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Validity of the closure apprmimation in multiple scattering theory
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The closure approximation is necessary for the evaluation of the double scattering term, for the reduction

of the multiple scattering from a dynamic nuclear system to the scattering from fixed scattering centers, and

for the derivation of the Glauber formalism from the Watson multiple scattering formalism. If closure is

valid, there should be no double scattering term in the optical potential for an uncorrelated target nucleus.

A simple Gaussian model, in which the intermediate nuclear states are scattering states, is used to calculate

the binary scattering term in the optical potentia1 for such a nucleus, The nonlocal binary potential is used,

together with the local single-scattering potential, to predict the differential scattering cross section of 1 GeV

protons incident on He and Ca. The results confirm the validity of the closure approximation for the

heavier nucleus at all scattering angles. The results for the lighter nucleus confirm its use for small scattering

angles but cast doubt on its use in the region of the first diffraction minimum. In the case of 'He, the results

also show that double scattering may improve the optical model fits to the scattering data.

NUCLEAR REACTIONS Optical potential model, double scattering effects; re-
lation to Watson, Glauber, theories.

INTRODUCTION

The closure approximation (see, e.g. , Ref. 1) is
the assumption, in multiple-scattering theory, '
that the only important states, in the completeness
sum over intermediate nuclear states, have ener-
gies small compared to the kinetic energy of the
incident projectile when such completeness sums
occur between pairs of target nucleon scattering
operators. Such an assumption enables the nuclear
Green's function, which propagates the incident
projectile between successive scatterings with
nuclear nucleons, to be evaluated; the complete-
ness sum can be carried out without reference to
the different nuclear state energies which occur
in the denominator of the Green's function.

The usual multiple-scattering formalism' for
elastic scattering from nuclei includes all the
dynamics of the composite target (the nucleus
made up of moving, interacting nucleons) via the

definition of a two-body (projectile-nucleus)
optical potential. This potential is a sum of mult-
iple-scattering terms: the single-scattering term
in which the incident projectile scatters off a single
target nucleon, the target nucleus remaining in its
ground state, the double-scattering term in which
the incident projectile excites the target nucleus
from its ground state via one scattering with a
nuclear nucleon and then returns the nucleus to
its ground state via another nucleon scattering,
etc.' It is necessary to use the closure approxi-
mation in order to evaluate the double-scattering
term in the optical potential, the term binary in
the projectile-nucleon scattering amplitudes; such
evaluation is necessary in order to relate, e.g. ,
nucleon-nucleus scattering to nucleon-nucleon
scattering. '

'The binary optical potential for scattering of a
nucleon of mass M from a nucleus with A. nucleons
can be written as

where E is the kinetic energy of the incident pro-
jectile, E is kinematically related to E, '

~

mk")
represents a state in which the relative momentum
of the projectile and target nucleus is k" and the
internal energy state of the target is E (m can be
a, continuous index); tt represents the scattering
of the incident projectile by the ith target nucleon

in the A. nucleon nucleus. Note that nonrelativistic
kinematics' is being used for the intermediate
propagation of the nucleon in this evaluation of
the binary part of the optical potential. If the
closure approximation is made, Eq. (1) can be
evaluated and the binary potential shown"' to
be proportional to
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[p(r„r,) —p(r, )p(r, )], (2)

where p(r, ) is the nuclear single-particle density
and p(r„r&) is the nuclear two-particle density.
Equation (2) vanishes if the target nucleons are
uncorrelated. 'Thus, if the target nucleus is
sufficiently massive to rule out center-of-mass
recoil correlations' and if there are no dynamical
correlations between the nuclear nucleons,
closure implies that the binary optical potential
should vanish. This would appear to explain the
good fits to the heavy nucleus differential scatter-
ing data which have been found using the single-
scattering optical potential. ' Deviations from
such good fits if found at larger angles for heavy
nuclei mould presumably be due to one or more of
the following effects:

(a) the presence of off-energy-shell effects in the
single-scattering potential which is linear in the
nucleon- proj ectile scattering amplitude, '

(b) dynamical correlations in the target nucleus
leading to a binary optical potential even for heaVy
nuclei, '

(c) corrections to the impulse approximation
which lead to a binary potential proportional to
A. instead of A', '

(d) the presence, in the optical potential, of
triple or higher order, scattering terms,

(e) a breakdown in the validity of the closure
approximation.

