum and the branching ratio R of radia-
tive-to-ordinary muon capture rate in Ca®, taking into account the nucleon-nucleon residual
interaction by means of Migdal’s quasiparticle model.

The most important effect of the residual interaction is to reduce both the ordinary and ra-
diative rate about 40% lower than that obtained in the closure-harmonic-oscillator model.
This result differs from that obtained by Fearing using the giant-dipole-resonance model,
while it confirms the prediction of Rood and Tolhoek (RT) that the branching ratio R would be
nearly independent of the nuclear model. We also evaluate the circular polarization of the
photons, Py. We find that our values of P), are greater than the RT values by about 15% in
the high-energy range. In the low-energy range, our values of P}, are in close agreement
with those of RT., For the maximum energy of the photon spectrum, we obtain the average
value kp,,=90.5 MeV, which is very close to the RT value.

Comparing our results with the experimental data of Conversi, Diebold, and Di Lella, we
find that our calculation requires gp=(12.4 +2.8)g, to fit the experimental values, where gp
is the induced pseudoscalar coupling constant and g, the axial-vector coupling constant.

Finally, we think that the disagreement between our result and the more currently accepted
value of gp is not so great as to call into question the theoretical mechanism of the radiative

capture, if one takes into account the large experimental uncertainties.

I. INTRODUCTION

Since Conversi, Diebold, and Di Lella (CDD)?!
measured the photon spectrum for the radiative
muon capture process in Ca*’, some authors?~°
have tried to explain the experimental results us-
ing several approaches. These calculations are of
particular interest in that the radiative spectrum
is quite sensitive to g, the induced pseudoscalar
coupling constant of the weak interaction.

In the experimental work of CDD only photons
with an energy above a threshold of about 55 MeV
could be used in the analysis because the back-
ground due to electrons from the free decay of mu-
ons prevents the observation of the relatively few
photons from the radiative process below 55 MeV.
CDD used the theoretical formulas of Rood and
Tolhoek (RT)? in the analysis of the experimental
results, varying the values of 2,,, (the maximum
energy of the photon spectrum for an average ex-
citation of the nucleus) and g,. They obtained good
agreement between experiment and theory with
Brmax=(88+4) MeV and g,=(13.3+2.8)g,, where
£, is the axial-vector coupling constant.

The value of R (the branching ratio of radiative-
to-ordinary muon capture rate) was obtained by
extrapolating the measured high-energy tail of the
photon spectrum to low photon energies. CDD ob-
tained

R=(3.1+£0.6)107*.

RT ® derived their theoretical formulas starting
from an “effective” Hamiltonian® and assuming the

2

“closure approximation”” for the evaluation of the
nuclear matrix elements. Assuming g,=8g, as
suggested theoretically and 2,,,, =91 MeV, they
found for the branching ratio in Ca*®* R=2.14x107*
using a simple “model ~independent” approximation,
and R =2.39X 107* using a shell model with harmon-
ic-oscillator wave functions.

In view of the discrepancy between the theoretical
value g, ~8¢, of Goldberger and Trieman and the
experimental result, Borchi and Gatto* explored
the dependence of the photon spectrum on a possi-
ble induced tensor current and determined the ten-
sor coupling constant g, needed to fit the experi-
mental result. Using g,=8g, and & ,,, =85 MeV,
they obtained g, ~20g, where g, is the vector cou-
pling constant.

A different approach was tentatively explored by
Fearing® who used the giant-dipole-resonance
(GDR) model developed by Foldy and Walecka (FW)?
to improve the calculation of nuclear matrix ele-
ments. In this model FW attributed the failure of
the independent-particle models to the neglect of
the effect of internucleonic interaction. To take
this effect into some account, they established a
relationship between the important dipole matrix
elements in muon capture and the ones which ap-
pear in electric dipole photoabsorption in the par-
ent nucleus. Then these dipole matrix elements
were replaced by the empirical ones deduced di-
rectly from photoabsorption data. However, when
calculating the total rate, the monopole and quad-
rupole contributions were taken unchanged from
their shell-model values.
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On the other hand, the assumption that only the
nonrelativistic dipole terms are affected by dynam-
ical correlation does not seem justified in the FW
model. It is hardly understandable why dynamical
correlation should affect only the dipole part. Cal-
culations show that if one takes adequately into ac-
count the residual interaction, the other multipoles
are reduced about 40% from the shell-model val-
ues. For this reason the results obtained in the
GDR model are often overestimated.

