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Semiclassical description of two-nucleon transfer between superfluity nuclei
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Two-nucleon transfer reactions between superfluid nuclei are treated in the formalism of Dietrich and Hara
starting from a microscopic Hamiltonian in second quantization. Amplitudes for simultaneous and successive
transfer of neutron pairs between tin isotopes are calculated in perturbation theory. Nonorthogonality effects
are numerically estimated. The possibility of a nuclear Josephson effect is predicted just below the barrier.
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I. INTRODUCTION

In 3.962 Josephson predicted a current of Cooper
pairs between two weakly coupled superconductors
due to the phase coherence of the superconducting
ground state. ' This current is driven by the rela-
tive phase of the two superconductors rather than
by a finite voltage.

As many heavy nuclei exhibit properties similar
to superconductivity, the question arises whether
a nuclear Josephson effect coul.d exist. ' Situations
analogous to the weak coupling of two supercon-
ductors occur in the fission process' or in heavy-
ion collisions. In each case the coupling is time
dependent and one does not observe the current
directly but observes its conjugate variable, the
particle number distribution of the nucleons on the
two fragments. Most of the models developed to
treat this problem used phenomenological. inter-
actions, where the strength of the interaction is
a free parameter. ' '

One of the results of these calculations is the
fact that one finds a strong enhancement of the two
nucleon tunneling amplitude between nuclei due to
the coherence of the superconducting state. Now
the question arises whether the coupling between
two nuclei is strong enough and lasts so long that
supercurrents may start to flow. If those super-
currents really exist, one should observe a mul-
tiple transfer of nucleon pairs, which now play
the role of the Cooper pairs io solid-state phys-
ics.

In this paper, we consider a heavy-ion collision
below the Coulomb barrier, so we are sure that
other channels (except Coulomb excitation) do not
disturb the Josephson effect, i.e. , pair breaking
processes are small. Furthermore, we can sim-
plify the treatment by using the semiclassical ap-
proximation. We apply to this problem the formal-
ism of Dietrich and Harae (referred to as DH from

noir on) for the semiclassical description of heavy-
ion reactions: One starts from the full many-body
Hamiltonian of the total system in second quantiza-
tion. Taking into account the Hilbert space of
bound single-particle states in two nuclei moving
on their classical trajectories one has to work
with a nonorthogonal basis. We separate from the
Hamiltonian the terms which transfer nucleons be-
tween the nuclei. As will be shown in Sec. II, two
such operators exist with different structure: One
allows transfer of a nucleon pair in one step, the
other, however, transfers a pair in +o steps.
-This second term is completely analogous to the
tunneling operator of GoI. 'danski and Larkin. ' Thus
it is possible to distinguish uniquely between sim-
ultaneous and successive transfer contributions.
Because in experiment we observe nuclei with
definite particle numbers, we use particle num-
ber projected BCS states to separate the different
transf er channels.

In Sec. III we apply perturbation theory up to
second order to the calculation of the simultaneous
and successive two-nucleon transfer amplitudes.
These formal results are used to calculate pair-
transfer properties in a sub-Coulomb collision
of tin nuclei. Because the successive transfer
mechanism turns out to be strongly dominant, a
numerical estimate of nonorthogonality effects
is given for this process. Finally it is discussed
whether a nuc)ear Josephson effect is expected
to exist or not. In Appendix A the formulas for
nonorthogonality contributions are deduced. Ap-
pendix B contains a comparison of the DH formal-
ism with another formulation of the two-nucleon
transfer by Gotz et g/. ,

' which has been applied to
collisions between tin nuclei in Ref. 8.

II. HAMILTONIAN

In this section we proceed in analogy to DH. '
The dual basis is introduced in our treatment in

1979 The American Physical Society



SEMICLASSICAL DESCRIPTION OF TWO-NUCLEON TRANSFER. . .

the same manner as in DH's work, so we refer the
reader to the first two sections of Ref. 6. The de-
composition of the Hamiltonian, however, wi11

proceed in a different way due to the inclusion of
superconductivity; so this will be treated explicit-
ly in this section.

