
PHYSICAL REVIEW C VOLUME 19, NUMBER 8 MARCH 1979

Soft-photon theorem for the electromagnetic interaction of the relativistic two-nucleon system
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The low-energy theorem for emission of soft photons from two nucleons is derived in a-three-dimensional
relativistic theory. It is shown that if the free nucleon currents are defined in terms of the Foldy-
Wouthuysen transformation, the exchange current in the soft-photon limit is exactly determined by the
commutator of the nucleon-nucleon interaction wreath the electric dipole operator. The constraints imposed by
this theorem are used to examine the conventional method. of calculating the pair-excitation currents.
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I. INTRODUCTION

The problem of the electromagnetic (em) inter-
action of nuclei is an old and yet a difficult one
because we are concerned with the effect of the
strong interaction, namely, the exchange cur-
rent. Therefore Siegert's theorem, ' which states
that the electric multipole operators do not de-
pend on the interaction between nucleons, is of
special importance to phenomenology. Siegert's
assumption is that the charge density is left un-
modified by meson exchange between nucleons.
It is well known that if this statement is valid, the
exchange current in the soft-photon limit can be
expressed in terms of the commutator of the nu-
cleon-nucleon interaction with the electric dipole
operator. In field theory, however, there exists
the exchange charge density. Recently Hyuga and
Ohtsubo' have found a nonvanishing two-body den-
sity even for static nucleons, which, as they ar-
gue, leads to the breakdown of Siegert's theorem.
'

On the other hand, in a more general context,
Low' has shown that when the radiative amplitude
is expanded in powers of k (energy of the radiated
photon),

e*„M„(k)=a/ +kb+ ck+0(k'),

where q*„ is the polarization of the photon, the
first two terms are calculated exactly in terms of
the corresponding elastic amplitude and the em
constants of the constituent particles. This re-
sult, known as I ow's low-energy theorem, tells
us that the exchange current contribution at k =0
is unambiguously defined whatever the exchange
charge density.

The proof of the low-energy theorem (LET) for
NN bremsstrahlung in a potential model was
given, first by Feshbach and Yennie' and later

by Belier, ' and Liou and Sobel. ' ' It is to be de-
sired that LET is derived from the viewpoint of
relativistic field theory. Ohtsubo, Fujita, and
Takeda' obtain the exchange current from LET
derived from field theory, but approximately for
static nucleons. The purpose of this article is to
show that the exchange current at k = 0 is exactly
determined by the NN interaction constructed from
underlying fi,eld theory.

II. CURRENT CONSERVATION

AND I.OVf-ENERGY THEOREM

A. Preliminaries

The Bethe-Salpeter equation for two nucleons
mediated by quantum fields can be reduced to the
relativistic three-dimensional equation xo, xi Th
single-time bound state wave function projected
onto the positive-energy states satisfies a Schro-
dinger-type equation with the Hamiltonian '

H=HO+ V,

II =(p '+I')' '+(ps'+rrt')' ',
where p, is the momentum of the ith nucleon and
m is the nucleon mass. The AN interaction V
must of necessity be nonlocal and dependent on
the energy of the NN bound state.

When an external em field is acting, the matrix
elements of the em current between the bound
states can be expressed in terms of one-body and
two-body vertex functions. "'" Translating these
vertex functions into equivalent current operators
in configuration space, we obtain the total current
density

J(x) = Jn'(x)+T' '(x)
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and the total charge density

(o(x) = p '"(x )+ p '"(x ) .
From the equation of charge conservation'

~ J(x)=up(x) = i[a, p(x)],
it follows that

(2.4)

(2 5)
(2.13)

i.e., J;.'"'(x) is brought about by the conduction
of the pointlike nucleon charge. Actually, in ad-
dition to the point charge and the convection cur-
rent, a charge density p","(x) and a current flow
J",."(x) appear under the constraint

lj7 J,II[( X ) = glpxp[( X )

and

V J'"(x)= i[H-„p'"(x)]

V ~ J'"(x)= i[V-, p'"(x)]+imp'"(x).