Fearing,® comparing his results with the data of
CDD! on the branching ratio R, found that the GDR
calculation using the Goldberger-Treiman value
for gp requires an induced tensor coupling constant
gr235gy to fit the experiment. Alternatively, by
taking g, =0, he obtained agreement between the
theoretical and experimental data with g,=(16.5
+3.1)g,. In view of the compatibility of other ex-
periments with a value gp/gA between 7 and 11 and
gr=0 (see Sec. V) this result may appear very sur-
prising, as it is apparently based on phenomeno-
logical grounds. It is still more surprising in view
of its discrepancy with the RT result, because RT3
found that the branching ratio R is nearly indepen-
dent (less than 10%) of the specific nuclear model.
However, we think that in Fearing’s calculation the
dipole term is not important enough to justify the
application of the GDR model, as it contributes on-
1y 34% to ordinary capture and only 50% to radia-
tive capture.

As the other multipoles are evaluated in the clo-
sure-harmonic -oscillator approximation, the
method appears to be poorly self-consistent in this
case. Moreover, as the contribution of the dipole
term is somewhat lower for ordinary capture than
for radiative capture, ordinary capture appears to
be overestimated more than the radiative capture.
As a result, the branching ratio R is underesti-
mated.

In order to obtain a greater quantitative insight
into this problem we evaluate in this paper radia-
tive capture in Ca*® taking into account the residual
interaction between nucleons on the basis of Mig-
dal’s quasiparticle model.® This model has been
applied to a great number of calculations with
some remarkable successes.®”'®* Even though this
model may be subjected to some criticisms® 5 it,
nevertheless, has been seen to eliminate the diffi-
culty encountered with nuclear structure. More-
over, it is our opinion that it appears to be more
self-consistent than the GDR model.

In Sec. II we give an interaction Hamiltonian for
the u radiative capture. In Sec. III we give a brief
account of Migdal’s quasiparticle model, and in
this model we derive the photon spectrum for ra-
diative muon capture by nuclei. In Secs. IV, V,
and VI numerical results are given for ordinary

and radiative muon capture in Ca*® and a compar-
ison with other calculations is presented. Section
VII summarizes our conclusions.

II. INTERACTION HAMILTONIAN

We outline here the derivation of the general for-
mulas for radiative muon capture in a nucleus, fol-
lowing, for the most part, the work by Borchi,*® to
which the reader is referred for details and for ref-
erences to earlier calculations (the reader is also
referred to the work of RT 3 for similar calcula-
tions).

The most general effective Hamiltonian for the
process p~+p —=n+v in a theory with V and A cou-
pling and with first-class interactions only is"

1 1
Heff_ﬁwn gvh“igm;n—pcqupﬂ‘gﬂsh

+gP;1;75q)\> d)piy(l—}/s)yxw” (2-1)

in which ¢, =(p, ~p,) is the momentum of the pro-
ton minus the momentum of the neutron. The form
factors gy, g4, &m» &p are known, respectively, as
vector, axial-vector, weak-magnetism, and in-
duced-pseudoscalar form factors. The dependence
on g% in all the couplings, except gp, is small
enough to be neglected. The dependence of g, on
momentum is written as

gp@®)=gpm>+m,%)/(m,” - q°.

The constants g, g,, and g,, are connected with
the Fermi constant G, which we take to be 1.417
x107%° ergem?, by the relations g, =0.97G, g,
=-1.18G, g, = (m,/2M)(1, — 1,)0.97G; and a plau-
sible value for the induced pseudoscalar constant,
as given by Goldberger and Treiman, is gp~8g,.