Following Sec. 2 of Ref. 6 we introduce as a
"working space" the direct sum of bound single-
particle wave functions in two isolated nuclei on
their classical trajec tories. The transformation
into the moving frames is performed by general-
ized time-dependent Galilean transformations
[Eqs. (2.3) and (2.4) in Ref. 6]. It is immediately
clear that these single-particle states, even if they
form orthogonal sets in the individual nuclei,
form a nonorthogonal basis in the direct sum be-
cause the overlap of wave functions in different
nuclei does not vanish. This complication is rem-
edied in DH's treatment by the introduction of the
so-called dual (or biorthogonal) basis. In this
basis the Hamiltonian of the total system may
be written in second quantization by introducing
particle creation and destruction operators in
normal (c', c) or dual states (c', c). One notes
that the Hamiltonian contains only creation op-
erators c' in normal states and destruction opera-
tors c in dual states. These operators satisfy
simple generalized fermion anticommutation
rules. They a.re time dependent because the
particles are bound to nuclei. which move on
classical trajectories. Considering the time-de-
pendent Schrodinger equation DH have shown that
the time dependence of the creation and de-
struction operators gives rise to an extra term
in the Hamiltonian. Once this so-called ac-
celeration term is included in the Hamiltonian, any
operator A=K~, , (P, IAI(, )can, must be considered
as time dependent or not if the matrix elements
(g, I

0
I p, ) are time dependent or not. The creation

and annihilation operators can be treated as if
they were time independent; the effects of their
time dependence are entirely contained in the
above-mentioned acceleration term, which de-
scribes the effect of inertial forces due to clas-,
sical motion on the intrinsic single-particle mo-
tion. The final Hamiltonian is semiclassical be-
cause of two facts:

(i) It depends on, the position vectors 8 and vel-
ocities 8 of the two nuciei (we omit vector nota-
tion).

(ii) The matrix elements depend implicitely on
B and R because the single-particle basis depends
on these quantities.

Subtracting from the final expression for the
Hamiltonian [Eq. (2.28) in Ref. 6], the Fermi en-
ergies X of the nuclei, we arrive at the Hamil-
tonian we want to decompose:

3/0

(v I
= (0

I Il (u, + v,c,c,), (co Irf= 0.
3/0

(2 6)

Defining the contraction as

Qg C2 =(QP
I QgQ2 I (d) ~ (2 6)

one arrives immediately at the Varick-theorem for
biorthogonal states,

+].+2 '1+2' 1 2 &
(2.7)

where O.„u2 may be any linear combination of c~,
c or y~, y operators and:: defines the normal
product with respect to the y operators. Wick's-
theorem is easily extended to products of more
than two operators as given in textbooks except
for the different definition of the contraction.

The operators c~, c and y~, y approach the usual
ones for an orthonormal basis if the nuclei are
infinitely apart (and the overlap vanishes). The
u, v coeffic ients, by def init ion, des cr ibe the "sup-
erfluid" states of isolated nuclei and are thus
time independent.

+- P ()1),$4lvlg, g,)c,c, c,c, . (2.1)
3e4e5e6

The conventions are those of DH, i.e. , numbers
1 (1'. . .) and 2 (2'. . .) refer to nuclei 1 or 2 where-
as 3 (4. . .) refers to both. The tildes refer to dual
states, and ( lv I) represents an antisymmetrized
two-body matrix element,

(eÃlvl&. c.) =-(c.].lvle. c.) -((.( Iv e.y.). (2.2)

As we want to describe transfer reactions be-
tween superfluid nuclei, we must now introduce
Bogoliubov quasiparticles. By defining the quasi-
particle operators by

y3 = Q3C3 —V3C

(2.3)
y3 = u3C3 —V3C„3

one automatically satisfies the generalized fermion
anticommutation rules

(r.,r.)= fr.', rQ=. 0,
(2.4)b., r ]= 6...

under the same conditions for the u, v coefficients
as usual. The state with quantum number -3 is
the conjugate to the state 3 taken in the rest frame
of the respective nucleus. From definition (2.3)
one obtains two vacuum states, a normal and a
dual one [ IO) is the normal particle vacuum]:

I
&u) =

'
[ (u, + v,c,'c,) I

0), r, I
(o) = 0
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(2.9)

