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Total reaction cross sections and the matter density of finite nuclei
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A simple model for total reaction cross sections based on the impulse approximation and the use of an
eikonal propagator is derived. Semiquantitative approximations are used to demonstrate that total reaction
cross sections are determined by the radius at which the profile function is equal to one mean free path for
the incident particle. A simple quantitative relation between the density and the profile function is also
provided. The model is tested against existing data for proton-nucleus total reaction cross sections for "C,
' 0, ' ""Ca, and ' 'Pb targets at energies from 100 MeV to 1 GeV. The total reaction cross sections are
generally found to be in agreement (with several exceptions) with neutron densities determined either
theoretically or from other experiments.

NUCLEAR REACTIONS Total reaction cross sections, matter densities and
radii.

I. INTRODUCTION

The suggestion that total reaction cross sections
at high energies could be used to measure the
matter radii of nuclei is quite old. ' The arguments
were based on the optical analogy that for short
wavelengths and a highly absorptive medium, the
total reaction cross section g~ approaches ~R',
where A is the radius of the target. For 1 GeV
protons incident on a nucleus, the wavelength is
about 0.7 fm, . and the mean-free. path of a proton
in nuclear matter is about 1.3 fm. Thus one has a
short wavelength and a highly absorptive medium,
and the old models are indeed qualitatively correct.
In addition, if we take the proton densities from
electron scattering, total reaction cross sections
can be used to study the contribution of neutrons to
the matter density.

The purpose of this work is to derive a quanti-
tative model which makes use of the wavelength
of the incident nucleon and its mean-free path as
small parameters. Such a model results from us-
ing what are quite standard approximations. The
model is applied to existing data to see if they may
be used to determine properties, such as the rms
radius, of a nucleus. In addition, we examine in
some detail the question of exactly what properties
of the nuclear density determine the total reaction
cross section.

In Sec. II we derive a simple formula for the total
reaction cross section utilizing the following ap-
proximations:

(i) The scattering can be described by a first
order optical potential in the impulse approxima-
tion.

(2) The eikonal propagator can be used to solve
the Lippmann-Schwinger equation for the scatter-

ing from. the optical potential.

Each of these approximations is commonly em-
ployed at 1 GeV, and the corrections to them
should be quite small.

In Sec. III, some semiquantitative approxima-
tions are used to determine which aspects of the
nuclear density determine total reaction cross
sections. It is found that p „is approximately
7lR «whe re R,« is the radius at which the prof i1e
function is equal to one'mean-free path for the in-
cident particle, The profile function is, in turn,
shown to be determined by the nuclear density and
its radial derivative at the half density point. Thus,
total reaction cross sections are found to be sen-
sitive to the nuclear density in a region near this
effective radius.

This radius is generally larger than the half
density radius of the nucleus; therefore 0~ is en-
tirely determined by the tail of the nuclear density.
That A,« is larger than the geometrical radius of
a nucleus has also been found' in the study of pion-
nucleus total, cross sections. In both cases, the
reason is simply that the two-body interaction is
sufficiently strong (i.e., the mean-free path is
sufficiently short) that the projectile interacts
strongly with the tail of the nucleus and seldom
penetrates in even as far as the half density point.

In Sec. IV, the model is compared with the exist-
ing data for gz from 100 MeV to 1 GeV for C,

0, '"' Ca, and ' 'Pb. It is found that the mod-
el seems to work very well, even down to energies
of nearly 100 MeV. As corrections to the model
(especially corrections to the use of an eikonal
propagator and the second order corrections to the
optical potential) are expected to be substantial at
this low an energy, it is not understood why the
calculated results are good down to such a low en-
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ergy. In general, total reaction cross sections are
found to be consistent with densities determined by
high energy elastic proton scattering. In two cases,' Ca and '~Pb, the total reaction cross sections in-
dicate that Hartree-Pock calculations underesti-
mate slightly the number of neutrons in the tail
region of these nuclei. For Ca, the total reaction
cross section indicates a larger neutron radius
than is found in other experiments.