To obtain the interaction for radiative muon cap-
ture one adds a photon line in all possible ways to
the diagram corresponding to Eq. (2.1). The cor-
rective terms introduced by Adler and Dothan,®
which take into account the structure effects, are
not considered.

In deriving the interaction Hamiltonian for radia-
tive p~ capture on nuclei, the problem is greatly
simplified if we do not consider the momentum of
the nucleons, and if we consider the muon at rest.
Indeed, the effect of the nucleon velocity terms on
the ratio of radiative capture to normal capture is
negligible, although they contribute about +10% in
both of these processes separately, as shown by
RT.? It is convenient to consider separately the
emission of right- and left-circularly-polarized
photons. The polarization vectors are EL =(1/V2)
X (i +f) and €, =€X, with i, 7, and K (photon momen-
tum) forming a right-handed frame. We shall
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therefore write the effective Hamiltonian for a nucleus with 4 nucleons in the form?*®

A

i=1

N B T I TP > A s
E i [A"i € +B<"i ke, Pu"",;y"i"bvﬁ Pu>+cgi Dy0;t €L

+5‘-EL(D5,.‘-§,,+E51-15+F)+GE’-5,5,.'€L+H5’~155,.-ELR (2.22)
with
A:-mll +(1+ — ) + (N)+_k_. 1+ —_ ) (N)
2—‘M gA ( up U’ngv gP ZM( /-Lp ,ungp ’
My bk o =_Muby - =Ly 0 -k
B M m"2+(p,,+k)2gp , C AMZ (I+yp,-u,)gs’s D oMEF E 2Mgp; (2.32)
m m
F=—or (= 1,084, G=-5m(&v*ea), H=-g,;
where
&N =gplm,2+m.2)/(p, -k +m,?),
g(pp =gp(mu2+m1r2)/[(§u+§)2+mn2]’
and
1 A
He“g'}=m fz-(l—E‘-p,,);Z r‘i"[aE‘-kE,.-ZR+biE'-puxZR+cEi-ER+dp,,-ER+e6i-p,,5,.-ER
b i=1
+pr-zk<af-;;+%v-;i.5y) +far-zﬂ+ga,.-;3”+ha,.-;5+zaz-a,.;;v-zR+ma,.-zR]$ (2.2b)
with
—_.E._ _L :ﬁL
a 2MgV mpgmy b 2MgV,
=Ml by, - g, - N Piald w_ k. ) sk
¢ 5 My Moy =8t 8y ~ £ =onr (LH s = )8R m, &n &4
- P )4 b b m
d—[z—ﬁ’j;(u,—u,,)—;nﬂgm, e—;;;:gﬁgﬁ[gwg—l‘j(lw,—un) ,’!)], (2.3b)
_ m k _b _k _b )2
S=8y—8at8mt oy (o~ EA— 5078V, &53784, R84, l——,;l’i‘gm*z—ﬁgv,
m
m:gA—gm__z—A%(gV_gA)'
II. NUCLEAR MODEL AND RADIATIVE CAPTURE OF yeff=g Y0+ FGGVO (3.1)

THE MUON

In this section we first outline the method of fi-
nite Fermi systems, developed by Migdal® for the
calculation of the nuclear matrix elements, and
then we consider the u~ radiative capture in detail.

In Migdal’s theory the excited states of the nucle-
us are described in terms of the interacting quasi-
particles. The central point of the theory is that
the application of an external field V° on the sys-
tem causes the quasiparticles to be acted upon by
a certain effective field V°ff which, in systems
without pair correlations, is determined from the
equation

where F is the quasiparticle interaction amplitude
near the Fermi surface, GG are two Green’s func-
tions, one of a particle and the other of a hole, and
e, is the effective charge of the quasiparticle de-
noting the difference of the external field acting on
quasiparticles from that applied to particles. The
amplitude F is an operator in spin and isospin
space and has, accurate to (N - Z)/A, the isotopi-
cally invariant form

-1
Fe(2) Urvgs 3 (495307 7], 6.0
0
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where G, 0/, T, T'are the spin and isospin opera-
tors of the interacting quasiparticles, dn/de, is
the derivative of the nucleon density with respect
to the limiting Fermi energy €,, and f, g, f’, g’
are dimensionless quantities of the order of unity,
which must be found by comparing theory with ex-
periment.

