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Recently, preci-e experimental measurements have been obtained for the reaction ' O(y, p)"N for photon

energies 50—350 MeV. For photon energies greater than 100 MeV, isobar photoproduction is expected to

provide an important part of the (y,po) reaction, We evaluate the isobar contribution to the (y,p) reaction,

and we add this amplitude to a term which corresponds to direct knockout of the proton by the photon. We

compare our results in detail with the experimental data from Glasgow and Bates on ' O. Our calculation

uses coupling constants and nuclear wave functions determined from independent experiments, and we neglect

the isobar-nucleus interaction. Agreement with the experimental data is quite reasonable, and isobar

photoproduction provides a very large contribution to the nuclear photoeffect in "0, for photon energies

above about 100 MeV. We consider the effects of various corrections to our formalism, such as the effect of
distortion of the outgoing nucleon by the nuclear force, center of mass corrections, and the inclusion of p
mesons in addition to pions at the isobar decay vertex. None of these corrections alters the qualitative

features of the isobar amplitude and its importance in the nuclear photoeffect at medium energies.

NUCLEAR REACTIONS, photonuclear reactions, nuclear photoeffect, medium
energies, isobars, isobar current, (&,p) reactions.

I. INTRODUCTION

In this paper we consider the contribution of
various amplitudes to the (y, p) reaction at medium
energies. Several experiments have been carried
out on 1s-she].].' "and ]P-shell nucj.ei" "for pho-
ton energies up to 400 MeV. Recently, (y, p) ex-
periments have been carried out at Glasgow, in

which cross sections were obtained for discrete
final states (or groups of low-lying excited states)
of the residual nucleus. ""~

7" High-quality data
were obtained for photon energies from 40-100
MeV, and it has been argued that these data allow
an extraction of the single-particle momentum den-
sity distribution of the ejected nucleon. """Ad-
ditional experiments on heavier nuclei are pres-
ently being carried out in this energy region at
Glasgow. 4' At the Bates linac, the reaction
"O(y, p, )"N (leading to the ground state of "N) has
been studied for photon energies 100-350 MeV.""

The simplest picture of the photonuclear reac-
tion, the "direct reaction" mechanism, is one in

which an individual nucleon is struck by a photon
and ejected from the nucleus. In this process, one
evaluates the nuclear matrix elements of the one-
body part of the electromagnetic operator, and the
final-state nucleon-nucleus interaction can be es-
timated by using distorted waves for the outgoing
nucleon wave function. In addition to this term,
we expect to obtain contributions from exchange-
current effects in which the photon is absorbed by
two or more interacting nucleons. The relative

contribution from exchange currents should in-
crease as the photon energy increases, since the
direct reaction requires progressively larger mo-
mentum components of the single-particle wave
functions. In this paper, we will restrict ourselves
to consideration of the isobar current. The
6(1232), a nucleon excitation at about 300 MeV with
a free width of about 115 MeV,"will contribute to
photonuclear reactions over a rather wide range
of photon energies spanning the "isobar-produc-
tion" region. Effects of isobar production by elec-
tromagnetic currents are seen in quasielastic elec-
tron scattering, where isobar electroproduction
produces a sharp peak in the nuclear response
function. "" The isobar current will undoubtedly
contribute in some way to (y, p) reactions leading
to discrete final nuclear states, although in con-
trast to the inclusive quasielastic processes the
isobar current will be modulated by single-particle
momentum wave functions. The questions we shall
discuss in this paper are as follows: (i) Is the
isobar contribution significant compared with the
direct-reaction contribution at these energies' ?
(ii) What is the "signature" for the isobar photo-
production amplitude, and how well does the iso-
bar contribution reproduce the experimental (y, p)
cross sections y (iii) How reliably can we calcu-
late this term using coupling constants and nuclear
form factors determined from independent experi-
ments '?

In a previous paper (hereafter called I),4' we re-
ported preliminary results of a calculation which
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indicated that isobar [b,(1232)] formation and de-
cay might provide a sizeable contribution to the
nuclear photoeffect, for photon energies of 100
MeV and higher. In I, we used a simple plane-
wave model for the direct term and we made sev-
eral simplifications designed to give at least a
qualitative picture of the isobar current and its
significance in medium-energy (y, p) reactions.
In this paper we present a considerably more de-
tailed exposition of both the direct reaction and
isobar amplitudes, and we compare our results
with the extensive (y, p) data on "0 from 40-400
MeV. We shall demonstrate that the isobar con-
tribution seems to be very important;---'at:-:least for
photon energies of 100 MeV and higher, and that
it produces reasonable quantitative agreement with
existing data.

In Sec. II of this paper we will review the plane-
wave impulse approximation (PWIA) for the (y, p)
reaction leading to discrete final states of the re-
sidual nucleus. Although such an approximation
is surely inadequate as a description of the nuclear
photoeffect at medium energies, it provides an
extremely simple derivation of several features of
the (y, p) reaction which can then be compared and
contrasted with more sophisticated calculations
and with experimental data. As is well known, in
PWIA the-laboratory differential cross section for
(y, p) reactions is directly proportional to the
square of the proton bound state wave function
evaluated at momentum q=k„-k„, where k„ is the
outgoing proton lab momentum and k, is the inci-
dent photon momentum. The possibility of directly
measuring the single-particle momentum compo-
nents through the (y, p) reaction provided a motiva-
tion for earlier experimental and theoretical in-
vestigations. This reaction also gave tIhe promise
of measuring the relatively poorly known high mo-
mentum components in the single -particle wave
function. In the (y, p) reaction the photon transfers
nearly all its energy to the proton; consequently
the outgoing proton will have a considerably larger
momentum than the photon, so that the magnitude
of q will be large. If the PWIA predictions were
correct, then the (y, p) cross sections would pro-
vide a direct measurement of the momentum den-
sity for the single-particle wave function far above
the Fermi momentum. We will review the PWIA
cross sections predicted for different choices of
single-particle wave functions in Sec. II.

In order to account for the nuclear forces in a
realistic manner, the simple PWIA analysis of
the reaction must be modified. The first correc-
tion we consider is the final-state interaction of the
outgoing proton, and in Sec. III we discuss a modi-
fication of the proton wave function which approxi-
mates the proton distorted waves as generated

from pheriomenological optical potentials. We want
to use the same distorted waves for the direct re-
action and isobar amplitudes, which restricts us to
fairly simple forms for the approximate wave func-
tions in view of the computer time required to
evaluate the isobar current. The method we have
chosen is an extension to medium-energy reactions
of an approximation studied by McCarthy" for nu-
cleon wave functions generated from optical. poten-
tials. We discuss in some detail the simplifica-
tions which occur at medium energies, relative to
the lower-energy analyses of McCarthy, and we
demonstrate the quality of our fits to proton dis-
torted waves at energies of 100 MeV and higher.

In See. IV, we derive in detail the isobar contri-
bution to medium-energy photonuclear reactions,
and we compare our results with the existing ex-
perimental data for the "0(y,p,)"N reaction in
this energy region. As our present calculation
contains no free parameters, we discuss our
choices for various coupling constants, form fac-
tors, and nuclear wave functions, al.l of which are
fixed by other experiments. We examine the form
of differential cross sections at fixed proton lab-
oratory angle vs photon energy, we predict the
form of the cross sections at fixed photon energy
vs proton lab angle, and we discuss briefly the
possibility of measuring the (y, p) cross section to
the 6.32 MeV, &-excited state of "N and its use-
fulness in identifying the reaction mechanism at
these energies.

For clarity, we introduce several simplifications
in the derivations of Sec. IV; for example, we neg-
lect the effects of nucleon-nucleus final-state in-
teractions and we include only the g decay of the
isobar and not p decay. In Sec. V, we discuss the
results of including these terms in the isobar-pho-
toproduction amplitude. In addition, we estimate
the effects of c.m. corrections to the shell model
wave functions used in our calculations. As we
have neglected the change in the isobar propagator
due to the isobar-nucleus interaction, we attempt
to discuss the sensitivity of our results to self-

. energy modifications of the isobar propagator.
These modifications would presumably be most
dramatic to the degree which they changed the iso-
bar width in the nucleus from its free value. Al-
though a precise determination of some of these
-quantities awaits more extensive theoretical in-
vestigations, we shall be able to estimate the ex-
tent to which our results are dependent upon the

particular choices we have made for several of
our parameters.

II. PODIA ANALYSIS OF THE (y, p}REACTION

The scattering amplitude for the (y, p) reaction
can be written as
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Mii= —((i~l f s'*j(*)'ii(*)(l()i& (2.1) write the current in terms of a convective term
and a magnetic moment term

where if,.) is the initial target wave function for A

particles, ~g&) is the final-state wave function,
A„('x) is the electromagnetic potential of a photon
with polarization component X along the polariza-
tion axis, and j(x) is the nuclear electromagnetic
current operator. The final-state wave function

~ P&) can be written as the product of the residual
nucleus with (A —1) particles in state f and a rela-
tive proton-nucleus continuum wave function. The
photon electromagnetic potential corresponding to
polarization component X has the form

A (x) —I/(2& )'~'e"")"*'& (2.2)

where k„ is the photon laboratory momentum and

~„ the photon energy (&u„=
~ k„~ )."