II. DERIVATION OF MODEL

We begin by assuming that the elastic scattering
of a nucleon from a nucleus can be described by an
optical potential' in the impulse approximation. In
momentum space this gives, for the optical poten-
tial

where (Tc'& t JTc) is the T matrix for the elastic scat-
tering of two nucleons from an initial relative mo-
menta K to a final relative momenta K'. The func-
tion p(p, P) is the usual off-diagonal single particle
density function. It is often assumed that (Tc'~ tie&)

is a local operator, i.e., (Tc'~ t)(~c =t()cc'-Tc)), in
which case the t matrix comes out of the fermi
integration in (2.1). This factorization can, how-
ever, be justified under the more general argu-
ment4 that the size of the two-body interaction (in
coordinate space) is much smaller than the nuclear
size. In Ref. 5, it is shown that this implies that
the density function p in (2.1) restricts the value of

p in the integration to values which are approxi-
mately zero. We may, therefore, remove the
T matrix from the integration if we evaluate it
at p=o,

(k'I))I&) =&(&' —
4 I 'Ik —

4 ) c'0 -&'&,

(2.2)

where p(q) is the Fourier transform of the single
particle density. It is also shown in Ref. 5 that
the next correction to tlus factorization (of order
~k' -k~/M) is identically zero.

If we rewrite the dependence of (Tc j t~Tc) on Tc' and
K as

(PI)lg=)II 2', X' ic)-, (2.3)

then p(k -k') restricts us to the region Ic' = Tc.

Thus we may approximate

(cc'~ t[(c) =- t((c, &c' cc) =—t, (-Tc' —(c)

to achieve

(2.4)

If we further note that

(2 6)

H
Imts((c' Tc) = —

2
-o (.((E)f(cc' -Tc), (2.9)

)

with f (0) = 1 and o„) is the total nucleon-nucleon
cross section, we find

(k'IUlk) =Us(k' -k) =&ts(k' -k) p(k' -k). (2 6)

This is a quite standard approximation to the op-
tical potential; it is rederived here only to demon-
strate that it does not depend on the assumption
that the two-body T matrix is a function of mo-
mentum transfer only, or even that its predomi-
nant dependence is on momentum transfer. It ob-
tains more generally from the fact that the size of
the two-body interaction is smaller than the size
of the target.

Since we are interested in scattering at high
energies, we may make use of the eikonal approxi-
mation to express the wave function for the scat-
tering from the potential (2.2) as

4"(r)=0"'(~,b)

ei kz z

(2 )~ exp —
@

U(b, 8 )dg

(2.6)

where z is the component of r along the incident
direction, b is a vector perpendicular to z, and

U(r) is the Fourier transform of U(q). We may
then use the unitarity relation for scattering from
a non-Hermitian potential,

1

w3

o„(Z)=
@, dr)t)s('&t(r) ImUs(r) gs('&(r),

(2.7)

together with (2.6) to get'

( )
+ c)o I

o~(F.) = J' d(2&b 1 —exp -J (Zo~~p(z, b)+No~„p„(z, t)))dz' (2.10)
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where we have used subscripts p or n to distinguish
between the protons and neutrons in the target. The
modified density p, (r.) which appears in (2.10) is the
point nucleon density folded with the nucleon-nu-
cleon interaction,

(2.11)

with f(r) the Fourier transform of f(q) defined in
(2.9).

This result, (2.10) and (2.11), is more valid
than one might naively believe. The corrections
to this formula are the following:

(1) The inclusion of higher order terms in the
optical potential. At energies near 1 GeV these
corrections have been found to be quite small, '
especially near the forward direction. The second
order term should increase' as the energy de-
creases, and it is not at all clear how large the
second order will be at energies as low as 100
MeV.

(2} Corrections to the use of the free nucleon-
nucleon T matrix should be considered. One would
expect the chief correction here to be the Pauli
blocking' effect; the free T matrix should be re-
placed by the Bethe-Goldstone reaction matrix.
The exact size of this effect for nucleons at in-
termediate energies has not been determined. An
alternative approach might be to use the KMT
pseudo-optical potential' because this potential,
in the impulse approximation, requires only the
free 7' matrix. However, we have used the uni-
tarity relation to derive our final result, and the
KMT method of scaling the scattering operators
by A/(A —1) prevents one from using simple uni-
tarity 0 arguments.

III. SEMIQUANTITATIVE ARGUMENTS

In this section, we develop some approximations
which have been found to be accurate to within 1
to 5%. The purpose of developing these approxima-
tions is not to aid in performing the numerical
work necessary to calculate g~ from the formulas
in the previous section, but more to try to illumi-
nate exactly what aspects of the target determine
Oz.