As we think this brief summary to be sufficient
to give some account (for further details the read-
er is referred to Migdal® and Rho?°) of the ideas
which support Migdal’s theory, we will now pro-
ceed to extend the treatment given by Bunatyan'?
for ordinary muon capture to radiative muon cap-
ture. We regard radiative muon capture as a tran-
sition of the nucleus from an initial state with en-
ergy E, into a state S with energy E ¢ and express
the probability of this transition, in accordance
with the Lehman expansion, in terms of the res-
idue of the polarization operator P(w) calculated
for wg=(Eg—E,)/h:

Wlx, &, p,, NdxdQpdQ;

2, 2 nwg \*
=—-—u—2€(2’1’r‘)4ﬁ5x(1 - x)?dxdQdQ; (1 - m,}) ResP(ws),

(3.3)

where the circular polarization of the final photon
is specified by X and x =kc/(m c® —Fwg) while the
other symbols are self-explaining. The shape of

the photon spectrum is obviously

Nx)dx =27,

A wg

dsz;fdngws(x,é,;,,,x)dx
(3.4)

N(x)dx = ez __§__f

on f@k x(1-x%) 2de: Z <1

A wg>

XOL(L, wg)L(s7)]at Gfefz @L+ I)Z ResUN(L, wg)0n(L, wg)[ i (s7)]y
L <%

Here
m.5ct [ e2\3 i
=Tz}%ﬁ<ﬁ3> ,  a=mlnly),
e},ul, ef ~0.9,

é’u is the binding energy of the 1~ meson in the K

orbit, the symbol OL(L, ws) [OX(L, ws)] is defined
by

2(21,+1)(21, +1) LI, L
Oa(L, @)= |A€n,",|2 000 2|A "11"2‘l
1hinela (3.10)
with
A€n111n212 = €n111 - Enzlz ’

The polarization operator in systems without
pair correlations is defined by the relation

P=¢ V°G*G"V*T, (3.5)

where G? and G" are the Green’s functions for the
proton and the neutron.

Using the representation of the nucleon wave"
functions qax( T) determined from the expression

Heff(p)\=€)\(p)\: (36)

where H.;; is the effective self-consistent potential
[x=(n,1,7,M,)], one obtains for P(w) in this repre-
sentation

P(w)=¢, E)szf’mz*(w)A'glxz(w)ngsz( w), (3.7)

A,\l)\2 being the integral, with respect to the ener-
gy, of the product of the pole parts of the Green’s

functions near the Fermi surface
P

ZV(;‘)‘ (w)( 1)[h‘w ("'€>\)

A<y
n’;u—np)‘z }
Vs (w). (3.8)
— (e —¢? Ao A
(EM €x2) 2™ .

Here n, are the occupation numbers of the neu-
trons and protons and the sum in (3.8) is taken
under the condition that the state P, is lower in
energy than the state ¢,,. Substltutmg in (3.8) the
expression (2.2) for V° and expanding the exponen-
tial ei% ’, where § = (p, +K)/%,_of the neutrino plus
photon field in spherical functlons we. obtain for

the photon spectrum in radiative capture\"‘r N

) 3 Z(2L+12ResU (L, wg)

(3.9)

T
where the superscript I [II] indicates the fact that
wg is the pole of UL(L, ) [US(L, w)], and G!, G}
are rather complicated expressions which we give
in the Appendix. UL(L, ) and UX(L, w) are deter-
mined, as in Bunatyan,'? from the equations
E[SI L, w EUpNL, W),

(s o (3.11)

where

B=min'l’),
-1 41
[skz, w)]ﬁ:[-<;g”—> %cgeB(L,w)masJ.