(2.6)

(2.7)

After the argument of Dalitz, "we can easily de-
rive from (2.7) the expression for J '"(0)
=—J'"(k)i„,as follows": Using Green's theorem,
it is seen that

J'"(D)= fd'xT"'( )= —f d'xxx J'"(x).

whether the interaction between nucleons is pres-
ent or not. The possible form of the four-cur-
rent Z;;.'(x) =( J;."(x), ip',."(x)), restricted by Eq.
(2.13), is

p',."(x)= -V s,"'(x), (2.14)

J;."(x)=-its!"(x)+V && p!"(x) (2.i5)

where s,'"(x) is any one-body operator and ]u,.("(x)
is a one-body magnetization density. It should be
noted that from (2.14)

(2 8)
3& pre[( x ) (2.16)

Insertion of (2.7) into (2.8) yields

J'P(0)=1 'V, fd'xxp" (x)
)x IPII

(2.9)

2

p (2)(x) —Q e,.6(x - r,), (2.iO)

where e,. and r,. are the charge and position opera-
tors, we get

2
J( )(0)2-i V, e, r,.

I

which has been derived by Dalitz" in a nonrela-
tivistic potential theory. Going to relativistic
theory, we cannot make the replacement (2.10).

According to Liou and Sobel,"however, Eq.
(2.11) is valid even when relativistic corrections
of 0(m ') are included. Superficially there seems
to be a contradiction between the formalism de-
veloped in this subsection and that of Liou and So-
bel. '

(2.11)

B. Definition of the exchange current

In order to solve the problem presented above,
we examine the content of the one-body current
density J"'(x). This contains the convection cur-
rent J',.'""(x} which is obtained from the kinetic
operator (p, '+m')'~' by the standard minimal
substitution and obeys the equation

Note that the two-body charge density term in (2.7}
does not contribute to J "'(0) because we have put
&=0.

If we assume pointlike nucleons and make a re-
placement

as is required. The explicit form of s,."'(x) and

p. ,'"(x) is found from the Dirac equation for a
nucleon in an external em field and to order m '
it is given by Foldy and Wouthuysen (FW)." Com-
plications due to the Wigner spin rotation" are
simply taken into account by a modification of
s,.'"(x) and do not alter our argument that fol-
lows.

Thus p(2)(x) and J(2)(x) defined in the preceding
subsection are explicitly written as

p"'(x) = [e,.6(x —r,.)+ p",."(x)],
-1

(2.17)

JI"(x)= Q[J;."'(II)I.J;."(x)]—JJ(II). (2.18)

The reason for subtracting 6 J (x) from the one-
body current is that, as was pointed out by Stichel
and Werner, '0 J;."(x) includes the two-body cur-
rent

P

6J(x)=f V, s&')(x),
=1

because in Eq. (2.15),

-es,."'(x)=f[a,+ V, s,."'(x)].

(2.19)

(2.20)

J ( x ) = g [2-"'( x 1 I.J'"( x ) ] (2.2i)

One can explicitly check that (2.17) and (2.18) sat-
isfy Eq. (2.6).

However, the definition (2.18) of the one-body
current is undesirable because it is different from
the usual one in terms of the sum of the FW inter-
actions' of the constituents,

J ""(x)= i[(p +m')-'i', e,6(x r,)], . -(2.12)
This form effectively contains a two-body part
through (2.20), but we usually identify this with
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a one-body current. We accordingly define the
two-body current J"( x ) as

J(x) = J'(x)+ J"(x),
instead of J'"(x) in Eq. (2.3).

With Eqs. (2.12), (2.13), and (2.17) in mind, we
have

(2.22)

C. Low-energy theorem

Equation (2.24) indicates that the exchange cur-
rent J "(x) consists of two pa.rts, the interaction
current J'"(x), where its divergence is given by

V ~ J'"'=-j V, e,.5 x- r,.
I- (=1

(2.25)
I

and the genuine exchange current J'*(x) which
with p("(x) forms a conserved four-current
J'„*(x)=( J'"(x.), ip'"(x)) and satisfies

V J'"(x)=imp"'(x). (2.26)

The proof of Siegert's theorem in potential
theory" was essentially ba, sed on (2.25) as clearly
explained by Dalitz. " In the same manner as we
derive J '"(0), we obtain

