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Pion-nucleon vertex function with one nucleon off shell

T. Mizutani and P. Rochus
Institut de Physique, Universite de Liege, Sart Tilman, B-4000 Liege 1, Belgium

(Received 7 June 1978)

The pion-nucleon vertex function with an off-mass-shell nucleon is obtained through sideways dispersion
relations with the P«and S» pion-nucleon phase shifts as only input. Contrary to the recent calculation of
Nutt and Shakin, we find that the proper and improper vertex functions behave quite differently, indicating
the importance of the nucleon propagator dressing. In particular the proper vertex function is found to have
two poles in the unphysical region.

~NUCLEAR REACTIONS pion-nucleon vertex functions, sideways dispersion re-'
lations, nucleon self-energy corrections.

Recently, with applications to pion-nucleus phy-
sics in mind, Nutt and Shakin' (hereafter referred
as NS) performed a model calculation of the AN
vertex function in which one of the nucleon legs is
put off the mass shell. Starting with a nonlinear
integral equation for a completely off-shell vertex
function and after numerous approximations (ne-
glect of negative energy nucleon spinors, use of a
separable form for the input nÃ amplitude, etc.),
their solution was found to be dominated by the
P» Roper (1470 MeV) resonance. Their result
also indicated the relative unimportance of the
correction due to the nucleon self-energy, which
they termed I',.

In view of the nature of the approximations made
in the NS model, we think it worthwhile to reex-
amine the problem from a different methodological
point of view. We make use of sideways disper-
sion relations together with a spectral represen-
tation of the single nucleon propagator, as in the
work of Ida. ' This makes approximations of the
NS type unnecessary.

To start with, we introduce the impxope~ mNN

vertex function of Bincer, ' X(w), by~

s,-'(4)&o~t (o) ~-,
i[&.( )QZ-( W)+& (Q)&(-w)]Gy, T.u(p, o.), (1)

where Q =p+q, Q = Q„y", W= (Q')'~'; g is the
nucleon interpolating field, A, (Q) = (W+ Q)/2 W the
projector for a positive (negative) energy nucleon
state, ' and Sz(g) = I/(g- rn) is the bare (Feynman)
propagator for the nucleon with m the nucleon
mass. K(w) represents the one nucleon off-shell
vertex function normalized as

IC(m) =1,

r(w) =z(w)/z(w)

with

z(w) = s,'(w)/s, (w),

from which it follows that [noting J(m) = I]

(2)

As far as their analytic structure is concerned,
K(w), S~(w), and hence I (W) all have branch cuts
starting at W= + (m+ g) (p is the pion mass). It is
worthwhile to note that the vertex function I' of NS
(I' -=1+ I",+ I', ) can be identified with our I'(W),
while 1+I"„which is their first approximation to
r, corresponds to our K(w) when a correct renor-
malization procedure is carried out in the NS
scheme.

The discontinuity relation for &(W) reads~

1m K(+ W) = f,(w)*K(+ W)+ a,(w)8(w m —2p)

(w&m+i ) (4)

where f,(w) is the vN amplitude for P» (positive
sign) and S» (negative sign) which takes the form

q, (W) exp[2il, (W) j —1
+ 2i 9

so that G is identified as the renormalized nA'N

coupling constant.
In a similar manner the proper vertex function

I'(W) may be introduced with the following re-
placements in Eq. (1):

fc(+ w)-r(+ w}, s,(g)-s,'(q'),

where S~(Q) is the fully dressed nucleon propaga-
tor. Then we may write
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with 5,(w) and q, (w) the phase shift and inelasti-
city (+ for P», —for S»), respectively. In addi-
tion o,(w) in (4) is the contribution from higher
mass (multiparticle) intermediate states

In the absence of inelastic contributions, K(W)
could be written, through sideways dispersion re-
lations, as a solution to the homogeneous Omnes-
Muskhelishvili equation'.

where P(W) is an arbitrary polynomial satisfying
P(rn) = 1. We choose P(W) =- 1 to avoid a possible
danger of having a nondecreasing ~K(w)

~
for

W- ~.
In practice, it is crucially important to take into

accourit inelastic effects as both partial waves
become highly inelastic above, say 1400 MeV. In
our present work we shall neglectImo, (W) in (4),
but satisfy in part the above requirement by the
following replacement in Eq. (5):

5,(w) -5,(w)

1 —q, 8'cos25, W

q, (W) sin[26, (W) ]
(6)

in fact, this is the phase of f,(W).' We note that
-the above procedure is implicit in the NS approach.