(8.12)
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Cg is defined in terms of the radial part of the
wave function @,(7):

ngmeR,,,,,R,,l,IR vy (3.13)

nalg

SU(L, w) differs from S(L, w) in that f! is replaced
by T, where f! is usually taken as ~0.8 and T ~1.

Ju(s7)=(m/2s7) 2T 4y 0(s7), (3.14)

where J; 4, is a Bessel function of the first kind,
and

(59 ]ac= [ Ry jals Ry, v (3.15)
From (3.11) one obtains
Uy™(L, w) =Dy (L, w)/D" L, w), (3.16)

where DI'H(L, w) is the determinant of the matrix
SUI(L, w) and DL" is the determinant of the ma-
trix obtained from S*-% by replacing the corre-
sponding column with the left side of (3.11). The
poles wg of UL, w) are then determined from
the equation

DML, w)=0, (3.17)
and the residues of UL, w) are equal to
oD (L, w)
1,1 1,1
Res ULML, w)ly- wg=Da(L ws)/ o »
S
(3.18)

IV. ORDINARY MUON CAPTURE IN Ca*

In this section we report for completeness the
results obtained for ordinary i capture in Ca®,
This calculation is closely related to that of Bun-
atyan.’? The nucleon radial wave functions have
been taken in the harmonic-oscillator model with
the oscillator length parameter b=(%/Mw)"?=2,03
F.

For the nucleus Ca*, it is shown in earlier
works,®?2 that one can confine oneself with good
accuracy (about 95%) to the few main transitions:
(1p-2p), (1d-2d), and (2s-3s) for monopole terms
(L =0); (1d-15), (2s-2p), and (1d-2p) for dipole
terms (L 1); and (1d-1g), (2s-2d), and (1p-1f) for
quadrupole terms (L =2). The values for A€, and
Cg are given in Table I.

Assuming also that (dr/de,)~*(1/41) =35 F3 MeV
we obtain, using the formulas of Bunatyan,'? the
results listed in Table II. We obtain for the u cap-
ture probability the value A*¢(Ca*’)=22.07x10°
sec”!. Taking into account that the relativistic and
multipole terms with L >2, which we have neglect-

Do
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TABLE 1. A€y and C8 for L =0, 1, and 2.

Aey=20.1 MeV  for L =0, 2
Aey=10.07 MeV for L =1

cé @

L=0 L=1 L=2
Ci5%=0.023 cidif= 0.020 Ci%€=0.015
Ccl#¥=0.014 Cissh= 0.028 c§%=0.011
Clés=0.014 Cis= 0.009 C1524=0.002
Ci585=0.006 cig= 0.001 Ci51£=0.019
Ci33=0.011 Ci&=-0.003 citif=0.015
CH8=0.047 clé=0.014 CRi=0.001

ed, would contribute from 10 to 15%, this result is
in good agreement with the experimental data

ALS:=24,44% 0,23 X10° sec™,®
=25.5 0.5 X10° sec™!.?*

Bunatyan'? obtained A*°(Ca*’)=22.7x10° sec™.
This slight difference is probably due to a slightly
different choice of the parameters.

V. PHOTON SPECTRUM FOR RADIATIVE CAPTURE:
NUMERICAL RESULTS AND DISCUSSION

In this section we give the numerical results for
the photon spectrum and for the branching ratio
R in radiative p capture in Ca*, We will not re-
port in detail the numerical calculations involved
in the radiative photon spectrum, as this doubtless
would be rather tedious for the reader. However,
to give a brief account, we mention the essential
points of the calculation. In evaluating the photon
spectrum by Eq. (3.9), one has to take into ac-
count the fact that G,, Res U(L,wg), and [j,(s7)],
are functions of 2, wg, and 0 (the angle between

TABLE TI. Contributions to the ordinary muon capture
rate A"C from the various multipole terms (0 SL < 2)
and excitation energies Zwg. Iand II refer to Fermi and
Gamow-Teller transitions, respectively. The values of
Fwg are given in MeV, and Ay g in 10° sec™.