In general we can expand the nuclear current op-
erator into one-body, two-body, and higher-order
components; for the impulse approximation which
we consider in this section, it is sufficient to con-
sider the one-body operator only, so that we can

A

j,(x) = -e g .' [5(r, -x)i),r„2jM
j3.-1

—5(r, -x) '
v())xi I

. . (2.3)

» Eq. (2.3), M is the nucleon mass, e, is the
charge of the jth nucleon, and p,

&
is the magnetic

moment of the nucleon in nuclear magnetons. We
use the notation

[5(r& —, x)V] zr„=—6(r& -x)(V, —V,) . (2.4)

For the nucleon effective charge we use 0 for
neutrons and 1 for protons. "

Evaluation of the matrix elements of Eq. (2.3) is
greatly simplified if we use a plane wave for the
outgoing nucleon wave function; that is, if we neg-
lect all interactions of the nucleon subsequent to
its ejection by the photon. fn that case we can in-
tegrate by parts to obtain the matrix element

A

z p, ~kxo' 'g~x )())(
—k))(' e), + ——---

. (j);(x|,x2, . . . , X~) . (2.5)

In E(I. (2.5) k„ is the outgoing nucleon momentum
in the laboratory reference frame, and XN~ is the
spin-isotopic spin vector for this nucleon. If we
define the overlap matrix element betweeri initial
and final states

(o„(~)-=J&*8""((",'l(f) (2 6)

then in terms of this quantity we see that the am-
plitude can be written as

M'. = -e/(2~ )'~'X'fi y N ~ N

'L P,NkyX 0' ' & )+ p~)(k))( —k„)'

(2.7)

where e~ and p,„ in E(I. (2.7) are the charge and
magnetic moment, respectively, of the ejected nu-
cleon. The single-particle wave function p&,. de-
fined from E(I. (2.6) has an explicit dependence up-
on the bound nucleon spin and isotopic-spin coor-
dinates, so that the photonuclear amplitude M&,. is
obtained by taking the matrix elements of E(I. (2.7)
between spinors for the final outgoing nucleon and
the bound nucleon, respectively.

The laboratory differential cross section, aver-

A gf A~& (2.9)

where n refers to the single-particle quantum
numbers (glj, etc. ) of the ejected nucleon. In this
case Eg. (2.8) becomes

do e' 0„' de„(2j+ 1)(„„)
, sin 8+'Z l/2 M

k„
+ &v 2M' I"n

N v-1/2
(2.10)

aged over initial photon polarizations and summed
over nucleon and residual nucleus polarizations is
given by

1 ), 2G kN 0 k~«=»&«~-&) 2Q P IMg -I

(2 )3(2 )3
SN, e

(2.8)

where k„and k„are the nucleon and residual nu-
cleus outgoing momenta, respectively, and SN and
a are the final. spins. If we assume an indepen-
dent-particle model of the nucleus, such that the
final state is simply a one-hole state relative to
the initial state, then we can write
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In Eq. (2.10), E& is the final total energy of the
system

(I 2 Mg)l/2+ [(k k )g+ M 2]1/2

The first term inside the brackets represents the
(y, p) cross section and the second term gives the

(y, gg) cross section. 'g

The PWIA predictions for (y, N) cross sections
are quite interesting and we list the important fea-
tures of this analysis in order to compare with
subsequent calculations.

(i) The differential cross section is directly pro-
portional to the square of the single-particle wave
function evaluated at momentum kz- —k'„'. In faQt,
we may write the (y, p) cross section as

da 1 (2j+ 1)
d
—„(y P)=c( y (2&) (2I+I) p I&ng/m(q) I

(2.11)

PWIA

(y y P) = aconv+ amagn i (2.13)

where

Oconv 2kN Sln 6j

magn p~A p Pp

In Table I we present the ratio o„„„/o' „„predicted

(2.14)

where q= k„-k„and
me u„da„u„

+2M' " )I'

(2.12)

In this approximation, then, the differential cross
section divided by the factor C is just the square
of the single-particle wave function, the "single-
particle momentum density" evaluated at momen-
tum q [the sum over m in Eq. (2.11) removes all
dependence on the direction of q so that the result
is a function only of the magnitude IqI]. In addi-
tion, this approximation predicts a "scaling" of
the cross sections, that is, the quantity [1/C(lg„, q)]
x(da/dQ) should lie on a universal curve when
plotted against q. We will elaborate on this point
in Sec. III when we discuss the modification of
these results due to the final-state interaction of
the outgoing proton.

(ii) The convective and magnetic terms enter in-
coherently in the cross section, since the convec-
tive term does not change the nucleon spin while
the magnetic term is a pure spin-flip amplitude.
In Eq. (2.9), for the (y, p) amplitude, the convec-
tive operator gives the term proportional to (i'g„g/
M') sing8 while the magnetic moment operator is
proportional to (Ig„'/2Mg) Ig~'.

In the PWIA description of (y, p) reactions we
may write

TABLE I. Bat;io of convective to magnetic cross
sections in PWIA calculations of the (y,p) reaction.
The ratio Ocpnv/omagn is listed for various photon labora-
tory energies u& and proton laboratory scattering angles
8.

deg)

0'conv

(T magn p~'fA

900 135'

100
150
200
250
300
350
400

2.11
1.50
1.19
0.99
0.84
0.75
0.67

4.10
2.93
2.28
1.89
1.62
1.42
1.27

2.00
1.43
1.10
0.91
0.77
0.67
0.60

by the PODIA; for photon energies above 100 MeV
this predicts a fairly large contribution from the
magnetic moment term. " For scattering angles
sufficiently forward or backward of 90, the mag-
netic contribution is often larger than the convec-
tive.

(iii) The (y, n) cross section is proportional to
the magnetic moment term only; at photon ener-
gies below 100 MeV this would predict (y, n) cross
sections to be much smaller than (y, p) cross sec-
tions. We will discuss these predictions in some-
what more detail in Sec. III when we consider the
inclusion of distorted waves.

As we have mentioned, since the asymptotic nu-
cleon momentum k„will be considerably larger
than the photon momentum, q—=k„—k„will be quite
large In PW. IA, the (y, p) cross sections thus pro-
vide directly the high-momentum components of
single-particle wave functions. At the large mo-
menta involved, we might expect considerable un-
certainty in the single-particle momentum compo-
nents, even from wave functions that give reason-
able agreement with existing experimental data
(which is usually sensitive to lower-momentum
components). As an illustration of the variation
in different wave functions, we plot the momentum
densities for three different 1p-shell proton wave
functions in "O. We plot the "single-particle mo-
mentum density'"'

(2.15)

in Figs 1and 2; .Q(q) is plotted in (GeV/a) ' vs
momentum q. The dot-dashed curve in Fig. 1 is
the momentum distribution for a 1P simple harmon-
ic oscillator wave function with b = 1.77 fm. Such
a wave function contains essentially no high-mo-
mentum components, even though the transition
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FIG. 1. The single-particle momentum density G(q),
in (GeV/c), vs momentum q in MeV/c. Q(q) is defined
in Eq. (2.15); the curves have been calculated for 1pz
protons in 60. Solid curve: Elton- Svift wave function
(Ref. 51); dashed curve: momentum density obtained
from oscillator expansion of Negele's density-dependent
Hartree-Fock calculations (Ref. 52); dot-dashed curve;
momentum density for lp simple harmonic oscillator
(SHO) wave function (Ref. 50). For q& 660 MeV/c, all
curves have been multiplied. by 1000.

densities obtained through such wave functions give
reasonable agreement with electron scattering data
for momentum transfers below 600 MeV/c"; the
momentum density drops off extremely rapidly for
momenta above 500 MeV/c. The solid curve in
Figs. 1 and 2 is the momentum density for an El-
ton-Swift 1P«, wave function for "0; Elton and
Swift" found a Woods-Saxon potential which would
produce "0 single-particle wave functions with
binding energies and electron scattering cross sec-
tions which reproduced experimental data (for ~'0
it fitted elastic electron scattering data at 420
MeV). The resulting momentum wave function has
zeros at approximately 450, 650, and 650 MeV/c
(for momenta greater than 650 MeV/c this wave
function has been multiplied by 10'). The dashed
curve in Fig. 2 is the Fourier transform of a 1P-
shell wave function for protons in "0due to
Negele, from his density-dependent Hartree-Fock
calculations. " Negele's wave functions have con-
siderably larger high-momentum components (for
moments greater than 600 MeV/c) than the Elton-

q (MeV/c)

FIG. 2. Single-particle momentum density Q(q), in

(GeV/c), vs momentum q in MeV/c, for 1p~~2 protons
in ' O. Solid curve: Elton-Swift 1p~~2 wave function for

O; dashed curve: Fourier transform of Negele density-
dependent Hartree-Fock wave function for 0. For
q & 660 MeV/c the Elton-Swift curve has been multiplied
by 1000.

Swift, since Negele's calculations include a more
realistic inclusion of the short-range components
of the two-nucleon interaction.

The discrepancy between the Elton-Swift and
Negele wave functions at high momentum gives a
measure of the uncertainty in the single-particle
high-momentum components for two calculations
which are both fitted to electron scattering data.
For the (y, p) reaction on "0 at a photon lab ener-
gy of 350 MeV and proton scattering angle (relative
to the incident photon direction) of 120, the mo-
mentum difference q is approximately 1 GeV/c,
where the single-particle wave functions are not
well determined from other experiments. For
simplicity in our calculations we have used an os-
cillator expansion fit to the Negele wave functions
in terms of the lowest eight p-wave harmonic os-
cillator functions. The momentum distribution
resulting from this expansion is plotted as the
dashed curve in Fig. 1; in comparison with the
exact wave function as plotted in Fig. 2, we see
that for momenta above 700 MeV/c the oscillator
expansion does not contain sufficient large-mo-
mentum components.
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III. EFFECTS OF NUCLEON DISTORTION

A. Approximating the nucleon distorted-wave function

In this section we will discuss an approximate
treatment of the nucleon-nucleus scattering wave
function which will enable us to estimate the ef-
fects of distortion of the outgoing nucleon in both
the direct knock-out amplitude and in the isobar
amplitude. As we are primarily interested in the
photonuclear reaction for photon energies of 100
MeV and upwards, we could use nucleon distorted
waves obtained either from optical potentials or
from the WKB approximation. Lee and McManus"
have shown that, for the inelastic scattering- cross
sections of protons from "C at 156 MeV incident
energy, WKB and DWIA calculations using the
same potentials produced extremely similar re-
sults, so that we might expect boih methods to pro-
duce comparable wave functions at these energies.
However, some objections to WKB results have
been raised by Jackson and collaborators"; a dis-
cussion of the merits and drawbacks of the WKB
approximation for nuclear reactions is given by
Austern. " If we use the WKB approximation io
describe the wave functions, we would haye

y."'(r) = exp ip r- — [W,(b, z')

+ W,(b, g')o ' bxp]dz'

(3.1)
where p and E„are the nucleon-nucleus relative
momentum and energy, and 8", and W, are the cen-
tral and spin-orbit potentials, respectively. In
Eq. (3.1), b is the impact parameter defined by r
=(b, z). From Eq. (3.1) (neglecting the spin-orbit
contribution for the present) we see that the real
part of 8', contributes to the phase of the exponen-
tial, while the imaginary part diminishes the mag-
nitude of X" due to the loss of flux into other re-
action channels. As the energy increases, the
real part of the optical potential decreases in mag-
nitude, so that the effect of this term can be ex-
pected to decrease in importance. For this rea-
son (and because of its simplicity in calculations)
we have approximated the distorted nucleon wave
as a "modified plane wave"

x-"(~)= ~K 8"'. (3.2)

In Eq. (3.2), p is the asymptotic nucleon momen-
tum, v t; is the magnitude of the nucleon wave func-
tion in the nuclear interior, and p' is the effective
local momentum of the nucleon under the influence
of the nuclear force. We include both a real and a
(small) imaginary part for p', the real part rep-
resents the shift in the real wave number due to
the real part of the nuclear potential The in-
fluence of the absorption is seen both in the reduc-

tion factor Wf and in the imaginary part of p',
since most of the effect of the absorption is in-
cluded in f, we find t,hat the imaginary part of p'
is quite small. We, choose the directions as p' —=p.