We begin by examining the folding integral in
Eq (2.11). W. e shall assume a Gaussian form for
f (r),

f(r) =e ""8', (3.1)

which is equivalent to assuming

(k'I tIk) = t(0) exp[-8'(k -k')'/2] . (3.2)

We repeat that one is not assuming that (k'I tIk)
behaves in this manner over any extended region;

we require only that this be a satisfactory param-
etrization of the T matrix in the very limited re-
gion k™k'.

In Eq. (2.4}, one should also include the spin
dependent piece of the nucleon-nucleon interac-
tion which would then give rise to a spin-orbit
term in the optical potential. This term is im-
portant" if one is interested in detailed behavior
of differential cross sections; it, however, con-
tributes less than a percent to total cross sections
(except~' for He, where it contributes 4% to the
total cross section). We shall, therefore, ignore
it.

With this parametrization of the two-body T
matrix, we may rewrite Eq. (2.11) for the folded
density as,"after some algebra,

p(r) = m
"*f 8 "'pb + &28')rid

+ — — e "[p(r+8v'2tv)
w

-p(r -Hv'2M)]d~~ .
(3.3)

A two-point Gauss-Hermite integration for the
first integral and one point Gauss-Laguerre inte-
gration for the second integral yie1ds the follow-
ing approximation:

p(r}= [p(r+8)+p(r P)]-
+(2v) '~' [p(r—+ v2P) p(r -W2P-)] .

(3.4)

In all cases examined &densities from ~'C through
'O'Pb), this approximation has been found to be
accurate to better than 1%.

The qualitative difference between the folded
density p(r) and the point density p(r) can be found

by parametrizing bothP (r) and p(r) as fermi func-
tions,

(~ g ) "I
p(r) =pa 1+expI

)
(3.5)

r-8
p(r) =p, 1+exp

I. a (3.6)

, y(1-X)
8 (3.V)

We then expand Eq. (3.4) with these explicit param-
etrizations of p(r) and p(r) about r =A and match
coefficients in the expansion. We obtain the foll.ow-
ing estimates of the folded density parameters:
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with

and

z =[exp(p/a)]/[1+exp(P/a)]'.

1 & 2 "'
P 1 —exp(W2P/a)

Y ( w T 1+exp(JY8/a)

(3.8)

(3.8)

(3.10)

for the deuteron-nucleus folding model" where
the decrease in radius is much larger because of
the large size of the deuteron. The decrease in
radius here is much smaQer, but the argument is
still valid.

The next problem one must consider is.that
scattering is not determined by the density p(r)
but rather by the profile function which occurs
in Eq. (2.10),

From Eq. (3.7), we find that the folding of the
nucleon-nucleon amplitude with the density in-
creases the skin thickness a. For a large nucleus
and commonly used values of P (B-a), the in-
crease in the skin thickness is approximately 20%%uo.

From Eq. (3.8} we. find that the folding of the
density with the nucleon-nucleon amplitude actually
decreases the half density radius by a small
amount. This contradicts severa1 comments in the
literature where it seems to have been assumed
that the folding would increase the radius. We
have, therefore, checked this result numerically
by integrating Eq. (3.3) and then fitting a fermi
function to the resulting p(r). The results were
quite close to those obtained from Eqs. (3.7)-
(3.10).

The reason for the decrease in the radius is
purely geometrical and can be understood by con-
sidering the overlap of two spheres of radius B,
and B, as depicted in Fig. 1. We first notice that
the interaction is written in terms of r, the dis-
tance between the centers of two finite spheres,
and that the interaction is proportional to the over-
lap of the two spheres. Thus there is no overlap
and no interaction for r greater than R~+R,. There
is a maximum overlap and interaction when r is
less than R, -R, . When r =R, , the radius of the
larger sphere, the overlap is less than half as
can be seen in Fig. 1(a); it is not until x is slight-
ly less than R~ that one finds that half of the vol-
umes of the two spheres overlap, as depicted in
Fig. 1(b). The geometrical reason for this de-
crease in the half density radius has been known

(b)

FIG. 1. The overlap of two spheres demonstrates
geometrically why the half density radius of the folded
density is slightly smaller than the half density radius
of the point density.