The function J'(W} may be given in terms of the
Kamefuchi-Umezawa-Lehmann-KKlldn (KULK}
spectral representation:

J(W) = 1+ (W- m)

p.(M), p (M)
W+ iq -M W+2q+M

In the above expression the spectral functions

p, (M) are non-negative and take the following
form:

2 3

p,(w) =~ g 5'(q P„)
n

x tr4/l, (q) &0
f
t(0) (()~}&~Q (0) J0}]

(8)

Here the summation runs over all the physical
states n with the same quantum numbers as those
of the nucleon. Next we isolate in p, (M) the contri-
bution from n= 7/PJ states p',"(M}. The remaining
contribution 6p, (M) is then neglected in our pres-
ent work. Now we may write

"M)= 3G2 [(M ~ )2 p2]3/2[(M ~ ~)2 p 2]1/2

(M+ ~)'M'

x ~K(~M) ~'.

Ilecause of the effective phase in Eq. (6) men-
tioned earlier some part of the multiparticle (in-
elastic) contribution is effectively included in the
above spectral functions. Thus once we get K(W)
from Eqs. (5) and (6), J(W) and then I'(W) follow
from Eqs. (7) and (2).

phase shifts (and inelasticity parameters) are
taken from (i) an analytic expression' up to
W-1300 MeV, (ii) the most recent amplitude
analysis by Pietarinen' for the intermediate re-
gion (1300 MeV& W& 4000 MeV), and (iii} a Regge
model' for higher energies where no data are
available. Owing to the once-subtracted form of
the integral in Eq. (5), no artificial damping of the
phase shifts to zero is necessary for W-~ [our
5,(W) approaches v/2 in that limit]. Such damped
phases would make K(W) constant (&0) asymp
totically. " The improper vertex function K(W)
thus obtained is shown in Figs. 1 and 2 (in solid
lines), Like the NS model, its structure is gov-
erned by the resonances P» (1470 and 1780}for
W &m+ p, andS» (1520 and 1700}for W & (~+ p}.
It may be worth pointing out that there is a third
bump in ImK(W) above W= 2000 MeV. Its origin
is not known-to us; perhaps it may be associated
with a possible new resonance coming out of the
Pietarinen analysis.

With regard to the value of K(W) below the phy-
sical threshold we find

K(-m) =1.03

consistent with the soft pion result: K(-m) =1/
g„(0),"wbere g„(t}is the nucleon axial-vector
form factor. We note in passing that it is im-
portant to keep 5,(w) in tbe evaluation of K(W&0)
as its omission leads to K(- m) = 2.83. e.g. On the
other hand, a neglect of 6 (W) for K(W& 0) makes
only a small change, of the order of 10%. The
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reason lies in the different denominator factors
(W'+m) assigned to respective phases in Eq. (5).

The integral (7} converged well with p,'"(M) of
Eq. (9) calculated from K(W) above, giving the
following interesting result: J(W) has two zeros
in the unphysical region, one (—= W } at --125 MeV
and the other (-=W,) at -1030 MeV. However, this
is notanincongruity. In fact it can easily be shown
through the spectral representation (7) that S„'(W)
[and hence J(W)] can acquire at most two zeros,
one in (-m —p, , m) and the other in (m, m+ p, ). As
was noticed, "there should be no such zeros if the
mN strong interaction is sufficiently ueak to kee

p, ~ j small enough so that the bare nucleon pro-
pagator is a good approximation to the full one.
A close examination indicates that the occurrence
of zeros in our J(W) is due mainly to the dominant
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FIG. 2. The imaginary part of E(W) and I (W): E(W)
in solid and I'(W) in dashed lines. Im 1 (W) is plotted
as ten times its actual value.