For lower-energy proton-nucleus scattering,
McCarthy and collaborators" made detailed stud-
ies of approximations to nucleon distorted-wave
functions. They showed that the distorted proton
wave function could be accurately described as a
sum of iwo terms: a modified plane-wave piece
plus a "focus" term. The latter piece resulted
from the focusing of the nucleon wave by the nu-
cleus. This focusing effect produced a pronounced
maximum in the magnitude of the proton wave
function near the back of the nucleus (i.e. , the side
opposite the direction of the incident proton beam).
The importance of a focusing effect would rule
out a modified plane-wave description such as that
of Eq. (3.2). In Fig. 3 we show the magnitude of
the wave function for protons incident on "C at en-
ergy 20 MeV. The wave function has been gen-
erated from a Woods-Saxon optical potential, "and
the diagram shown contains slices taken at 15' in-
tervals from 0-180'. The beam in this case is in-
cident from the right, and the dashed line repre-
sents the half-density radius of the optical poten-
tial which generated the wave function. The focus
at the back of the nucleus is very prominent, and
it greatly influences the proton wave function in-
side as well as outside the nuclear radius. In Fig.
4 the contours of constant phase are plotted for
this wave function. Again the influence of the focus

FIG. 3. Magnitude of optical model wave function for
20 MeV protons on C with parameters V0=50 MeV,
8"= 6 MeV, ~0= 1.2 fm, and a = 0.55 fm. The beam is
incident from the right, and slices are shown every 15'.
The dashed curve gives the half-density radius of the
optical potential which produced this wave function. The
importance of the focus is evident in the rapid variation
of the magnitude across the nuclear region. The scale
at right shows the magnitude of the wave function (rela-
tive to plane wave).
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TABX E II. Effective real and imaginary potentials V
and W, and magnitude f obtained by fitting non-spin-flip
parts ofP + ~2C scattering wave functions generated from
optical potentials. V, W, and 5 are obtained by minim-
izing the difference between the modified plane-wave
parametrization of Eq. (3.3) and the optical-potential
wave functions. Also tabulated are the approximate
values of Passatore's tabulation of nucleon optical pot-
entials, real and imaginary parts V& and W&, respec-
tively.

Proton
energy

75
100
156
182

13.5
13.0
2.9

-0.34

-2.0
1.4
9.1
9.6

0.47 35.0 11.3
0.53 ' 30'.|' i9.|'-'
0.55 20.0 15.5
0.55 15.7 16.8

f = f,+ f, lnE(MeV),

V= —V,{l—a, tanh[g, E(MeV) ]],
W= Wo[1+ bE(MeV)] .

(3.4)

The values of the parameters which best fit g, V,
and F over the energy region of interest are listed
in Table III. In addition to the parameters obtained
from fitting the wave functions, we list in Table

ergy. ' The parameters P, V, and 5'generated
from such a fit are given in Table II. Although
there is some scatter in the results, there is
clearly a trend towards increasing values of g and

g and decreasing values of V with increasing pro-
ton energy. For comparison, we list the real and

imaginary potential well depths as estimated by
Passatore from a study of phenomenological op-
tical potential fits."" We should emphasize that
Passatore is fitting the central depth of the poten-
tial, whereas we have fitted the wave functions
themselves; so that a direct comparison of the two
numbe-rs may not be reasonable. " However, our
results certainly confirm the trend found by Papsa-
tore for decreasing V and increasing 8'with en-
ergy.

In order to extrapolate between energies, we
use formulas for g, V, and W

FIG. 7. Modified plane-wave approximation to the
magnitude of the optical model wave function of Fig. 5

using the parameters from Table III. The approximate
wave function is plotted from 0-4 fm.

III values of parameters which give a reasonable
fit to the real and imaginary optical potential well
depths compiled by Passatore for energies between
20-500 MeV.

With such a parametrization for the distorted-
wave function, we are able to reproduce rather
accurately the non-spin-flip part of the proton
wave function over the region of the nucleus. In
Fig. t we plot the approximate wave function using
the parameters of Table III for protons on "C at
156 MeV; this wave function can be compared with
that of Fig. 5.

In our calculations we have neglected the spin-
f1.ip part of the nucleon-nucleus wave function. In
calculating the wave functions from optical poten-
tials we found that the spin-flip term was generally
considerably smaller in magnitude than the non-
spin-fl. ip term. In Fig. 8 we plot the magnitude of
the spin-flip amplitude for p+ "C scattering at
156 MeV. Whereas the non-spin-flip amplitude
has magnitude approximately 0.75 over the nuclear
region, the spin-flip amplitude is never greater
than 0.15. As a result, we have not included the
spin-flip part of the nucleon distortion, although
we expect the importance of this term to increase
at higher energies where the spin-orbit strength
becomes appreciable compared with the central
part of the optical potential.

TABLE III. Parameters for Eq. (3.4) which best
reproduce the energy dependence of modified plane-wave
fits to proton scattering wave functions from ~2C. These
parameters were then used to estimate distorted-wave
calculations for photonuclear reactions. For comparison,
we list those parameters which reproduce the energy
dependence of Passatore' s potentials.

0.2— —Q.Z

&o

0.26 0.058 27.0 2.68 0.0023 —12.33 0.14
50.6 1.35 0.0031 7.46 0.051

FIG. 8. Magnitude of the spin-flip part of the optical
model wave function for 156 MeV protons on C using
the parameters of Ref. 55. Note the difference in scale
between the magnitude of this amplitude and that of Fig.
5.



1006 J. T. LONDKRGAN AND G. D. NIXON

The wave functions we have constructed can re-
produce rather well the nucleon distorted waves
generated from phenomenological optical poten-
tials. They are simple to use and can be included
in our calculation of the isobar amplitude with
essentially no further increase in the complexity
of our numerical calculations. For proton energies
above about 70 MeV this approximation is rather
accurate; however, with decreasing proton ener-
gies the "focusing" term which we previously dis-
cussed becomes more and more important and the
quality of our fits to distorted-wave functions de-
creases markedly. As our primary interest is to
compare, and evaluate, direct knock-out and iso-
bar amplitudes for photon energies above about
100 MeV, we find this approximation adequate for
our purposes; at low energies the modified plane-
wave parametrization of Eq. (3.3) does not ade-
quately describe the proton distorted waves.

p= kN ——k„;

intermsof the (complex) quantity n =—p'/p, where
p' is obtained from Eq. (3.3), we obtain

donwlA pe P k+2 dkp .] (2j+ ] )

did„b 2 k„dE~ (2v)' (2l+ 1)

tn'

(3.5)

In Eq. (3.5)

q'= k — 1 k„,A

p' —= (g k ——k

(3.6)

With the modified plane waves, the cross section
is again proportional to the square of the single-
particle momentum wave function (although the
"effective momentum" q' in our calculation has a
slight dependence on the photon energy, as well as
a small imaginary part). We can again define a
"momentum density" by dividing the cross section
by a kinematic factor in analogy with the deriva-
tion of Eq. (2.11); in Fig. 9 we plot this momentum
density vs the effective momentum ~q'~ for the re-
action "O(y, p, )"N. The curve is the result from
the oscillator expansion of Negele's wave func-

B. DWIA calculation of the (y, p) reaction

Using the distorted waves described in Sec. IIIA,
we can straightforwardly calculate the DWIA (y, p)
cross sections. In terms of the nucleon momen-
tum in the laboratory frame k~, the proton-nucleus
relative momentum is given by

tions, "and the data points are the results of
Matthews et a1.4'~" (closed circles) from the Bates
linac, and the Glasgow measurements of Findlay
and Owens" (open circles).

The data and the Negele momentum distribution
exhibit two very striking features. First, the
"scaling" behavior predicted by DWIA seems to be
very well satisfied, in that experimental results
obtained at different photon energies and scatter-
ing angles seem to lie on a universal curve when
kinematic factors are extracted and the data is
plotted against the magnitude of the effective mo-
mentum (at least, this is true for momenta below
500 MeV/c). Second, the data agrees extremely
well with the Negele single-particle momentum
density for momenta below 400 MeV/c. This has
been emphasized by Findlay et al. '"' '

If one used a PWIA calculation and compared the
lower-energy data ( ~q ~

6 400 MeV/c) with the the-
oretical momentum distribution, the agreement
would not be nearly as good as for the distorted-
wave results. One additional argument supporting
this analysis is that for 'C targets the (Z, P) ex-
periments can be compared with (e, e'p) knock-out
reactions. " The highest-momentum transf ers
reached so far in (e, e'p) measurements corre-
spond to momenta probed in the low-energy (y, p)
reactions; when analyzed in a consistent manner,
the momentum densities from the two experiments
are in excellent agreement with each other and are
in good agreement with the theoretical momentum
density. " It would appear that at least the lower-
energy photonuclear data shows convincing evi-
dence of dominance by direct knock-out processes,
and that the single-particle momentum density can
in fact be extracted from experimental cross sec-
tions.