It is immediately clear from these considerations
that only H,",,'(t) and H,"„'(t) are able to transfer
particles between nuclei. So it is our aim to ex-
tract these terms. Before stating the result of
this somewhat lengthy but straightforward proce-
dure (analogous to DH) we have to write down
some definitions. The gener alized Hartree-Pock
and pairing potentials are given by

Now we decompose the Hamiltonian of Eq. (2.1),

H(t) = 8~ + 82+ H~,q(t), (2.8)

where the Hamiltonians II, and II, are time inde-
pendent and describe the two nuclei in their re-
spective rest systems. The operator H„,(t) re-
sults from the interaction between the nuclei. and
also contains inertial forces as wel~ as nonortho-
gonality contributions. It vanishes if the nuclei
are far apart. Furthermore one may decompose
each term of (2.8) according to Wick's theorem to
extract fully contracted as well as two- and four-
operator parts [tt is one of the operators on the
right-hand side of (2.8)],

h = a"'+a"'+a'4'

This leads in a natural way to a decomposition of
the matrix elements

~3,4= ~3,4+ ~3,4 (2.14)

where the first term V', 4 is obtained from p, , by
replacing )t) by g,

V,', = g (g, (t', )
v

) P,((I),) v, ', (2.15)

and where the second term represents the non-
orthogonality corrections contained in the matrix
E:

0
W, ,= W, 4+W, 4,

0
W3 4= W3 4+ W3 4,

(2.18)

+36 65 45++ 6 S6 ~ 4

5t6

+ P K, ,&...(P,g, ~
v ~g, (1),)

7

(2.15')

In complete analogy we decompose the pairing po-
tentials

V, ,=g (g,g,
~
v~ (t,g, )v, ',

W34- 3 4 & 5 -5+5+5~

(2.10) and the two-body matrix elements

((t', (t', (v (g,g, ) = (P,g, (
v

~
g,g,)+ v. .., . (2.1 t)

1~...—
2 g (|l A~ ~P.IF.), ,

(2.11)

As we want to separate time-dependent parts from
time-independent ones, and since the nonorthogon-
ality terms produce a part of the time dependence
of the matrix elements we also have to single out
the effects of nonorthogonality. According to Eq.
(2.13) of DH we put (M is the overlap matrix
M = [(y.~y, )])

v,',,= v'. ..(1)+ v,',(2),

V', ,'(~) = g (g, (t),
~
v

~
(I), (t,)v,', i = 1,2.

(2.18)

The quantities with the superscript 0's are defined
as in the usual pairing theory and only quantities
with a bar contain nonorthogonality contributions.
The potentials V', W', W' contain summations o~ er
the single-particle states of both nuclei. Thus we
divide these potentials into two parts referring to
the two nuclei,

M" =1+E',

and write the dual states in the form

(2.12)

(2.13)

Analogous decompositions hold for the pairing po-
tentials.

After the application of Wick's theorem, the
Hamiltonian H, of Eq. (2.8) has the form

—1, + ) „(() v, +-, ))';,(1)u,m,
I

'

[P -mfa, (t)]'
2m

1

[p —mfa, (t)]'
ll, II(, —1,&„,+ )';i(l):c,e,.:+—[))';,.(():c+c(.:+11';,.(() l,e, ,:)I

1~1'

4 + ((g~ ), IV I 4„$1„,~. Ic)c, Ac„, c1 (2.19)
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(2.20)

A

An analogous expression holds for H, . As the wave functions in the matrix elements of (2.19) refer only
A c(()2

to one nucleus, the operators H, and H2 are time independent. If one takes into account

p-mB, t ' p'

A A

(the functions 0, are defined in the rest frame of nucleus I), one sees that H, and H, describe two isolated
nuclei in their rest systems. The determination of the basis is now clear, As in a usua1. BCS calculation
one requires that the terms of H, containing operators yet and yy Inust vanish. From this condition one
determines self-consistently the single particle functions and u, v coefficients. This is equivalent to the
BCS variational. ansatz, where the chemical potential. A. is the I agrange parameter which fixes the particle
number.