Thus it is imPortant to have an estimate of the
correctness of the closure aPProximation before
one can gain any physical insights from the corn
parison of scattering data arith the predictions of
multiple-scattering theory.

The use of closure is also required if one wishes
to reduce the full multiple-scattering problem,
where the individual members of the composite
target participate in their omn dynamical motions
and interactions, to a problem of multiple scatter-
ing from fixed sources (a sum of potentials with
fixed origins). ' Since the derivation of the Glauber
scattering theory' from the multiple-scattering
theory of Watson' requires the assumption of fixed
scattering centers, ' '" it follows that closure is
also necessary to relate the phenomenologically
successful Glauber theory" to the more funda-
mental Watson approach.

Thus, mhether one wishes to use the multiple-
scattering formalism directly "' or understand
the relation between it and the Glauber formalism,
it folloms that it is important to check the validity
of the closure approximation using some reasonable
physical model. '

In order to check the validity of closure, me

evaluate, without assuming closure, the binary

CALCULATION

Assuming A for the target nucleus to be very
large, there will be no recoil and hence no kine-
matical correlations. Assuming product mave
functions (no dynamical correlations}, we expect
the single-scattering optical potential to be well
represented by the form

&R iU, (E) i%) =A&Ok it", (Z) i')
= -A F„(q)f(q, E) .

Here we have made use of the form-factor approx-
imation'; the momentum transfer is q=%' -Tc; the
nucleon-nucleon scattering amplitude is""

f(q, E) =f,e ", f, = -(2m) '(i+ o'.)crlle, (3a)

where p and z are the momentum and energy in

potential for a completely uncorrelated nucleus
by using a subset of the intermediate states ~m)
in Eq. (1}, specifically, a set of continuum states
representing one of the target nucleons scattering
from the remaining A -1 nuclear nucleons. This
continuum part of the binary optical potential
should represent most of the second-order potent-
ial since the energy denominator, in Eq. (1), should
be much larger for the discrete bound states

~
m)

than for the scattering states Im'), given a large
incident energy E Thu. s, if closure is a valid
aPProximation, eve expect the calculated binary
Potential to be very small [because of Eq. (2)]
comPared to the single-scattering Potential. The
evaluation of the binary term is carried out in the
Calculation section of this paper using Gaussian
product mave functions and a Gaussian nucleon
scattering amplitude which should be valid in the
1 GeV incident energy range. '"

The single-scattering optical potential U, is a
local potential, i.e. , it depends only upon the
single variable $' -%)'. The binary potential U,
is nonlocal, depending upon the three variables
k", k', and %.' ~ k. It is thus difficult to find a
meaningful numerical procedure which mill answer
the question: Is U, /U, small? A meaningful
question which can be directly answered numer-
ically is: Does the inclusion or exclusion of the
binary term in a calculation of scattering using
the optical model potential make a significant
change in the results? If closure is a good ap-
proximation, we would expect very little difference
between a differential scattering cross section
calculated with U, as the optical model potential
and a cross section calculated with a potential
U, +U, . The physical example chosen is the 1 GeV
scattering of protons from nuclei, specifically
from '. He and "Ca.
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s (s —4M') E(E+2M)
(s —2M') E+M (3b)

where E is the kinetic energy of the nucleon in-
cident upon the heavy target. For E = 1 GeV, we

g 4 35 fm
y Q Q 1Q 5 fm

y an d Q Q

[(1+o2)'/' = 1]. The form factor E»(q) =

J p(r)e"'dr equals one for zero momentum trans-
fer. When evaluating this first-order potential,
Eq. (3), the form factor will be that appropriate
for the parabolic Fermi shape which leads to a
reasonably good fit to the p -'He, and p —"Ca
data, at 1 GeV.""