However, there are two corrections to this anal-
ysis which might alter these results considerably.
The first is the possible importance of nucleon
charge-exchange processes following the photon
absorption. As we have mentioned previously, the
DWIA analysis presented here would predict very
small (y, ~) cross sections for photon energies be-
low 100 MeV, whereas experimental measure-
ments of .(y, n) reactions'4 obtain cross sections
which are within a factor of 2 of the (y, p) results.
If the charge-exchange process were important,
then we could obtain significant numbers of neu-
trons from a (y, p) reaction followed by (p, n). Cal-
culations done by Cotanch" suggest that such an
amplitude could be significant in the region below
100 MeV. A similar result also occurs in the work
of Gari, Hebach et al.""who use a continuum
shell model containing a charge-changing two-
particle res idual interaction. Such an interaction
gives rise to suitably large (y, z) cross sections
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FIG. 9. Momentum density, in (GeV/c) vs effective momentum ( q') in MeV/c for the reaction ' O(y, po)~~N. Solid
curve: DWIA calculation using Elton-Swift bound-state wave function, and a modified plane wave for proton scattered
wave with parameters given in Table III. Dashed curve: DWIA calculation using the oscillator expansion of Negele's
density-dependent Hartree-Pock wave function, and a modified plane wave for the proton scattering wave function with
parameters given. in Table IG. Data points are Glasgow measurements of Findlay and Owens, Hefs. 38 and 40, open
circles; and closed circles are Bates I.inac results of Matthews et al. (Refs. 41 and 43).

for energies below 140 MeV. ' If the charge-ex-
change process is important, however, the inclu-
sion of this in the (y, p) amplitude may cause con-
siderable change in the predictions of the "momen-
tum density. "

A second question regards the orthogonality of
initial and final-state wave functions. Noble" has
recently shown that, provided one generates both
the initial bound state and final scattering state
wave functions from the same real (and energy-in-
dependent) potential, one can show that both the
convective and magnetic moment amplitudes cal-
culated using these orthogonal wave functions mill
be suppressed relative to a plane-wave result. Al-
so, the magnetic moment term will be suppressed
to a much greater degree than will the convective
term; the suppression factor for the magnetic
term (relative to plane wave) is predicted by Noble
to be about (krak„)'. Such results had been obtained
in a calculation by Fink et aL,"mho found the mag-
netic amplitude to be greatly suppressed when they
used the same real central %foods-Saxon potential
to generate bound and scattering wave functions
for a (y, p) calculation. We have not included or-
thogonality corrections in our calculations. We

are primarily interested in the region of photon
energy from 100-400 MeV; in this region, the ef-
fecttve proton nucleus intera. ction is known to have
strong absorption due to competing nuclear chan-
nels and to be significantly weaker than the binding
potential for the same proton. Although use of an
energy -independent real central potential allows
one to guarantee orthogonality of initial and final
wave functions it provides an unrealistic descrip-
tion of the distortion of the outgoing proton. A

realistic calculation requires attention to both or-
thogonality and the many-channel nature of the
final state; Noble has outlined a method for such
a calculation but it is not clear what effects this
would have on our present calculation of the mag-
netic moment amplitude.

iV. ISOBAR AMPLITUDE IN (7, N) REACTIONS

In addition to the direct knock-out reactions, we
expect to see significant contributions to the nu-
clear photoeffect from exchange-current processes
where a photon shares the transferred momentum
with two or more interacting nucleons. %e expect
the exchange-current diagrams which proceed via
pion exchange to be the dominant exchange-cur-
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FIG. 10. Lowest-order one-pion range exchange cur-
rents which contribute to photonuclear knock-out reac-
tions. (a) the "pionic" current, where a photon attaches
to an exchanged piori; (b) "pair" current, where a photon
connects with a nucleon-antinucleon line; (c) "isobar"
current, where a pN6 vertex is accompanied by isobar
decay to virtual pion plus nucleon. Diagrams (a)—(c)
must be summed over all time orderings which occur.

rent processes at lower energies since pion ex-
change provides the longest-range piece of the two
nucleon strong interaction. In Fig. 10 we show
some of the lowest-order pionic exchange-current
diagrams which contribute to (y, N) reactions. The
"pionic" and "pair" current graphs of Fig. 10(a)
and 10(b), respectively, will contribute primarily
to electric exchange-current terms, whereas the
"isobar current" term of Fig. 10(c) will contribute
to the magnetic exchange currents. For photon
energies up to about 400 MeV we would expect the
isobar current to provide the dominant magnetic
exchange -current term.

In other electromagnetic reactions, the effects
of isobar photoexcitation can be quite prominent.
For example, in quasielastic electron scattering
where no hadrons are observed in the final state,
the nuclear response function shows the effect of
isobar excitation quite clearly. Figure 11 shows
the cross section d'o/dQ, de, (0, and e, being the
solid angle and energy for the outgoing electron)
for 1.18 GeV incident electrons on tungsten and a
scattering angle of 35, versus the energy of the
scattered electron. The data is that of Titov et
al. ' and the theoretical calculation is due to
Moniz. " The peak at higher &, is due to single
nucleon knock-out (in a Fermi-gas nuclear model)

FIG. 11. Inelastic electron- scattering oa tungsten.
Differential cross section d o/dQ2d&~, in 10 cm /
sr-GeV vs scattered electron energy &2 in GeV; &2 and

Q2 are the energy and solid angle for the scattered elec-
tron. Data points are those of Titov et al. , Ref. 45, for
incident electron energy 1.18 GeU and scattering angle
35; theoretical curves are from a Fermi-gas calcula-
tion due to Moniz, Ref. 46, with parameters k&= 268
MeV/c and E=42 MeV.

and the lower-energy peak is the result of isobar
photoexcitation in the same nuclear model. The
data show the two peaks very prominently and the
isobar and nucleon knockout peaks are clearly sep-
arated. In such an "inclusive" reaction, the cross
sections depend pr imarily upon the isobar -produc-
tion amplitude and the "effective mass" of the iso-
bar in the nuclear medium. As we will show, the
nuclear form factors become very important in
determining (y, p) reactions to specific nuclear
final states, and it is interesting to see whether
the sharp peak seen in quasieleastic electron scat-
tering survives in measurements of the nuclear
photoeffect to discrete nuclear states.

In I, we considered the contribution of the -isobar
6(1232) excitation to the reaction "O(y, p,)"N (the
proton subscript referring to the ground state of
the residual nucleus). At that time, preliminary
data for this reaction had been obtained at the
Bates linac. Our calculation showed that isobar.
photoexcitation should be large in the photon ener-
gy region 100-400 MeV, and that our results re-
produced the magnitude and at least the qualitative
behavior of the observed cross sections. Since
that time, a considerable amount of additional ex-
perimental data have been acquired for this same
reaction, ' "and we have extended our previous
work to include many features which had not been
included in our original letter. In this section we
will outline the isobar contribution to (y, K) reac-
tions and present some results, and in Sec. V we
will extend the model outlined in this section and
discuss at some length the sensitivity of the am-
plitudes to our choices for several of the.param-
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FIG. 12. Diagrammatic representation of isobar con-
tributions to the nuclear photoeffect. (a) The &(1232)
is created by photoexcitation of a nucleon, propagates,
and then decays to a nucleon plus pion, the pion being
absorbed by the residual nucleus. (b) The isobar is
created in the nucleus and is then converted to a nucleon
by absorbing the incident photon.

eters in this model.
In Fig. 12 we give a diagrammatic representation

of the isobar contributions we have calculated for
(y, N) reactions. In Fig. 12(a) the b, (1232), a J
=-,', T =-,' baryon with mass 1232 MeV and free
width approximately 115 MeV, is created by photo-
excitation of a nucleon. The resulting intermediate
state contains a virtual isobar and a one-hole state
of the target nucleus. The isobar then decays into
a pion plus a nucleon, the pion being absorbed by
the residual nucleus to produce the observed fina. l
nuclear states. In Fig. 12(b) the photon is absorbed
subsequent te the isobar formation, deexciting the
6 to the final nucleon ¹

The amplitudes which we use in evaluating this
process are just the off-shell extension of the
pion photoproduction amplitude y+N —N+ m, since
we neglect the isobar-nucleus interaction in our
calculation (that is, we do not include isobar self-
energy terms). This amplitude has been studied
in detail since it dominates low-energy pion photo-
production, ""and we use it to fix the coupling
constants and matrix elements for the yNA and
AN@ vertices. In calculating the isobar contribu-
tion to this process, we may write the amplitudes
in terms of isobar creation and decay matrix ele-
ments

f i Q (XN 0 j I ge~~i, 1454 i~i ) E (p /2~ +I .F/2) E &4a4int I prod lki
interinediate

— Pg g+M~ - i int
states

1
+&X@ 6 I ii, g lfakint & E E (p 2/2M +I fi /2) E &4aPint

y int

(4 1)

In Eq. (4.1), ~(",) is the initial A-particle target
nucleus, and the final state is the product of a
nucleon-nucleus relative wave function Xt„~ (N
refers to the final ejected particle, either neutron
or proton) and the (A, -1)-particle residual nu-
cleus in state f. We will restrict our considera-
tions (for the time being) to transitions where the
final state can be written as a one-hole sta, te with
respect to the original nucleus, i.e. ,

[gal-i. ) g )qA) (4.2)

where. e& represents annihilation of a nucleon with
quantum numbers f We will ev.aluate Eq. (4.1)
in the laboratory system, so that E is the total
laboratory energy (photon energy Zz plus target
rest mass), M~ is the isobar rest mass (1232
MeV), I'istheisobar width in the nuclear medium,
and E is the total energ. y (kinetic plus rest mass)
of the intermediate state of the residual nucleus.
The sum over intermediate states includes inte-
gration over the isobar momentum, and a sum
over all spin and isospin states. of the isobar as

ff, = Q ata~tb„a, (i,j~m~„„„~n,f&.
f,j,k, f

(4.3)

In Eq. (4.3), bt and b are isobar creation and
destruction operators, respectively, and a~ and
a are the corresponding nucleon operators. In
evaluating Eq. (4.1), we restrict our consideration
to intermediate nuclear states which can be repre-
sented a,s single-hole states built from. the target
nucleus, "i.e. ,

Then we can straightforwardly carry out the com-
muta. tion relations to obtain the full isobar ampli-
tude

well as over all quantum numbers of the contribut-
ing nuclear states.