FIG. 1. The real part of E(W) and I'(W) E(W) l'd
and I'(W) in dashed lines, respectively. Two vertical dot-
dashed lines denote the pole positions of F(S). Note that
the actual value of Re I'(S') is five times smaller than
that read off from the figure.

contribution from the resonances P» (1470) and

S» (1520 and 1700) to the spectral functions at not
too high energies. A correct inclusion of the mul-
tiparticle contributions 5p, (M) would only increase
the magnitude of p, (M} at higher energies; hence
the possible existence of zeros in J(W) would be
further strengthened. "

However, one might ask how reliable the effec-
tive phase in (6) is for the accurate evaluation of
K(W) and hence of p', "(W) throughout those im-
portant inelastic resonance regions. A definite
answer may only be given after solving for K(W)
with an inclusion of o,(W) in (4). We are planning
such a calculation, but for the time being we
shall be content with a couple of sensitivity tests
through varying p', "(M). First we use a different
set of phase shifts and inelasticities to calculate
them. For this purpose we have used the CERN
theoretical phases" for 1300& W&1900 (MeV)
matched smoothly to both the lower and higher
energy parts mentioned before. Its main dif-
ferences from the Pietarinen phases are as fol-
lows: (i) On the average it is less inelastic above
the main resonances and (ii) the S» (1700}reso-
nance is less eminent. The gross feature of J(W)
thus obtained is not much different from our for-
mer result except for a change in the locations of
the zeros: W, -1025 MeV, W --140 MeV. In the
second test, using the Pietarinen phases we take
Cp', "(M) in place of p', "(M) in Eq. (7) and vary the
constant C. Already for C=0.5, W, has been lost
and in its place appears a zero of Re J(W) above
but not far from threshold. For C =0.1, even
Re J(W) becomes nonzero for all W&m+ p, but W

still stays at - -700 MeV." It is quite unlikely
that we have overestimated our spectral functions
by an order of magnitude. Thus at least one zero,
W, will remain. On the other hand some attempt
in putting the multiparticle effects [through o,(W)
and 5p, (M)] into p, (M) is certainly needed, to-
gether with an accurate phase shift determination
in order to make a definite statement about W,.
Incidentally, there is another argument" for the
existence of zero(s) in J(W) from a somewhat
different line of reasoning.

In Figs. 1 and 2 I"(W) is plotted in dashed lines.
Owing primarily to the zeros in J(W), it looks
considerably different from K(W), contrary to the
NS result, indicating the importance of their I,
correction for the nucleon self-energy. In fact,
in the NS model, nucleon propagators are always
put on the mass shell. Together with the multi-
plicative renormalization procedure adopted th
thi

ere,
is approximation might eventually end up with

small corrections to I" from I'„hence with K(W)
=1(W).

Clearly, I'(W) acquires poles at the zeros of
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J(W), viz. , W, ." In contrast to K(W) the proper
vertex I'(W) stays quite small and negative through-
out all the physical region. It seems that the poles
in the unphysical region simply have absorbed the
strength of I'(W).

Now one might ask if one could seethe effect of
these poles of I'(W) in some physical processes.
For mN scattering in the P» and S» partial waves
the amplitudes take the form '

f"'(W) =-R(W)I'(W)S'(W)I'(W)+ f'"(W) (10)

'W&yn+ p, for P„ physical scattering,
W&-(m+ p) for S»

where the first term is the fully dressed nucleon
pole contribution with A(W) a kinematical factor
and the second term the one nucleon irredunble
amplitude. Obviously the first term gets poles at
W, . However, the residues of I'(W)S~(W)I'(W)
there can be shown to be negative, that is, they
are ghostlike. Fortunately, it was shown"" that
those poles in the dressed nucleon pole term are
canceled exactly by the poles in f'"'(W), so that
there is no inconsistent behavior in the mN scat-
tering amplitude [it is not difficult to show' ""

that f'"(W) is unitary by itself; argl'(W)
=argf'"(W) (modulo v), etc. for ~W~ &m+ p, , sug-
gesting the existence of such poles in f'"(W)].
This, however, makes it impossible to see the
poles in pion-nucleon scattering. So if these poles
are really there in I"(W), we are forced to look for
a possibility of observing them in other processes
involving pions e.g. , in pion-nucleus systems.

Finally, it may be worth mentioning that the
well-known unrealistic behavior of the S-wave mN

amplitude, which is calculated from the "bare"
nucleon pole term in the y, (PS) theory, especially
near threshold is found to be greatly improved by
the "dressed" one. In fact, the improvement turns
out to come from the existence of the I'(W) pole at
W. A more detailed and extended version of the
present paper will be reported elsewhere.
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