Jint(P) — y (2.27)
t, =l

without any approximations.
As for the divergence-free current J;"(x), we

cannot evaluate it without physical input, but
charge conservation

Sz p
( 2)( x ) p

( 2 )(P) 0 (2.28)

puts a restriction on its form. Equation (2.28) im-
plies that p '"(k } in k expansion starts with the
linear term in k. In other words

p(2)(X«) g ~ «S(2)(X«) (2.29)

with s '"(x) an arbitrary two-body operator The.
continuity equation (2.26) is satisfied only if

V J'(x)=i V, e;6(x- r;) +imp("(x). (2.23)
t=

Therefore the continuity equation for J(x } im-
plies

2

2 ~ J"(x)= -i V, e 6(( x—r,)+ ik.p'"(x) .
~I

(2.24)

Comparing this equation with (2.7), we notice that
p'"(x) in (2.7) changes places with the point charge
density. Thus Dalitz's assumption (2.10} is justi-
fied even in relativistic theory and the proof of
LET by Liou and Sobel' is consistent with current
conservation as they show explicitly.

J'"(x}=-ius'"(x)+V&& p, ("(x),
where p, (2)(x) is the two-body magnetization den-
sity. From Eq. (2.30), we find J'"(k)=O(k) so
that for the total exchange current

J"(x)= J'"'(x) +J'*( x),

(2.30)

(2.31)

we have LET,
J" (k) = J"'(0)+O(k)

while for the charge density,

p(2)(k) = O(u).

(2.32)

(2.33)

Namely, in the soft-photon limit, the exchange
current is exactly deter mined by V and the ex-
change charge density must vanish.

III. LOW ENERGY THEOREM

FOR NN BREMSSTRAHLUNG

M.()'2}=&(t'(E') IJ. lq(E)& (3.1)

where ((E) and t())')Eare the initial and final wave
functions, respectively, with energy E and E'
= 8 —k. Using the .N1V transition operator deter-
mined by the Lippmann-Schwinger equation,

i(E) = I'(E) + I'(E)G.(E)f(E), (3.2)

with G,(E)= (E+ ie —H,} ', ((E) is related to the
free two-nucleon state P,(E) through

q(E) = [I+G (E)t(E)] t( ()).E (3.3)

We decompose J, into one-body and two-body
parts, J'~ = ( J ', ip

' ") and J '„' = ( J", ip '") as we
did in Sec. II, and write (3.1) in the form of the
matrix element between unperturbed states g, ( )E
and )t),'(E'},

M.(n)=&g, lJ'„+T.+ T', ly, ). (3.4)

Hereafter we suppress the energy dependence of
wave functions for brevity. The transition opera-
tor T~ is the contribution from the diagrams in
w'hich the photon is emitted before or after the

Since I ET (2.32) and (2.33) follows from current
conservation alone, it must be valid for scattering
problems as well as bound state ones. Here we

prove LET for NN bremsstrahlung in field theory
along the line of Low's prescription.

Field theory translated into the three-dimen-
sional relativistic equation differs from potential
theory in that the quasipotential V depends on en-
ergy. Therefore the proof of LET proceeds in the
same manner as in potential theory if we pay due
attention to the energy dependence of V. The
method we employ is similar to Ref. 6, but m '
expansion is not used.

The radiative amplitude M~ in Eq. (1.1) is given

by the matrix element of the current operator J»
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interaction,

T:= t(E')G.(E')J'.+J'.G.(E)t(E).

The last term in Eq. (3.4), which comes from
internal photoemission, is

TI TR+ Tc

where

T'„= t(E')G.(E')J'„G.(E)t(E),

(3 ~ 5}

(3.8)

(3 7)

1

Recalling that from (3.8),

we have

k.J'.'(k) = -V(E —l k)QO+ QoV(E+ l k),
where E=(E+E')/2. In the x space,

2

V' J"(x)=-iV(E-—,'k) g e,5(x —r, )
t=l

(s.ls)

(3.20)

To = [1+t(E')Go(E')]4'„'[1+ Go(E) t(E)] ~ (3.8)

From its definition the four-divergence of J„ is

2

+i e,5 x- 2 ri V E+2k

+ikp'"(x). (3.2i)
S„J',(x) = iH-„e5(x- r,}

-jjp e,.5 x- ri
i=I

with 8„=(V, -k). In the I space,

k.J',(k) =-[a„q,]-kQ„

q, =pe,.e-"",
i"-1

andk, =(l, ik). We cast(3. 10) in the form

k„J„(k)=G '(E')Q —Q G '(E),

which will be found useful in the following.
First note that owing to (3 ~ 12),

(3.9)