In second-quantized form, we can write the re-
quired matrix elements as
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d pg 1
(2+)3 c +I fEN ENI+ +& @ (p 2/2~ +~ fix/2) EA-I

1
EE ( /~ M, r/2) E

~(~, ~law,'„~,lf, ~&~ -&~1M'~, l» E E P ./2~

&& (&, NIMS~- gn I fe 0'&~

C'„(e) fd'xe "")' )x), -= (4.6)

where g (x) is the spatial wave function associated
with the state (nj. Thornber derived Eq. (4.5)

In Eq. (4.4), the states (o) include all single-
particle occupied states in the target nucleus lfor
'60(y, P,)"N, the sum includes protons and neu-
trons in Is,~„ lp, ~„and Ip, ~, orbitsj. The sub-
script A. in the AN- NN amplitudes denotes anti-
symmetrization with respect to the two-nucleon
state, To evaluate the amplitudes shown in Fig.
12, we first assume plane waves for the outgoing
nucleon wave function (we will remove this as-
sumption in Sec. V). For the isobar-pr'oduction
vertex we used amplitudes calculated by Thorn-
ber" for isobar electroproduction. This ampli-
tude could be written in the form

2Q 2

(e~leeex,,„le) =exec)Ce exp(-

x(X~IToS'~ P (P~ —k))IX & (4.5)

In Eq. (4.5), IX„& and IX~& are spin-isospin wave
functions for a nucleon (in single-particle state n)
and isobar, respectively. S (and T) are matrices
which connect spin (isospin) states —,

' and —,'; these
operators are defined so as to reproduce the ma-
trix elements obtained from coupling nucleons
with isobars. " (The matrices S and T are given
vector labels since they are associated with a
vector index as described in Ref. 81). In Eq.
(4.5), e is the proton charge, )u~ is the proton
magnetic moment in nuclear magnetons, k& is
the photon momentum, 5 is a size parameter for
the nucleon wave functions lwe used the value
bo = 4 (GeV/c) ' obtained by Thornber], and c
was a parameter which we varied to reproduce
the observed isobar radiative width"'": We
used c = 1.33. In Eq. (4.5), y„(q) is the single-
particle momentum wave function for a bound
nucleon with quantum numbers (nj, defined by

(4 4)
l

using a quark model for the baryons in order to
calculate isobar electroproduction cross sections.
In the Appendix, we reproduce a derivation of her
amplitude and show that it is equivalent to Eq.
(4.5).

For the isobar decay 6-N+ z, with absorption
of the virtual pion by the residual nucleus, we use
an amplitude of the form

&N, ~l~~~ -~~l&, p&
= — .&x~ls'qT~'Ix, &, „

~&X.lo q~;p. 8(q)IX~&. (4 7)

Equation (4.7) gives the amplitude for a transition
from an initial state consisting of an isobar and
nucleon bound state with quantum numbers fP)
to an outgoing free nucleon N and single bound
state nucleon with quantum numbers (o). In Eq.
(4.7), q is the pion momentum, q-=k„-pz, where
k„ is the asymptotic laboratory momentum of the
outgoing nucleon, and f and f*are the NNv and
ANm coupling constants, respectively. We have
used form factors for the coupling constants which
are assumed to have the dipole form

(4.8)

In Eq. (4.8) we have neglected the fourth com-
ponent of the pion four-momentum; for the re-
action we are interested in qp would be much less
than

I q I, in the kinematic region giving a large
contribution to the matrix element. We used f,
= 1.009 and f,*=2.097 as typical values for the
N¹and ANm coupling constants, and for the form
factors we used values fitted to neutrino reactions
which gave X(NN7)) = 6.8m ~ and X(ANv) = 6.9m „."'"
The quantity p„8(q) is the single-particle transition
density for momentum transfer q, taken between
single-particle states with quantum numbers (nj
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and(pj; p„s(q) is defined as by the matrix S (a.nd T),"

q„q(t))-=f d q'qx(x)qq(x)q "'*. (4.9)

The isobar contribution to the (y, N) reaction is
obtained by inserting the amplitudes from Eqs.
(4.5) and (4.'I) into Eq. (4.4) and performing the
necessary summations. In carrying out these
sums, we can makeIuse of the relations satisfied

—(St) mMq(S )Mq))) —
(5 xO O )m, m

Af

(4.10)

in Eq. (4.10), m and m' represent nucleon spin
indices, M is the isobar spin index, i and j are
vector indices associated with S. Carrying out
the sum over isobar spin and isospin states thus
reduces the matrices S and T to relatively simple
operators in the spin-isospin space of the nu-
cleons. With the use of Eq. (4.10), we obtain

Vp!'= —" ', qqqqxp(- "q' )Z f x, X(q)x"(q)

, &xMI[2~" q-fo (q&")](5«--'T;~.)w&(p)lx&&&x lo q~&p. ~(~)lxd
(z-z. -z".-')(Iql" .')

&x„lI2e' q-io (q&&Z')](5,, -4~(T,)q (p)lxd&x lo q&;p &(q)lx~&
(z -z.—z".-')(I ql'+m. ')

&xMII2~' q-«(q&«'))(50. —~7'.&.)q' (p)lx4&x~lo''q~(p~~ (q)lx~&
(z-z, -z, -z",-')(I ql'+m, ')

(x l(xP t) —qq (t)xq )I(q„—lq, q;)q, (q)lxq)(x Iq't)q;q (t))lxdI
(z-z, -z, -z,"-')(Iql'+m, ')

'
(4.11)

In Eq. (4.11), p= k„—k + q is the momentum of
the nucleon which is struck by the photon, Ez is
the isobar energy

I p~l' (4.12a)

where

pQ k p'+ q p (4.12b)

and E" ' is the total energy of the intermediate
state, a one-hole state created by removing a
nucleon with quantum numbers (n) from the target.
For the case where the target nucleus is a closed
shell with T = 0, all terms in Eq. (4.11) vanish
except for the second term.

The isobar amplitude which we have derived is
characteristic of a two-step reaction in that the
large momentum difference between the incident
photon and outgoing proton is shared by two nu-
cleons. The amplitude of Eq. (4.11) is proportion-
al to a convolution integral involving a single-par-
ticle momentum wave function p(p) and a single-
particle transition density matrix p(q), compared
to the direct knock-out amplitude where the entire
momentum is absorbed by a single nucleon. The
important contributions to this matrix element will
come from processes where the momentum wave
functions are relatively large, and hence rather
well known from electron scattering and knock-out
reactions; consequently, evaluation of the isobar
amplitude requires single-particle wave functions

in a region where they are fairly well determined
from independent experiments. " By examination
of the isobar amplitude, we see that at the largest
momentum differences (i.e. , the largest proton
angles 8 for a given photon energy), the isobar
amplitude is likely to be most important relative
to the direct knock-out amplitude due to the ability
to share the large momentum transfer in two suc-
cessive steps. Also, as the photon incident energy
gets to be about 300 MeV (roughly the mass differ-
ence between nucleon and isobar), the denominator
associated with the isobar propagator will become
smallest so that we might expect this to produce a
peak in the isobar amplitude for photon energies
around 300 MeV. Such a peak would be quite broad
due to the large isobar width. Therefore, by ex-
amining the form of the isobar ampl. itude, we ex-
pect this term to be important for photon energies
roughly in the region 200-400 MeV; at lower pho-
ton energies we expect the isobar contribution to
be more important (relative to the direct knock-
out amplitude~ at larger proton angles.

We have calculated the matrix elements of Eq.
(4.11) and added them to the direct knock-out PWIA
amplitudes of Eq. (2.8). We have numerically per-
formed the integration over q using Gauss quadra-
ture for the angles and Gauss -Hermite points
for the magnitude of q. For nuclear wave functions
we have used both simple harmonic oscillator
wave functions". for "P and the oscillator expan-
sion of Negele's density-dependent Hartree-Fock
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wave functions, ". both of which were discussed in
Sec. II. For the single-particle separation ener-
gies we used 12.1 MeV for p-shell states and 30
MeV for s-shell states, and for the calculations
discussed in this section we took the isobar width
as the free width I'~ = 115 MeV. In Figs. 13-15 we
plot the laboratory differential cross sections, in
nblsr, vs photon energy at a fixed lab scattering
angle, for the reaction "O(y, pn)"N. The results
are exhibited at angles 30, 45, 90', and 135'.
The solid curve is the theoretical cross section in-
cluding the contribution from the direct knock-out
PWIA term plus the isobar amplitude, using the
simple harmonic o"cillator wave functions for sin-
gle-particle wave functions; the dashed curve is
the PWIA plus isobar result using Negele's wave
functions. For comparison, the dot-dashed curve
represents the cross section from the PWIA am-
plitude only, with Negele's wave functions. At low
photon incident energies, the PWIA term domi-
nates, but at higher energies the isobar-production
term becomes progressively larger relative to
the direct term. At a scattering angle of 45', the
isobar amplitude begins to dominate the one-step
term at a photon energy of abogt 180 MeV; at 90
the isobar amplitude begins to dominate at roughly
125 MeV, and at 135 the isobar amplitude is large
at 100 MeV.

The experimental data are plotted for the angles
45, 90, and 135', the open circles are the Glas-
gow data of Findlay and Owens" and the closed
circles are the Bates results of Matthews et al. '
together with additional preliminary data from
the same group. " The isobar reproduces at least
qualitatively the behavior observed in the data;
our model predicts a cross section which is essen-
tially constant, at 45' scattering angle, for photon
energies 200-400 MeV; at 90', we calculate a
cross section which exhibits a "shoulder" between
125-175 MeV and mhich thereafter falls rather
steeply with increasing photon energy; at 135' our
cross sections change slope at about 100 MeV but
thereafter fall quite rapidly.