(3.11)

S(b) = 2 [r,'(b) —b'] ' P(y)/P(0),

with t'0(b) given by

P(~)
'

P(o)
Y (dp(r)/dr) „; P(t)

(3.13)

(3.14)

The use of Eqs. (3.13) and (3.14) to generate a
profile function from a density has been examined
numerically, and it was found that they are ac-
curate to better than 2% unless one is in a r'egion
where p(~) is itself quite small (less than 5% its
central value).

These equations, therefore, provide a reason-
ably simple and quantitative approximation to the
profile function; they also show that the relation-
ship between the density and the profile function is
rather complex. Since scattering experiments
measure most directly the profile function, one
must be quite cautious in deducing properties of
the density. One can, however, note the following
from these equations: (1) In the interior of a nu-

where, for simplicity, we have set p~„= o» and

P~(x) =p„(x). The function S(b) is simply the amount
of matter one encounters while passing through the
nucleus on a straight line path a distance 5 from
the center. Rewriting Eq. (3.11}in polar coordi-
nates and integrating by parts gives

S(f ) = (r' I')'-~' dr . (3.12)
2 "

dp&p&

p(0) 0 dr

This formula is quite useful as dp(~)/d~ is a sharp-
ly peaked function at some point in the nuclei sur-
face xo and thus S(b) will be approximately pro-
portional to (wo' —5'}' '. The theory of Gaussian
integration tells one which is the best single point
rp for evaluating this integral; we need only to de-
fine dp(r)/dr as the weight function for the inte-
gration, construct the lowest two orthogonal poly-
nomials on this weight function, then rp is just the
zero of the second polynomial. If we choose P(~)
to be a fermi function, Eq. (3.6), then S(b) is found
to be
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S(f)
as(&)=2m 5dy 1 —exp (3.15)

with X equal to the mean-free path defined by

(3.16)~ =- [&P(0)o j -'.
Integrating (3.15) by parts gives

(z„(E)=m 5' db exp
s(5)

0
(3.1V)

Now if one considers S the independent variable
and 5 becomes b(s) the dependent variable, this
becomes

cleus where P(b) is constant, S(b) =2(R' —b')~',
the result for a square density of radius R. (2) S(b)
is proportional to P(b), the proportionality factor
being the square root function in Eq. (3.14). (3) In
the surface region ro(b} is a complicated function
of Q, 'but we can see that this function depends very
sensitively on the derivative of the density at the
half density point (i.s., the skin thickness).

Finally, we examine the calculation of the total
reaction cross section from the profile function
via Eq. (2.10), which for P~ =P„and o„~=a„„be-
comes

IV. REACTION CROSS SECTIONS FOR ' C, ' 0
o 4 ~ SCAN

'2()SPb

In this section we compare total reaction cross
sections predicted by the model developed in Sec.
II with existing data. We calculate os(E) numeri-
cally from Eqs. (2.10) and (2.11). The approxima-
tions given in Eqs. {3.4), {3.13), and (3.19}are not
used here. They provide a simple and easy way of
calculating a„(E) but yield results which are in
error by about 5/o. The use of Eqs. (2.10) and

(2.11) requires a straightforward three dimension-
al integration and, from the arguments given in
Sec. II, one would expect these results to be quite
accurate.

First, we examine the case of 'C; for such a
light target, the simple formulas based on a square
density are not even qualitatively ' correct. In
Ref. 15 formulas similar to those used here but
based upon an a-particle model of "C were found
to be in agreement with the measured reaction
cross sections.

We assume that p„=P~ and may be obtained di-
rectly from electron scattering data" as

~„(Z)=v f2(S)e-"'-sp~ d~

0
(3.18)

4 x ~ y
p~(x) =0.08371 1+—— exp

3 $ . a.

A one point Gauss-Laguerre integration provides
us with the approximation

(r~(E) =vB„,', (3.19)

where A,« is the effective radius given by the re-
lation

s(ft„„)=~. (3.20)

Thus the total reaction cross section is given in
terms of the radius at which the profile function
is equal to one mean-free path.

The use of Eq. (3.19) to approximate Eq. (3.15)
has been checked numerically and in all the cases
examined the approximation underestimates g„(E)
by about 5%%ug. This is because the one point inte-
gration of Eq. (3.18) ignores the contribution from
the long range tail of S(b).