(s.io)

(s.ii)

(s.i2)

(3.22)

p'"(I ) =--,'{V', e, + e,]+O(k},
with V'= BV(E)/BE. The energy dependence of V
thus produces the charge

(3.23)

It is interesting to compare (3.21) with (2.24) ~

Since we suppressed the energy dependence of
V in Sec. II, the meaning of (2 ~ 24} was ambiguous
whether E or E' enters V. Equation (3 ~ 21) now

puts a correct interpretation on (2.24).
Differentiating both sides of (3.20) with respect

to k„ leads to

J"(k)=i V, ge,.r, +O(k)

k,&glJ', lq, &=o.

We next calculate the divergence of T~ by using
(3.12} and find

k.«' II'I~.&=«' I«E }Q. Q.t(E} I&.&-.

Finally, the divergence of T~~becomes

(s.is)

(3~ 14)

k,&g I
7",

I y& = &y,
' It(E')G, (E')[G,'(E')q, —q,G, '(E)]

xG, (E (3' 15)

Since the total current must be conserved,
k,M, (k) =0 or

k.&C'IT:le.&=-&e'I[v(E')Q. —Q.v(E)]le& (318)

We now apply to Eq. (3.15) the operator identity
derived by Liou, '

t(E')G.(E') [G, '(E')Q. Q.G. '(E)]G.—(E)t(E)

=-t(E')Q. + q.t(E)+ [I+t(E')G.(E')]

~ [V(E')Qo —Qo V(E)][1+Go(E)t(E)], (3 18)

and collect (3 ' 13), (3' 14), and (3 ' 15) to get

k„&q, l(J'„+r„+r„)Iy, &=&y l[v(E)q, q.v(E)]Iq&

(s.l'I)

q"=( +e)Z (3.24)

where Z= —V', and we have used the fact that V or
Z commutes with the total charge e, + e,. Friar"
has calculated the one-pion-exchange contribution
to the nuclear charge and found Eq. (3.24) ~ He has
shown that the undesirable charge Q

'" cancels
from the final result because the energy depen-
dence of V necessitates the wave-function renor-
malization which modifies the total charge

(s.25)

p'"(k) = O(k) (3.26)

in place of (3.23). In this way, LET (2.32) and
(2 ~ 33) is again derived.

IV. ELECTRIC AND MAGNETIC DIPOLE OPERATORS

Now we consider some consequences of I„ET for
radiative transitions. As discussed by Blatt and

e, + e, -'(e, + e,)(l —z) .
The Z term in (3.25) completely eliminates Q'".
Consequently, when we define the exchange charge
density operator as the one inserted between the
renormalized wave functions rather than the solu-
tions of the Lippmann-Schwinger equation (3~ 3),
we obtain
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Weisskopf, "the long wavelength reduction of the
electric dipole operator E,(k) leads to

alone, but LET imposes restrictions on their
forms in a model-independent way.

E,(k) = J(0)+ O(k'),
V'6m

(4.l) V. PAIR EXCITATION CURRENTS

where
I

J(0) f d'xJ(x)=i JJ, d'xxp(x) (4.2)

where

is the total current present in the whole space
and proportional to k. Substituting Eqs. (2.17)
and (2.29) into (4.2) gives

J(0) =g J'-'(0) x J"'(0)+J'
i=1

2„~~= igNy„NQ~, (5.l)
with N as the nucleon field and Q, as the meson
field, the effective Hamiltonian for the ~NB inter-
action is given by the FW transformation to
o(m-'),

As an illustration of the usefulness. of LET for
calculating exchange currents in a field theoretic
way, let us consider the ar-meson exchange.

In the standard treatment of exchange effects, we
calculate the pair excitation diagrams. If we take
the effective Lagrangian for (dNN coupling,

J'= -g s,'" 0 - ius '" 0 (4,4)

represents the deviation from Siegert's prediction.
In Eq. (4.3) the convection and interaction currents
almost cancel each other so that there remains
the quantity of order k which cannot be discrimi-
nated from the model-dependent J'. In this sense
Siegert's theorem is violated. However, we have
seen that J"'(k) itself is finite at k = 0 and quite
distinct from J'. When we evaluate the exchange
current by adopting a strong interaction model,
we can see whether the calculation preserves
gauge invariance or not, by taking the soft-photon
limit.