These results shorn the importance of isobar ex-
citation over a wide range of photon energies. The
isobar amplitude fits the general features of the
data, for photon energies as low as 100 MeV at
large angles, up to the highest energies presently
studied in these experiments. In the region 200-
400 MeV where we expect isobar production to be
most prominent (since we can think of the isobar
roughly as a resonant excitation of a nucleon with
excitation energy 300 MeV and width about 100
MeV), the isobar amplitude predicts cross sec-
tions which are in reasonable agreement with ex-
periment, and which are certainly of the correct
order of magnitude as the data.
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In the plane-wave calculation shown in this sec-
tion, we have neglected the interaction of the out-
going nucleon; in addition, we have produced a
"zero-parameter. " calculation by fixing the values
of all parameters in our calculation to independent
experimental data. In the following section, we
shall first include the final-state interaction of the
outgoing nucleon; then we mill discuss the sensi-
tivity of our calculation to several of the param-
eters in our calculation. At that point, we will be
able to make a more detailed comparison with the
high-quality data which now' exist for the
"O(y, p, )"N r'eaction.

FIG. 13. Laboratory differential cross section der/dQ,
in nb/sr, vs photon energy E~ in MeV for the reaction

O(&,po) N. The results are shown for laboratory
proton scattering angles of 30' and 45 relative to the
photon direction. In all curves shown here the final-
state proton-nucleus interaction has been neglected.
Solid curve: theoretical calculation including direct
PODIA amplitude plus isobar amplitude using SHO single-
particle wave functions; dashed curve: P%IA plus isobar
amplitudes using oscillator expansion of Negele wave
functions; dot-dashed curve: PWIA amplitude only with
Negele single-particle wave functions. Data (at 45 ):
results of Matthews et al.
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FIG. 14. Lab differential cross sections for O(p, pp)-
N vs photon energy for scattering angle of 90 . Nota-

tion is that of Fig. 13. Data: open circles: results of
Findlay and Owens (Ref. 38); closed circles: results
of Matthews et al.
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FIG. 16. Lab differential cross sections for '60&&,pp)-
~5N vs photon energy for scattering angle of 135 . Nota-
tion is that of Fig. 13.

V. FURTHER INVESTIGATION OF THE ISOBAR AMPLITUDE

A. Inclusion of distorted waves for the outgoing nucleon

In Sec. IV we presented, for the sake of sim-
plicity, a derivation of the isobar contribution to
photonuclear reactions which neglected the final-
state interaction of the outgoing proton (or neu-
tron). As we are interested in photon energies
such that the outgoing nucl. eon has a relatively
large energy (100 MeV or higher), then, as was
discussed in detail in Sec. III, a "modified plane-
wave" treatment of the nucleon wave function
should give good agreement with nucleon wave
functions obtained from optical potentials at cor-
responding energies. The effect of the optical po-
tential is- to reduce the flux of the nucleon wave
function due to absorptive processes and to shift
the effective momentum of the nucleon inside the
nucleus due to the real part of the optical potential.
It is a straightforward matter to use the approxi-
mate wave functions of Sec. ID in our isobar photo-
production amplitude; for a given asymptotic nu-
cleon c.m. momentum p, we use the parameters

fitted in that section to calculate the effective
(complex) momentum p' and overall normalization
factor Wf The ap. proximate distorted nucleon
wave function is then obtained by transforming
this wave function to the laboratory reference
frame.

In Figs. 16 and 17, we plot the distorted-wave
results including the direct and isobar amplitudes
versus photon energy for laboratory scattering an-
gles 45' and 90'. In these cases (and in all suc-
ceeding figures) we have used the oscillator ex-
pansion of Negele's density-dependent Hartree-
Fock wave functions for "0 bound states. The sol-
id curves are the plane-wave results and the
dashed curves are the results of distorted-wave
calculations. The deep minima predicted in the
plane-wave calculations still survive the distorted-
wave calculations but they are shifted to slightly
lower photon energies; these minima are not seen
in the experimental. data and might well be "filled
in" in a theoretical calculation if charge-exchange
or electric exchange-current effects were included
in these calculations. For photon energies great-
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FIG. 16. Laboratory differential cross sections der/

dQ, in nb/sr vs photon energy E„(MeV) for O(p, pp)-
N, at proton scattering angle of 45 . Solid curve:

direct reaction plus isobar amplitude using plane waves
for proton scattering wave function; dashed curve: direct
knock-out plus isobar amplitude, with distorted waves
represented by modified plane-wave approximation. In
this and in all subsequent figures we used the oscillator
expansion of Negele's density-dependent Hartree-Fock
wave functions. Open circles: results of Findlay et aE;
closed circles: results of Matthews et al.

er than about 125 MeV the net result of the dis-
torted-wave calculation is to decrease the plane-
wave (y, p) cross sections by roughly a factor of 2.
This brings our calculated cross section at 45' in-
to better agreement with the Bates data, but it
makes the 90' cross section smaller than the data
by a factor of 4 in the energy region from 125-175
MeV.

A more dramatic difference between the plane-
wave and distorted-wave results occurs at lower
photon energies where the direct reaction domi-
nates in our calculation and where the difference
between the "asymptotic" and "effective" nucleon
momenta is greater than at higher energies. At
photon energy 80 MeV and scattering angle 90',
the distorted-wave amplitude is a factor of 8
smaller than the plane-wave result. For photon

FIG. 17. Lab differential cross sections dfT/dQ vs
photon energy E„ for the reaction O(&,po) N, at proton
lab scattering angle of 90 . Notation is that of Fig. 16.

energies below 100 MeV, the D%IA amplitudes,
using this modified, plane-wave approximation to
the distorted waves, are in rather good agreement
with experimental data, except for the deep min-
ima predicted by the theory but not present in the
data. This point has been emphasized by Findlay
et g$. ,

" "and our calculations obtain similar re-
sults. However, we should mention that for pho-
ton energies below 100 MeV the modified plane-
wave approximation may no longer give an ade-
quate representation of the nucleon distorted-wave
function so that our distorted-wave results for low
photon energy might not be equivalent to the re-
sults from a DULIA calculation using actual wave
functions obtained from optical potentials.

The formalism we have outlined can be used to
calculate transitions to any nuclei which are one-
hole states relative to the target nucleus. At pre-
sent, experimental studies at medium energies
have been limited to the ground state of the re-
sidual nucleus (or in a few cases, to a group of
low-lying excited states). because of the difficulty
of separating transitions to specific excited nuclear
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states. However, if such data were available it
might provide very useful additional information
about the reaction mechanism for the nuclear pho-
toeffect at medium energies. In the plane-wave
impulse approximation, the ratio of cross sections
leading to two different one-hole states is just
equal to the ratio of the single-particle wave func-
tions for the two transitions (to within an overall
constant). If the excitation energy for the two

states is similar, then the two single-particle
wave functions will be evaluated at very nearly
the same momentum. Consequently, if PWIA were
valid then the measurement of photonuclear cross
sections to the ground and certain excited states
of the residual nucleus would give a direct com-
parison of the single-particle momentum compo-
nents for the states involved.

For example, we consider the reaction
"O(y, p)"N* leading to the 6.32 MeV ( —,', -) state of
"N. This state is well approximated as a 1P3/
hole relative to the "0ground state, and we may
compare this reaction with the photonuclear re-
action to the "N ground state (presumed to be a
1P,&, hole relative to "O). If we neglect the spin-
orbit splitting of the 1P-shell wave functions, then
PWIA would predict that the cross section for
"O(y, p)"N* would be just twice the cross section
to the ground state of "N (since there are twice as
many p, &, protons as p, &, protons in "'0). When
spin-orbit forces are included, the difference in
cross section would just reflect the relative mo-
mentum components of the two wave functions. In
Fig. 18, we show the momentum distributions A(q)
[see Eq. (2.15)] for the p», and p, &, proton wave
functions in "0using the potential of Elton and
Swift." Here, for purposes of comparison, the

p3 / 2 momentum distr ibution has been multip 1ied
by & so that in the absence of spin-orbit forces
the two distributions would be identical. With this
parametrization, the momentum distributions each
have zeros which are out of phase with one anoth-
er; the p, &, wave function has zeroes at about 400
and 600 MeV/c while the first two zeroes of the

p, &, wave function occur at 460 and 660 MeV/c,
respectively. The PWIA cross sections would then
reflect these out of phase oscillations.

On the other hand, the isobar amplitude (which
involves summation and integration over the nu-
clear one-hole states) would not be expected. to
yield the same behavior at all. We have calculated
the differential cross section leading to the 6.32
MeV state of "N and compared it with the cross
section to the "N ground state. In Fig. 19, we plot
the ratio of the (—,

' -) cross section to the (—,
' -) cross

section as a function of incident photon laboratory
energy. The solid c'urve is calculated for proton
lab scattering angle of 45 and the dashed curve

for 90'. We used distorted waves approximated
as described in Sec. III, and we used Negele's
wave functions for the proton bound state. Since
the bound-state wave functions which we used had
no spin-orbit splitting, we would predict a ratio
of 2 for the direct term, and at low energies this
is what we obtain. At higher energies, where the
isobar current begins to dominate, the cross sec-
tion again becomes close to 2; consequently in this
case the isobar current which we have calculated
does not change the predictions markedly from
that given by the impulse approximation.

Since we are using bound-state wave functions
which do not differentiate between the p, &, and

p, &, protons, our calculation here can just give a
qualitative estimate for the relative cross sec-
tions, particularly since Fig. 18 shows large dif-
ferences between p», and p, &, wave functions at
large momentum. However, with our choice of
wave function and including the isobar amplitude,
the rgtz0 of the cross sections to the two states of
"N turns out to be close to the PWIA prediction.