Since we are interested in transfer processes, we determine H„,(t} of Eq. (2.8) and arrive at the follow-
ing expression:

H,„,(t) = H,",,'(t)+HI;&(t)+ HI",(t), (2.21)

where

R tHI;)(t)=g PZ, ,(y, ~

P ' +mR, (t)[x-R,(t}]~y,)+-.'V,',(2)+-,'V„~,'

+ (W, ,(2)+ W, ,)v v, I+1—2,

0

(,) - [P -mR, (t)]s
i s &s 2

'
&i +l'ii( )+I'ii

ltl'
+-', [[W;,,(2)+ W„,[:c'c,', :+ [W,'[(2)v W„.[:2c,.:)

I

(2.22)

[p -mR, (t)]'
+ 2, , 2

': 2, +)C, , :c,i,:+-, [W, ,:c,c,:+W„:e,e,:]
I2m

lt3

+ I—2+ Q (gs
~

mR, (t}[x R,(t}jl ~ g,)—:ct c,:, (2.28)

H" &(t) =-1

1
4

2'3'4

1 1' 1"1I»

(tP [t) iv/tP Q ):c'[ ct c c

tel ~ ~ 1 .Clit 1»1»2 1 lt ]»PC1» ~ 22 2»2-" 2 2 2" 2- ~

2 2' 2" 2»'t t t

(2.24)

The symbol 1 2 means that one has to add all
preceding lines with 1 and 2 interchanged. The
sum over n„a„o.„n4 is defined as a summation
over all possible quadruplets of quantum num-
bers, where not all of the~ belong to the same
nucleus. In deriving H„,(t} the property

{y, ~
mR, (t) [x -R,(t)]

~ y, ) = mR, (t)(p, I~I p, )
=0 (2.25)

was used (ps is the single-particle functions in the
rest system).

These expressions for H„,(t) seem to be rather
complicated, but they have a simple physical
meaning. First of al. l we have achieved the correct
separation into time-dependent and time-indepen-
dent parts as required by Eq. (2.8). Nonortho-

gonality contributions, as well as interactions be-
tween the nuclei and acceleration terms vanish for
large distances. . So H„,(t} describes the perturba-
tion exerted on the unperturbed single-particle
states by the reaction partner in a nucleus-nu-
cleus collision and therefore must vanish under
the same condition. The c-number part H,"„'(t)
gives the change of the energy of the system if
both nuclei remain in their ground states;during
the collision. The operator H,"„'(t) describes quasi-
particle excitations in the nuclei induced by non-
orthogonality and by the Hartree-Fock potential of
the reaction partner, It also contains transfer
terms which wil. l. be discussed in the next section.
Furthermore, the acceleration term contributes
to quasiparticle excitation and transf er. The first
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term of the operator H,"„)(t) is a pure transfer op-
erator because the wave functions in the matrix
element must not belong all to the same nucleus.
The nonorthogonality terms in HI,„)(f) induce only
intrinsic excitations. The transfer operators are
investigated in the next section.

III. TRANSFER

the space of eigenstates of H, + 8, to calculate the
two-nucleon transfer amplitudes. We solve this
equation only up to second order as we want to dis-
tinguish between successive and simultaneous
transfer amplitudes. The amplitudes in first and
second order for a transition from state I4' ) to
((I)()

I
are

In principle one should solve the full. time-de-
pendent Schrodinger equation [Eq. (4.9) of DH] in (3.1)

)& e(t/)))(Ea )t/t )t e(-i/')))(Et) )tz)t (-y "IH (tdd)
I

zf/ ) (3.2)

The states I4' ), . . . are full many-body eigen-
states of H, +H2 with eigenenergies E, . . . . The
states ((I I, . . . are the dual states. In the case
of two-nucleon transfer these states will be de-
fined in (3.7), (3.8), and (3.29). The probability
of finding the system in channel 5 if it had been
in 0. at the beginning is up to second order given
by

P,„= lim I f (t)+ f (t) I' ~ (3.3)

We have to specify the states of the unperturbed
system. As our channel wave functions must' have

good particle number to treat the transfer properly
and since correlations due to superfluidity should
also be taken into account, we must take particle
number projected BCS states for the description
of the nuclei in their ground states. Using these
channel functions and their duals the probability
of transfer is given immediately by Eq. (3.3).