In the next section, we shall find that 8 ff is larg-
er than the half-density radius. Thus the incident
proton does not significantly penetrate even in as
far as the half-density point. The reaction cross
sections are determined by the density in the tail
region. For this rea, son the older models which
were based on a square density (which is identical-
ly zero beyond the half-density radius) cannot be
quantitatively correct.

(4.1)

with 5 =1.705 fm and a =1.649 fm. The use of P(r)
directly from electron scattering data assumes the
electron-nucleon form factor has a range factor in
Eq. (3.1) equal to the size of the proton-proton and
proton-neutron interaction. This is a reasonably
accurate assumption as these parameters are close
and the reaction cross section does not depend very
sensitively on the exact choice of the range. We
could have used a more accurately determined den-
sity, ' but to within the errors quoted on the reac-
tion cross sections, Eq. (4.1) is sufficient. The
nucleon-nucleon total cross sections which we re-
quire are found from interpolating between the ex-
perimental points of Ref. 18. The resulting os(E)
for laboratory proton energies from 100 to 900
MeV are depicted in Fig. 2 together with the avail-
able experimental numbers. '~ ' The agreement
is quite satisfactory and there is no need to invoke
an n-particle~' model of "C to understand these
data.

The results, both experimental and theoretical,
for "0are also given in Fig. 2. The densities p„
and p~ are constructed from Negele's density de-
pendent Hartree Pock densiti-es" via Eq. (2.11)
with P& =0.442 fm and P„=0.542 fm in Eq. (3.1).
Again, we agree satisfactorily with the measured
cross sections.

As there has been. much interest lately in the
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PIG. 2. The total reac-
tion cross section for ~~O

and C calculated from the
model devel. oped here and
some of the available data.
The open squares Q) are
data from Ref. 14 for ~6Q,

The solid circles () and
all other data are for ~2C.

I I

400 600
I
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location of the neutrons in the Ca isotopes, we
have calculated oz(Z} for 4'Ca, "Ca, and 4'Ca.
We have used p„and p~ as determined from elas-
tic proton-nucleus scattering in Ref. 2V. These
results are the dashed lines in Fig. 3. We have
also calculated p~ and p„ from Negele's" densities
(as was done with "0}and these results are de-
picted in Fig. 3 as the solid lines. We see that the
two densities for "Ca (in the region of the tail
where there is sensitivity} are in good agreement

with each other, whereas the ~ Ca density deter-
mined from elastic proton. scattering contains
slightly more neutrons in the tail than does the
Hartree-Fock density. The recently measured"
reaction cross sections at 700 MeV are in excel-
lent agreement with the densities for ' Ca and ' Ca
determined from elastic proton scattering. The
reaction cross section for "Ca, however, is in
disagreement with both densities. If the proton
density is taken from electron scattering, while

800- 48Co

' Ca(
600—

400-

200-

200
I I

400, (M.v)

FIG. 3. The total. reac-
tion cross sections for the
Ca isotopes. The solid lines
represent calculations
utilizing the Hartree-
Pock densities from Ref.
25, while the dashed l.ines
use densities from Ref.
27. The experimental
points at VOO. MeV for each
of the isotopes are from
Ref. 28; the open square
(9) is for Ca, the open
triangle (d) is for 44Ca,
and the g is for Ca. The
two low energy points are
for 4~Ca with the data key
given in Fig. 2.
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TABLE I. The differenct" in the matter radii of Ca isotopes.

Partic1e

79 MeV ~
90—240 MeV 7t'

1.37 GeV &
1 GeVP
H artree-Fock
166 MeV &

15 MeV P
700 MeV P

Ref.

29
30
31
27
25
32
33

This work

44( a
(~44 ) (~40 ~

(fm)

0.01 + 0.04
0.09 ~ 0.035

0.17 + 0.20
0.01+ 0.09
0.05* 0.09

48Ca
(&48 ) (~40 )

(fm)

0.05 ~ 0.04
0,053 + 0.04
0.12 + 0.035
0.15 + 0.02
0.19
0.38 + 0,17
0.22 + 0.09
0.36 + 0.09

the neutron density is taken to be a wine-bottle
shape and then A or a is increased until the cal-
culated cross section agrees with the measured
cross section, the neutron-proton difference for
"Ca ((r ')"' —(r ')"') is found to be -P.P45+ P.11
in excellent agreement with Hartree-Fock predic-
tions (-0.04 fm) and elastic proton scattering mea-
surements (-0.07 fm). For 44Ca this difference is
found to be 0.01+0.11 fm which is also in agree-
ment' "with other determinations.