L Fwk Alg rwll Al
0 20.887 0.01 21.101 0.04
22.286 0.02 22.805 0.06
26.403 0.28 27.744 0.99
1 11.117 0.03 11.366 0.13
11.577 0.04 11.922 0.13
13.316 3.80 14.010 12.90
2 20.299 0.02 20.348 0.08
20.699 0.08 20,847 0.29
23.639 0.73 24.443 2.44
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the photon and neutrino momentum).

The matrix elements [, (s7)], defined in Eq.
(3.15) have been evaluated by means of the general
formula

>/0< e"‘zxz"*'”lJ“(zx\/;)dx :’LZ!, e~ zu/zL#(z)’ (5.1)
where LY(z) are the Laguerre polynomials.

Using the calculated [j,(s7)], one obtains, for
every excitation frequency, the residues of U(L,wy)
from Eq. (3.18). In order to derive the photon
spectrum as a function of 2 only, one has to re-
move the dependence on 6, integrating over the pho-
ton solid angle expressions of the form e~ %50
X P(cosf), where P(cos#) is a polynomial in cos6.2®
This integration is easily accomplished by means
of the incomplete y functions B (£ s) = [ x¥e ~¥s*dx.
We have evaluated the radiative photon spectrum
and the radiative capture rate in Ca?*® with various
values of the coupling constant g, ranging from g,
=Tg, to gp=18g,. The dependence of the above-
mentioned quantities on the variations of the other
coupling constants g,, g, and g,, has been seen to
be quite negligible by several authors,™? and for
this reason we have not taken it into account.

A central role in determining the branching ra-
tio R is played by the average value of the maxi-
mum photon energy 2,,,,, as a slight lowering of
ko, ax would cause a noticeable decrease in the val-
ue of R. We obtain for 2, ,, the value k,,,=90.5
MeV. This value should be compared with the val-
ue k., = (88+4) MeV of CDD! and with the value
kax =91 MeV determined by RT.3

The function R(x) =N(x)/A*° is plotted in Fig. 1
as a function of x =k /& ,,, for some values of gp.
Figure 1 shows that, as pointed out in previous
calculations,®® the shape of the spectrum is not
very sensitive to gp, and the main effect of varying
£p is to increase or decrease the magnitude of the
spectrum and of the branching ratio R.

In Table III we have listed, for several values of
8p/&4, the results which we obtain for the ordi-
nary muon capture rate A*° and for the branching
ratio R. We also find that the dipole part amounts
to 89% of total radiative rate, while it contributes
77% to the ordinary capture rate. As one may see
from Table III, we obtain for the total radiative cap-
ture rate with gp /g,="7 the value 493 sec™!, which
is very close to the value 519 sec™! obtained by
Fearing® in the GDR model, and lower by about
40% than the value 841 sec™! which Fearing ob-
tained in the closure-harmonic-oscillator calcula-
tion.® On the other hand, with the same coupling
constants we obtain for the total ordinary capture
rate the value A#°=22.40x10° sec™?, compared
with the values A*°(GDR)=30.4%10° sec™! and
A*e(closure) =38.9% 10° sec™! obtained by Fearing.

1017
.
6
9p=14 gy
Ip=12g5
5
gp=10ga
gp=84n
4
=
@
<
o
e ,L
2 L
fo) L 1 L 1 1 | 1 | 1
(0] 0.2 0.4 0.6 0.8 1.0

x=k/Kmax

FIG. 1. Results for the photon spectra R(x) for radi-
ative muon capture, in comparison with the ordinary
capture rate for Ca’; x=k/k,,,; units are such that
JolR()dx=NEE, /APE; Byay =90.5 MeV.