Turning now to the binary part of the optical
potential, the sum over intermediate nuclear
states in Eq. (1) includes bound states —other
than the ground state —of the A target nucleons,
continuum two-body scattering states, etc. The
energy denominators E —E are assumed to be
very large for the bound states when E=1 GeV so
that the dis rete part of the intermediate sum over
states will be assumed small enough to be ignored.
The subset of states which will be kept in the sum
have the form

I

m') = ni,

~-GAIA

1)
I
1) w"ere IA 1)

is a. bound state of A-1 nucleons,
I

1) represents
the relative motion of this A-1 nucleus with re-
spect to the remaining nucleon, and where 0', z,
is the Moiler scattering operator" representing
the scattering of the Ath target nucleon by the
remaining A-1 nucleon nucleus. We assume that
a multiple- scattering optical potential can be
used to describe this scattering, i.e. ,

the nucleon-nucleon center-of-mass system;
3)/e = [(s —4M')/s]'/' where s is the invariant
square of the nucleon-nucleon energy. We fix s
by a,ssuming. that the relative velocity in the
nucleon-nucleon system is the same as the relative
velocity in the nucleon-target system. " This im-
plies that

where

F, „(q)=f qir, ~ ~ ~ rr)q (r, ~ ~ ~ r„)

~ r~) =][[4 (r ),

whereas the intermediate scattering states of the
target nucleus with relative momentum p are

g„.,(r, ~ ~ ~ r„)= Il) A —1)
W

efP ~ F)

(2 )3/2 l.Ik/(rj) '

Thus, for the intermediate states of our model

(9a)

A I"
A —12M

'

We may now write the matrix elements of (1) as

( k"
I t/ I

0%) = —I"
/ (fc" -%)f(&' —%),

(OTv
I
t

& I
m%) = —E&* (&' —Td )f*(k"-%'),

(10)

where

&,...(q) =&/(q- p) (11a)

&,(F)=
q „.f r"'q, (r)&r.

x e fdr) o ~ ~ dry ~

Assuming the existence of a complete orthonormal
set of single particle wave functions for the target
nucleons, the bound states of the target nucleus
can be written as

1+6

V, „,= (A —1)t+ ~ ~ ~

(4)

(4a)
For simplicity we assume Gaussian wave functions
when evaluating the binary potential:

where 6 is an appropriate Green's function. 'Thus

Ay p y
1 is at least first orde r in the nueleon-

nueleon scattering operator t; keeping these
terms in Im') means that the binary potential
calculated, via Eq. (1), with Im') would contain
terms cubic and higher in t. Restricting the
binary potential to quadratic powers of t means
keeping only the lowest-order contribution from

Im'& = IA-»I1)
Using the form-factor approximation for the

terms of the binary potential implies that

(R', nI f,"(E)Ik, m) = E, „„$' %)f-,(& —R, E), -

y(r) y &
(F/B)2/2

y
2 = &3/2R3 (12)

so that

J'(p) =Z,e 3, f) = 3R' .

We normalize R at 1.37 fm for He, ' so that for
arbitraryA, R=0.863A' ' fm; note that b=
0.3'72'' ' fm' is larger than a, as expected. The
nucleon-nucleon amplitudes f(q) are taken from
Eq. (3a); thus we ignore the variation of the
nucleon-nucleon energy E with momentum trans-
fer' during the multiple-scattering process.
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The binary optical potential E(l. (1) may be
written (%/

~
U, ~%) =A(A —1)(V,—W, ) where V, in-

cludes the ground state in its sum over inter-
media, te states whereas 5'2 only consists of the

ground state term. The subtraction of 8'2 is nec-
essary since the term with m = 0 is omitted from
the sum in E(l. (1). The sum over intermediate
states is now f /PP in our model so that

d'pd 'k "f*,(Tc" —~/)f/(~" -~/)Z, $"-~ —phd(*$" -~/ —p)
E —[A/(A —1)](P /2M) —[(A+1)/A](k" /2M)+i@