Total reaction cross sections most directly mea-
sure the difference in matter radii. The difference
in matter radii for Ca and ' Ca, and for ' Ca and' Ca, determined from this fit to total reaction
cross sections is presented'4 in Table I together
with Other determinations of this quantity. The
total reaction cross section for 'Ca indicates a
need for more neutrons in the tail. One should
notice, however, that the Hartree-Fock value is

2 standard deviations from our experimentally de-
termined value. Thus, the discrepancy might be
statistical in nature and additional work on this
point is probably required. There is also a model
dependence" in how one extracts matter radii from
the data.

From Eqs. (3.19), (3.20), and (3.13) we can see
that the reaction cross sections are predominantly
determined by the density (and its derivative) near
the radius 8,«. The measured reaction cross sec-
tions yield a radius of 4.42 fm, 3.51 fm, and 4.84
fm for "Ca, "Ca, and "Ca respectively. These
are to be compared with g =1.2 fmxA' ' of 4.10
fm, 4.24 fm, and 4.36 fm. Thus, the reaction
cross sections are being determined by the density
at a radius several tenths of a fermi beyond the
half density point. It is the assumption of a wine-
bottle shape for the densities which allows one to
infer an rms radius from the measurement of the

208 Pb

2400-

1600 —,

FIG. 4. The total reac-
tion cross sections for

Pb. y i
given in Fig. 2.

800—

200 400
E(Mev)

600 800
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density in the tail.
In Fig. 4, we present the results for '~Pb.

Again the dashed curve represents calculations
using p„and p~ from Ref. 21,

'

while the solid curve
represents calculations done by folding the Har-
tree-Fock density" with the nucleon-nucleon inter-
action. If we concentrate on the more recent ex-
perimental points, ~ we see that densities from Ref.
27 are in excellent agreement with measured re-
action cross sections. The Hartree-Fock density
produces reaction cross sections which are con-
sistently a small amount low. To agree with the
elastic scattering data and the total reaction cross
sections there is a need for a slight increase in the
number of neutrons in the tail of the density.

At first glance, this contradicts the statement
of Ref. 27 where they state that their density re-
quires that the difference in the neutron and proton
rms radii be decreased. They, however, varied a
matter density in order to fit the elastic proton
scattering data and then infer a neutron radius.
Such an approach is probably quite model depen-
dent as the effective radius defined in Eq. (3.20)
is about 7.5 fm. It is the density in this region
which determines the reaction cross sections (and
to a great extent, the elastic scattering); in this
region, the density of Ref. 27 has men e neutrons
than does the Hartree-Fock density.

This exemplifies the difficulty ' of trying to use
a surface dominated reaction to determine a global
property of a nucleus, such as the rms radius. It
is perhaps better to use the total reaction cross

sections and elastic scattering data to constrain
the density near R,«, as the arguments in Sec. II
have shown that this is actually what is being de-
termined.

V. CONCLUSIONS

We have found that total reaction cross sections
can be understood in terms of a simple model.
Being only a single number at a particular energy,
they do not, of course, contain as much informa-
tion as the elastic differential cross section. The
theoretical analysis of reaction cross sections is,
however, sufficiently unencumbered by corrections
that their measurement does provide an additional
constraint on the matter density of a nucleus.

In particular, we have found that the existing re-
action cross section data for ' C, "0, and ' Ca is
in reasonable agreement with other determinations
of these densities. For "Ca and ' 'Pb, the reaction
cross seetibns are in agreement with densities de-
termined from elastic proton scattering. In these
two cases, however, the reaction cross sections
and the elastic proton scattering data indicate the
need in Hartree-Fock calculations for a slight in-
crease in the number of neutrons in the surface.
The recent datum" for "Ca indicates a larger
neutron radius than is found from elastic proton
scattering or in the Hartree-Fock calculations.

This work was supported in part by the National
Science Foundation.
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