As another example of the consequences of LET,
consider the magnetic dipole operator defined by

+ 2 V ' ((t)+ V(t)0)+ 0 a ~ ((t)+(7/0)x P,

(5 2)

Symmetrization is necessary when the nucleon
momentum p appears. By Q p, for instance, we
mean ~(Q 'p+p '(1)). The effective Hamiltonian
for the process &N-yN through NN pa.ir excita-
tion has the form

IP„""=—A 'Q+ —,o 'Ax (Q + 2')JQ, )

d gxxJx (4.5)

0

;o (A+ 2VA, ) x P,4m' (5.3)

Bringing together all the formulas for J'(x) and
J"(x) in Sec. II, we can write

2

[k r;x J-'"(o)+ u'"(0)]
-1

where A is the em vector potential.
With these Hamiltonians, we compute the one-

meson exchange contribution to the em intera, c-
tion,

+ ~ R x J'"(0)+ p,
' "(0). (4.6)

O',""= ', A(r, ) p0v(r) —'', A(f', ) f, x V„v(r)
The first term in the square brackets is the orbita. l
magnetic moment, while ~ R x J'"'(0) with
R= —,

' (r, + r, ) is the Sachs exchange magnetic mo-
ment. ' " The Sachs moment is now completely
canceled by a part of the orbital moment, namely,
by

', A(r, ) (T, x V„v(r)+(I—2) . (5.4)

Here A(P, ) is the vector potential at the position

Jconv P
k=1

due to.LET. Eventually the R dependent terms
in p disappear entirely.

It may be summarized that both of the electric
and magnetic dipole operators cannot be uniquely
determined by the requirement of gauge invariance

v(r) =
4 my, (m„—r),
4w (5.5)

Y0(x) = e /x, m„ is the mass of u and r = r, —r, .
We have neglected the effect of retardation of
the & meson. The exchange current at 0= 0 now
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becomes

J'"'(0)= -~~p,v(r)+ ', o, x v„v(r)

+ — ', o, x &„v(r)+ (1 2), (5 5)

pilaf r(0) 0 (5 7)

1 1
+(& —2)+ ()+,V, ' v(r) ——,(), p,e(r)

+,(o, o,&„'—(7, &„a,~ &„)v(r),4~2 1 2 t' 1 t' 2 r (5.8)

and calculate the commutator of V„with the elec-
tric dipole operator to fi.nd

i V„, e, r,. = —,p,v x + ', a, x V'„e r

+ ', o, x v„v(r)+ (1 2),

in disagreement with (5.6). Thus the conventional
'treatment of the pair currents leads to the viola-
tion of gauge invariance.

This fact was expected beforehand since H'„'„"
does not coincide with the minimal interaction ob-
tained from HF„" in Eq. (5.2) through the. gauge

In order to see whether LET is satisfied or not,
we derive the one-meson exchange potential,
ignoring retardation,

1 1
V = 2P, ' V„x p,v(r)+ 2o V„x p,v(r)

invariant substitution p-p —eA. In fact, the in-
teraction

(5.10)

differs from H'„'„" by the amount which is not
gauge invariant separately.

A consistent method of reducing the original
relativistic Hamiltonian in the presence of the
em and meson fields to the nonrelativistic one
is the HV transformation which furnishes us with

w ff~k()jm(L1 p, (A+ p~ ) x y (5 11)

Since the second term in (5.11) is a current-con-
served interaction, gauge invariance of H„+H74g
is obvious. By using H„„" or H„„'" " instead of
H'„'„", we can ascertain that the exchange current
at &= 0 is equal to (5.9) and that LET is recovered.

'The above example clearly shows that if we de-
fine the one -body em interaction in terms of the
FQl transformation, the calculations of the ex-
change currents must also be made based on the
effective Hamiltonians obtained by the FVf trans-
formation. Conversely speaking, any elaborate
estimates of exchange effects cannot be conclus-
ive unless we calculate the one-body term con-
sistently, since they are intimately connected
with each other.
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