Setting &' = u, p = v, and A very large, we get

e-25(y -u ~ v)
V 2M t J f (ue-(aab&(b' ab ) db/e-u(aab&(u -(&'»b ) u ]

2 ( 0 0( 2ME —u' —v'+ ie

(14)

(15)

the v integral can be evaluated in terms of Dawson's integral" D; after doing the angular part of the u in-
tegration, the result is

V ~u )g f )2e (»b)(-b' ab )2~ ~2d~ e 2(a»b-)u (e(Yb
~ »blu el

'balbu)

2ME 2 /2 2 Z/2ab(2b[-Z u)I -2bu(2b(Z -u ) 2bu(2[[(E u ) ]
Q

+»"/"'"'[//[// ) -//[x )]I (16)

where X,—= (2b)'/'[ —,'u+ (2mE —u')'/'] and 8 is the unit step function. Thus V, is reduced to a single (luad-
rature which can be evaluated numerically as a subroutine of the computer program which integrates the
scattering equation.

The remaining part of the binary potential is

, „P~«, (&' —k')f(aa(» —k/)F, «(R» —k)f, (k~ —R)
E —[(A + 1)/2AM]k + Ze

where

E«.(V) = (.*(r,".r~)&.(r, "r~)e" "dr " d A

2~i' .r y~ 2 e-(rl &) eke r yr

= (g, ~

(2m)' ' J,e (18)

and b' = 2b. Thus

~-2(g+b')k" 2(a+b')(k '+k ) k"
22~e-(I+b')(y' +A ) g3~&q

2ME [(A+ 1)/A] k"'+ f—i (19)

Again letting A be very large, this integral can be directly evaluated in terms of Dawson s integral to give

gr M (f g ~z&-( (Z/ a)»)( ub»b b&

(a+ zb) tk/+R~ A

////(qua)I»-/ (/»/// [». / //////' // //)/ gB//)/a' // //]

+
' e()/a) a((1 ») /2( b')»bb )[D(y ) ~(y )]+ ) (2o)
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most by a factor of 2 via the inclusion of U, and the
rate of recovery to the diffraction peak being
somewhat diminished. It thus appears that the
validity of the closure approximation becomes
doubtful just in the region where its use is most
important, that is, the region in which target
nucleon correlations are sought via analysis of
multiple-scattering terms. '

Instead of looking at this calculation as a check
of the closure approximation, it may, with equal
validity, be viewed as a partial evaluation of the
double-scattering contribution to the optical model
potential. In this guise it is interesting to note
that even this incomplete double scattering makes
a major contribution toward improving the fit to
the P-'He scattering data" in the region of the
first diffraction minimum and the subsequent
maximum. Although no attempt has been made to
choose parameters on the basis of quality of fit
to the nucleon-nucleus data, the quality of the fit
to the data in Fig. 1 suggests that the physical
model represented by this calculation contains
many of the important elements needed to success-
fully link elastic nucleon-nucleon scattering to
elastic nucleon-nucleus scattering in the energy
and momentum transfer regions shown. If the

improvement to the data fit resulting from the
inclusion of our model for U, is not fortuitous, it
follows that corrections to.the closure approxi-
mation will have to be an important part of any
future attempts at a precision fit to nucleon-
nucleus data. That is, the relative success of this
simple mod'el in improving fits to the data adds
validity to the doubts it casts on the closure
approximation for light nuclei.

In the case of P-' Ca, the calculations with and

without U, are indistinguishable. Figure 2 shows
the calculation with U, plotted against the data of
Alkhazov et al." The inclusion of U, makes no

difference in the calculated cross section. This
result indicates that by A =40, the closure approx-
imation is extremely accurate, and may be used
with complete confidence.

Given the importance of the closure approxi-
mation, it can be concluded from the simple model
of this paper that closure is valid for a].1 but the
lightest nuclei. In the case of light nuclei, how-

ever, doubt has been cast on its utility —a doubt
which must be removed before we can be confident
about our understanding of multiple-scattering
phenomena and our ability to fit data using either
the Glauber formalism or the optical potential.
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