2
IO

I

lO
I

CP

1

"2
(n

Lda
"3
lO

w -4
lO

O

5
IO

"6
IO

IO
200 400 600

q (Me V/c)

800
l

IOOO

FIG. 18. Single-particle momentum density for 1p~~2
and 1p3~2 proton wave functions in 0 using the potential
of Elton and Swift. Momentum density in (GeV/c) vs
momentum in MeV/c. For comparison, the 1p3&2 density
has been multiplied by ~; with this normalization, in the
absence of spin orbit splitting the 1p3~2 and 1p&~2 ino-
mentum densities would be identical. For q& 660 MeV/c
both momentum densities 'have been multiplied by 1000.
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B. Center-of-mass corrections for the shell-model wave

functions

(5 1)

In the case of the "0photonuclear reaction, this
would result in a 2% increase in the momentum
component of the single-particle wave function and
would correspond to a slight shift of our DWIA
curve to the left in Figs. 16 and 17.

In our calculation of the isobar amplitude, we
have attempted to account for the c.m. correction
arising from the absorption of a pion by the resid-
ual nucleus. This is similar to the inclusion of
c.m. effects in electromagnetic interactions for
inelastic or elastic form factors. " For processes
in which the c.m. remains in a 1S-state the over-

45'
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I
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I
I
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I

400

FIG. 19. Ratio (do*/dQ)/(dao/dQ) for (&,p) reactions to
different states of '~N, vs photon laboratory incident en-
ergy in MeV. do.*/dQ is the O(&,p) N cross section
leading to the (z, .—) N state at 6.32 MeV and d00/dQ is
the cross section leading to the 5N ground state. Solid
curve: proton scattering angle of 45' relative to the
photon direction; dashed curve: proton scatter'ing angle
of 90'.

For our calculations in Sec. IV, we have used
expansions of harmonic oscillator w'ave functions
which have not been corrected for center-of-mass
effects. The resulting c.m. corrections will apply
somewhat differently to the direct and isobar am-
plitudes. For harmonic oscillator wave functions,
the c.m. corrections which occur in direct knock-
out reactions have been derived by Dieperink and
de Forest. " For ejection of a nucleon in the out-
ermost occupied shell state, the c.m. correction
involves replacing the momentum at which the sin-
gle-particle wave function is evaluated by

all c.m. factors out and the relation between the
c.m. -corrected form factor and the uncorrected
result is simply an overall multiplicative constant.

2 2

p(q)=exp ~ p, (q). (5 2)

In Eq. (5.2), q is the momentum transfer to the
A-particle nucleus, b is the oscillator size pa-
rameter for the Single-particle wave function,
p~M(q) is the uncorrected shell model form factor,
and p(q) is the c.m. -corrected form factor. The
correction term increases exponentially with the
momentum transfer, while the argument of the ex-
ponential is inversely proportional to the atomic
number of the nucleus.

In order to estimate the importance of c.m. cor-
rections to our single-particle wave functions, we
have altered the single-particle transition density
p(q), defined from Eq. (4.9)', to include the c.m.
correction factor of Eq. (5.2). This correction
will increase the calculated amplitudes for the iso-
bar term, the increase being the greatest where
the momentum transferred by the pion is largest
(this will be most apparent where the momentum
transferred from photon to nucleon is largest, at
the largest laboratory scattering angles for a given
photon energy). For these excited nuclear states
where the c.m. is not in a 1S state (for example,
those states which have holes in deeply bound
shells), our correction factor will give an overes-
timate of the c.m. correction; however, for "Q
these states contribute a reasonably small frac-
tion of the isobar photoexcitation amplitude.

In Figs. 20-22 we show the results of including
these c.m. corrections for the "0(y,p,)"N reac-
tions at scattering angles of 45, 90', and 135'.
We have included the c.m. correction of Dieperink
and de Forest for the direct knock-out amplitude,
and the form factor correction of Eq. (5.2) has been
included in our isobar calculation. At lower pho-
ton energies where the direct term dominates, the
effect of the c.m. correction essentially amounts
to a slight shift of the theoretical calculation,
since it corresponds to evaluating the single-par-
ticle momentum at a slightly higher value. The
c.m. correction factor increases the theoretical
results, although the net increase observed in the
cross sections is never greater than a factor of 3
for the energies we have calculated. For photon
energies greater than 200 MeV, the cross sections
at 90' and 135' are in rather good agreement with
experimental data, whereas the 45 cross section
is higher than the data by a factor of about 4. As
could be expected, the c.m. correction for the iso-
bar term has the greatest effect at the highest pho-
ton energies.



ISOBARS AND THE MEDIUM-ENERGY (y, p) REACTION 101 (

IO

IOO — ~

Qg

dlab
(nb/sr)

IO

Ioo—
CI

dQ
Iob

(nb/sr)

IO—
90

I I I I l

l50 200 250 300 350

Ey (Mev)

PIG. 20. Lab differential cross sections do/dO in nb/sr
vs photon energy E„ in Mev for the reaction ' 0('Y,p p) N,
at proton lab scattering angle of 45'. Solid curve: dis-
torted-wave results for direct plus isobar amplitudes
without including c.m. corrections for single-particle
functions. Dashed curve: distorted-wave results in-
cluding c.m. corrections. The direct term is modified
by the prescription of Dieperink and de Forest, Ref. 72,
and the single-particle transition density in the isobar
amplitude has been multiplied by the c.m. correction
factor of Eq. (5.2). The free width (115 MeV) has been
used for the isobar. Dot-dashed curve: distorted-wave
results including both the c.m. correction and a change
in the isobar width to 50 MeV.
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C. Sensitivity to changes in the isobar width

FIG. 21. Lab differential cross sections vs photon en-
ergy for '60(&,po) N at proton scattering angle 90 . Nota-
tion is that of Fig. 20.

In our calculation we have neglected the isobar-
nucleus interaction, in that we have used the free
position and width for the 4 in our propagator.
A correct many-body treatment of the isobar-nu-
clear dynamics would result in the addition of the
isobar self energy into the 4 propagator of Eq.
(4.1) and subsequent equations. Such a dynamical
calculation would result in the replacement of the
isobar position and width by an effective position
and width for the 6 pole with an explicit depen-
dence on the parametric energy. This point has
been emphasized by Brown and Weise' in their
review of the isobar contribution to pion scatter-
ing, and it has been studied in detail by Moniz" .

and Hirata et g/. " in analyses of isobar-hole nu-
clear dynamics. Moniz has recently suggested
that "inclusive" y-knock-out experiments summing
over nuclear final states might provide detailed
information on the isobar-nuclear interaction. "

Although we have not included isobar self-energy
effects in our calculation, we can demonstrate the
sensitivity of our results to shifts in the isobar
pole position, in particular to shifts in the isobar

width from its free value of 115 MeV. We have re-
calculated the (y, p) cross sections on "0with the
isobar width arbitrarily decreased to 1"=50 MeV.
These results are plotted as the dot-dashed curves
in Figs. 20-22. In calculating these curves we
have used distorted waves for the nucleons and we
have employed the c.m. corrections discussed in
Sec. VB. As a result, the dashed and dot-dashed
curves in these figures differ only in the isobar
width used. As the isobar width is decreased, the
cross sections increase, and the amount of in-
crease in cross sections seems to be a function of
the photon energy and relatively i.ndependent of
scattering angle. For photon energies around 300
MeV, the cross sections calculated with the small-
er isobar width begin to be noticeably larger than
those using the free width.

The width X'= 50 MeV represents a very' large
decrease from the free width; nevertheless, the
resulting cross sections are virtually identical
with the calculations using I'= 115 MeV, for pho-
ton energies below 300 MeV. Although we have
not calculated the isobar propagator in the nuclear
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FIG. 22. Lab differential cross section vs photon en-
ergy for O(p, po) N at proton scattering angle 135'.
Notation is that of Fig. 20.
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medium, and we have not added an energy depen-
dence to the isobar width in the medium, we have
shown that (at least for the specific reaction we
have examined in detail) the (y, p, ) cross sections
do not seem to be strongly dependent upon the iso-
bar width. "

We have also plotted the angular distributions
at fixed photon energy for three energies, E„=120,
210, and 300 MeV. These are shown in Fig. 23.
The dips in the angular distributions at 70' for E„
= 120 MeV and at forward angles for E„=210 MeV
are due to the minimum in the direct amplitude
[such a minimum is not seen in lower energy (y, p)
measurements]. The isobar contribution predicts
a cross section which falls smoothly but rather
steeply with increasing angle. In our calculation,
all large-angle scattering is dominated by the iso-
bar term. The dashed line in Fig. 23 shows the
result of decreasing the isobar width in our cal-
culation to 50 MeV;- this has very little effect for
photon energies beiow 300 MeV. The (y, p) cross
sections which we calculate are rather forward
peaked; they become progressively more forward
peaked as the photon energy increases.

FIG. 23. Laboratory differential cross sections d(T/dQ

in nb/sr vs proton scattering angle 8 (degrees) for pho-
ton energies 120, 210, and 300 MeV. Distorted waves for
the proton have been used, and c.m. corrections have
been applied to the direct and isobar amplitudes. Solid
curve: free width of 115 MeV used for the isobar.
Dashed curve: width of 50 MeV used for the isobar.
Data points are the Bates results at the nearest available
photon energies: 126.4, 204.5, and 301.4 MeV, respec-
tively.

D. Contribution of p exchange

In addition to the diagram we have considered,
there is an additional diagram in which the g me-
son from the isobar decay is replaced by a p me-
son. Such a diagram is shown in Fig. 24; consid-
eration of this term in our calculation is analogous
to including p exchange in addition to g exchange
in the d N- NN amplitude. Brown and collabora-
tors" "have emphasized repeatedly that the p
meson can (and probably should) be included in
intermediate states whenever the pion can, and
there are situations where inclusion of p exchange
in nucleon and pion scattering problems causes
dramatic changes in theoretical amplitudes. " In
order to show the qualitative influence of p ex-
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In Eq. (5.4), f is thehe pNN coupling const;ant, and

f,* is the pNb, coupling constant. " Can . omparing Eqs.
an ', . ~, we see that the term in the p-ex-

change potential proportional tiona o 8 'q a''q will tend
to cancel the OPE contribution. In then e static ap-
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lation of "0photodisintegration, the isobar am-
plitude becomes appreciable for large angle pro-
tons (angles greater than or equal to 135') at pho-
ton energies of about 100 MeV, whereas for small-
er angles the isobar amplitude does not dominate
until photon energies of approximately 250 MeV.