As we have obtained a reduction of about 40% for
both total radiative and ordinary capture in com-
parison with the closure-harmonic-oscillator cal-
culation, our value for the branching ratio R is
very close to that obtained in the closure-harmon-
ic-oscillator calculation. This result confirms

the prediction of RT® who indicated that the branch-

TABLE III. Theoretical values of the ordinary muon
capture rate A"® and of the branching ratio R of radia-
tive-to-ordinary muon capture in ca? as functions of
gp/g4 values.

gp/8a A" (@n 10° sec™) 104 xR
7 22.40 2.20
8 22.07 2.34
9 21.75 2.49
10 21.45 2.65
11 21.18 2.83
12 20.93 3.02
13 20.70 3.22
14 20.49 3.43
15 20.31 3.65
16 20.15 3.89
Expt. 24,44 +0.23% 3.1+0.6¢
25.5 +0.5P
2See Ref. 23. bSee Ref. 24. °See Ref. 1.
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ing ratio R is nearly independent of the nuclear
model.

At this point we would like to compare our theo-
retical spectrum with the measured points by CDD.
Unfortunately this is not possible, as the measured
quantity is not the actual photon spectrum but a
spectrum somewhat distorted by effects of the fi-
nite resolution of the counters used. However, we
think that the comparison between our value of the
branching ratio R and the one given by CDD should
give at least a general understanding of the agree-
ment between the present theoretical calculation
and the experimental data. Using the “standard”
values for the other coupling constants we get
good agreement between our results and the experi-
mental data of CDD with

gp=(12,4+2.8)g,,

where the error indicated is of experimental ori-
gin only and does not contain contributions from
possible uncertainties of theoretical origin,

On the other hand, in a recent experimental
work on muon capture in gaseous hydrogen Alber -
igi Quaranta et al.2® obtained for the induced pseu-
doscalar coupling constant the value g,=(-17.3
+3,7)gy. Moreover combining, by a least-squares-
fit procedure, their value of gp together with other
results obtained from u capture in liquid hydrogen,
they derived for gp:

gp=(8.9£1.9)g,,

which is not incompatible with our range of values
for gp.

In conclusion, taking into account the experimen-
tal uncertainties, we find that our value of gp does
not conflict with the more accepted values as
much as the previous calculations do.

VI. CIRCULAR POLARIZATION OF THE PHOTONS

In Fig. 2 the circular polarization of the photons

N*(x) = N-(x)
PO = v )

is plotted for some values of gp as a function of x.
Here

N*(x) =fd917fd97 W, b, by, =% 1).

We find, with gp=8g,, that our values of P,(x)

E. BORCHI AND S. DE GENNARO

Do

1.0

i 95" 89,
0.8 gp=10 ga
gp=14ga
0.6
=
-k
o’
04
0.2+
0 | L L L L | 1 | 1
(0] 0.2 0.4 0.6 0.8 1.0

X= k/Kmax

FIG. 2. Results for the degree of circular polarization
P, (x) of the photons emitted in radiative muon capture
for Ca®,

are greater than the RT® values about 15% in the
high-energy range. In the low-energy range our
values are in close agreement with those of RT.
As RT pointed out, a measurement of P,(x) would
be very interesting in view of its dependence on
£p, and would provide further support to the cor-
rectness of the theory.

VII. CONCLUSIONS

In this paper we have studied ordinary and radia-
tive muon capture by Ca* taking into account the
residual interaction between the nucleons using
the finite Fermi-system theory. We obtain for
both total radiative and ordinary capture a reduc-
tion of about 40% in comparison with the closure-
harmonic-oscillator calculation. For this reason
our value for the branching ratio R is in good
agreement with the RT value, while it is somewhat
different from Fearing’s value obtained taking into
account the residual interaction in the GDR model.

As we get good agreement with the experimental
data of CDD for gp=(12.4+2.8)g,, we think that the
disagreement between our result and the more cur-
rently accepted values of gp is not so large to call
into question the theoretical mechanism of radia-
tive capture if the large experimental uncertainties
are taken into account.

APPENDIX

Here we give the following expression for G: and GE in terms of the quantities defined in Egs. (2.3):

Gl(A==1)=(3C2+F?>~CF) = (p, *R)F*+(p, *F)*CF - 4C?),
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