First, we have reviewed the DWIA treatment of
medium-energy photonucl. ear reactions and hence
the "direct" photonuclear amplitude. We have in-
cluded both the convective and magnetic electro-
magnetic operators, and we have used an optical
potential to take into account the distortion. of the
outgoing proton. We have attempted to include
the effects of proton distortion by parametrizing
proton scattering wave functions obtained from
optical potentials. We find that

(a) the proton wave functions can be rather ac
curately parametrized by a "modified plane wave"
where the real part of the wave number is shifted
slightly by the real part of the potential inside the
nucleus. Absorption is accounted for in two ways:
First, the magnitude of the wave function is de-
creased due to the loss of flux into inelastic chan-
nels. Second, we give the wave functions a (small)
imaginary part to the effective momentum, to rep-
resent the gradient in the magnitude of the wave
function across the nucleus. Of course, the ade-
quacy of such approximations depends upon how

accurately they reproduce the same transition
amplitude, for (y, p) reactions, as the distorted-
wave functions from optical potentials. We are
presently investigating this question both for the
direct and isobar amplitudes.

(b) For photon energies above 100 MeV, the ef-
fects of distortion are gnimari$y accounted for by
decreasing the magnitude of the proton wave func-
tion. Changes in the effective proton wave num-
ber become relatively less important at higher
energies, because the optical potential strength
decreases as the energy increases.

In our calculations, the "direct" term gives the
largest contribution to the photonuclear cross sec-
tion below 100 MeV. We find that the magnetic
moment term contributes fairly substantially to
the cross sections; since we use an optical poten-
tial to account for the proton distortion, we do not
find the large suppression of the magnetic term
which (as shown by Noble" ) occurs when the same
real potential is used for the binding and scatter-
ing potentials. As we have mentioned, it is not
clear how much suppression will occur in the mag-
netic term if one preserves orthogonality while at
the same time providing a realistic description of
the nucleon-nucleus interaction at medium ener-
gies. As we have mentioned, our direct term does
not include charge exchange of the outgoing proton
or electr ic exchange-current amplitudes and hence

cannot properly reproduce the (experimentally
large) (y, n) cross sections.

In calculating the isobar amplitude, we take all
coupling constants and widths from independent
experiments and we produce a "zero free param-
eter" calculation of the isobar amplitude which
gives a reasonable fit to the existing experimental
data. The isobar amplitude has the following fea-
tures:

(i) It gives a cross section which, for fixed pho-
ton energy, is peaked at small angles and which
falls rapidly and smoothly with increasing angle.

(ii) The isobar contribution is determined by two
terms: the nuclear wave functions, which deter-
mine how rapidly this amplitude falls off with in-
creasing scattering angle (for a fixed photon ener-
gy); and the isobar propagator which would pro-
duce a broad peak in the photonuclear amplitude
at a photon energy of about 300 MeV. For
"O(y, p,)"N, we can see the relation between these
two terms in the calculated cross sections of Figs.
13-15. For small proton scattering angles like
30, the nuclear form factors are large and rela-
tively constant, so that the theoretical cross sec-
tion shows a broad peak which is due to the mini-
mum in the isobar propagator. However, for large
scattering angles like 135, the form factors dom-
inate the isobar amplitude; there is no peak in the
isobar amplitude, and the theoretical cross sec-
tion falls smoothly with increasing photon energy.
A "break" appears in the cross section at 135'
where the isobar contribution becomes large rela-
tive to the direct term.

In calculating the isobar contribution to the nu-
clear photoeffect in other nuclei, the qualitative
behavior can be predicted by examining the nuclear
form factors relative to the single-particle wave
functions for "O. If the single-particle wave func-
tions have high-momentum components which are
greater than these in ' 0, then the isobar amplitude
may produce apeak in the differential cross section
around 300 MeV photon energy; however, if the nucle-
ar form factors have much smaller momentum com-
ponents, then the photodisintegration cross sections
may fall r ather smoothly with photon energy and show
no "obvious" signs of the isobar contribution i.e. ,
no peak in the cross section.

(iii) For the nuclear'photoeffect in "0, our cal-
culation predicts essentially eciual (y, p) and (y, n)
cross sections in the region where isobar produc-
tion is the dominant amplitude. One can excite
either a b, or a b, ~, and each of these can decay
to either neutron or proton depending on the charge
of the virtual pion. Consequently this would pre-
dict roughly equal proton and neutron cross sec-
tions at these energies.

(iv) We have estimated the effects of several of
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the parameters in our calculation (width of isobar
in the nuclear medium, effects of virtual p as well
as virtual v states, and c.m. effects) and found
that none of these effects change the qualitative fea-
tures of our calculation (although the detailed re-
sults are sensitive in some degree to all of these).

In conclusion, we believe that isobar photopro-
duction plays an important role in the nuclear
photoeffect at medium energies. The high-quality
data from Bates on "Q suggests that this effect is
increasingly important at larger photon energies,
and that a model which accurately calculates the
isobar production and decay (while neglecting the
isobar-nucleus dynamics) reproduces the observed
features of the experimental data. Further ex-
perimental data on other nuclear targets, or per-
haps a measurement of certain excited states of .

the residual nuclei, can help greatly in a quantita-
tive determination of this process.

Note added in Proof. The (y, P) cross sections on' O leading to the (& ) excited state in "N have been
reported to be about six times greater than the
cross section to the (~ ) ground state of "N
[W. Bertozzi, in Proceedings of the International
School on Electro agd Photonucleax Reactions,
edited by S. Costa and C. Schaerf (Springer, Ber-
lin, 1977)]. It has been argued by B. Schoch
[Phys. Rev. Lett. 41, 80 (1978)] that this value
supports a.quasideuteron picture of the (y, P) reac-
tion at medium energies.
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APPENDIX: yah MATRIX ELEMENT

In this section we review our calculation of the
amplitude for photoproduction of the ~(1232) iso-
bar from a nucleon. %e have taken this amplitude
from the work of Thornber, ' who used a symmet-
ric quark model for the nucleon and isobar to cal-
culate the cross sections for electroproduction of
isobars. In this model, the nucleon and isobar are
both considered to be combinations of quarks
which are completely symmetric under the ex-
change of any pair. In both the nucleon and isobar,
the spatial wave functions are given as a product
of s-wave Gaussian wave functions for the three
quarks; the size parameter bz for the wave func-
tion is varied to fit the electroproduction data [and
was found by Thornber to be equal to b=4. 0 (GeV/
c) ']. The spin-isospin states were then required
to be symmetric under exchange.

For a photon of momentum k, = kp with polariza-
tion X along the incident axis, the isobar photo-
production amplitude has the form

(A1)

where 7.""and 7 "are electric and magnetic
multipole single-particle operators, respective-
ly." Equation (Al) is the product of two terms:
The first term is the yNb amplitude representing
isobar production from a nucieon (i.e. , a collec-
tion of three quarks), and the second term is the
wave function for a single nucleon with quantum
numbers {o.}evaluated at momentum p~ —k „, p~
being the isobar momentum. %e have assumed
that tQe residual nucleus with superscript 0. is ob-
tained by removing a nucleon with quantum num-
bers {o.}from the initial state

a(p)
~
4g&-

a being the destruction operator for a nucleon
with quantum number {u},and the single-particle
momentum wave function appearing in Eq. (Al) is
just the Fourier transform of the bound single-
partiele wave function

e,(q) = fd're" 'd, ( r) . (A2)

where

T e(e)-=Jd eM (e)'d(x). "
(A4)

In Eq. (3),

M"...(e) -=je(ee) P ( , ) l, (ee,)e"', (e)e)
ms tn~

For the case of the L(1232), only the J=1 mag-
netic term survives (owing to parity), so that our
amplitude becomes

l. /2

x l). (b
~
T,„(k„)

~ &p (p -k„),
(As)
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and J'(x) is the electromagnetic current for the
hadrons, expressed as a sum of one-body inter-
actions with the three constituents of the nucleon
or isobar,

matrix elements are defined i.n such a way as to
reproduce the matrix elements between isobar and
nucleon wave functions; the matrix elements of S
are defined as

g(x) = Q . ' [6(x —r~) V„]~„„ (A8)

+ Vx Q Q(j) p ~6(x —r,.)r(j ) . (A6)

TP~~(k„) = — ik„p~ dx g &(x —r&)

xQ(j)M, ,(x)' o(j) .

In Eq. (A7) we have used the fact that all three
quarks are in S-wave orbits.

It is a straightforward procedure to evaluate
the matrix elements of T ~ betw'een nucleon and
isobar states; however, we can dramatically. sim-
plify our algebra by writing the matrix elements
of T "in terms of the operators 8 and T. The
operator 5 can be written as a matrix which op-
erates between nucleon and isobar spinors; its

In Eq. (A6), M, is the mass of the quark, lL~ the
proton magnetic moment in nuclear magnetons,
and Q(j) [o(j)] is the charge (spin) operator for the
jth quark. The convective term [the first term in

Eq. (A6)] has zero matrix element between nucleon
and isobar since it does not change the particle
spin. Substituting Eqs. (A5) and (A6) into (A4) and
integrating by parts, we obtain

an analogous equation exists for T." It can be
shown that an equivalent expression to Eq. (A7) is

y 2b

3r
(A9)

In Eq. (A9), e~ is the photon polarization vector,
and a c.m. correction factor has been removed
from the Gaussian form factor for the single-par-
ticle wave function. The isobar photoproduction
amplitude can then be written

Q 2b
(a, („,~M„" ~p„)=eg~Hk„e p( —x

x &x, I
r.s'"

I x.)q.(p, —k „) .

(A10)

In Eq. (A10), y and X are the spin-isospin in-
dices for the 6 and nucleon, respectively. If we

apply Eq. (A10) to calculate n. -N+y, we can
easily calculate the isobar radiative decay width;
we find that the width calculated from this formula
is somewhat smaller than the experimentally de-
termined value. '4 Consequently, we have multi-
plied the amplitude of (A9) by 1.33 to correctly
reproduce the observed width, and it is this mod-
ified amplitude which we have used in our (y, p)
calculations.
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