Following Hefs. 10 and 11 the particle number
projected ground state of nucleus 1 and its dual is
given by

~tc„z)=(:„,fdzz "' ' "
(z zvzc c,)~O),

1&0

,8„"(1„.. . , 1„)= . diaz ("t "''
27'

1&'0
1)) ~1 ~()oeo f ll

(tt) + vt 8)

(3.6)

(3.8)

Consider the one-step amplitude from Eq. (3.1).
Only the H,",'(t) part of the complete interaction
Hamiltonian (2.21) may give contributions to sim-
ultaneous transfer. As we restrict our considera-
tions to ground-state transfers only the following
operator can contribute:

Similar expressions hold for nucleus 2. The free
phase of the coefficients C does not raise any dif-
ficulty because it affects the different transfer
amplitudes in the same way as will be seen later

To be specific, we now consider a collision of
two nuclei, where one nucleon pair is transferred
from nucleus 1 to 2. The outgoing nuclei should
also be in their ground states; so the channel wave
functions for initial and final configurations are

I+.)= I~„n,) I ~. n.) (3.7)

(e,
I

= (~„n,+1 I(g„n, —1I .

(v„z,
~

=-('„,gdzz " ' (3.4) o(t) =
4 Q (p,(, I

v
I i,p, ):c,c,c,c,: .

lt2
(3.9)

x(OI I [(u, +v,sc,c,).
1&0

Using particle number projected states, real
particles are transferred, so we apply in (3.9)
Wick's theorem backwards,

The number of pairs is n, and C„ is defined by the
normalization condition ( „(dI&nd„n, ) = 1, which
yields

(3 5)

The so called residuum integrals are given by' (3.10)

)c,c,c,c,
1~2

1——P W, ,(2):c,c,: ——P W, ,(1):ctct,:
1

1 2

V 1 -1 C2 C 2C-1C1
1~ 2
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The first term of this equation is that part of
H,'4„'(t) which includes simultaneous transfer of a
nucleon pair. So we calculate the tranfer matrix
element of the first order amplitude [see E(I. (3.1)]

&~, lH...(t) l~.&= P (t.i.lvle, t-, )
1v 2&0

x (~„„1l.~,~,
l
~„n,)

x (a„,—1
l
P,c,

l „,)
(3.11)

After some algebra one arrives at the expression

&+hlH„,(t) l)I )= p (g, I[),
l vip, g, ) uv, uhv,

1 ~ 2&0

x C„,R,'(1)~,'(2) . (3 12)

(wl -()t l. (3.14)

In Sec. IV it will be shown that below the interac-
tion barrier the transfer amplitudes are not dras-
tically changed by nonorthogonality effects. Intro-
ducing the generalized Galilean transformation into
the moving frame of the nucleus [see E(I. (2.3) of
DH]

e((/h)) h(i &e(i/h)mah(t))(e-((/h)&(h(t &i) (3 16)

we write the single-particle states in BCS phase
convention"

Vfithin the framework of the formalism this ex-
pression is still exact. [The approximations used
up to now are (1) the semiclassical approach, (2)
the restriction to bound single-particle states. ]
We apply now two other approximations. Using
the saddle point method for the evaluation of the
residuum integrals one finds that all of them are
equal. " This is equivalent to a change from an
FBCS to a usual BCS cal.culation. One has then to
take also the BCS values of the I, v coefficients in
(3.12). As shown in Ref. 11 this leads only to very
negligible changes in the sums over u, v pairs of
E(I. (3.12). We get therefore,

16)&'C*„,C„C„*„C„,R,'(l)Q, (2)= 1. (3.13)

It should be noted that this approximation does
not imply that we omit particle number conserva-
tion.

For the moment we neglect nonorthogonality con-
tributions

where
l &c() means a state in Condon-Shortley

phases. After some algebra E(I. (3.12) can be
written

&~hlH(. ((t) l+.&=+ u, v, u, .v, —"2j"1g (,)
1 2.

( )
2(-)')+&h (3.17)

[(2j, + l)(2j, +1)]i/h

fI)') = -i Q u, ,(n, —1)u,,(n, )v, ,(n, )

"'"dt e(i/h)(Sh Em&tf -(t)
Here we show explicitly to which nucleus with

n„n2 pairs the coefficients u, v refer. Finally it
shouM be noted that the time depend, ence of the I
matrix comes from the motion of the nuclei on the
trajector ies.

Now we calculate the second-order amplitude of
E(I. (3.2). We include in the perturbing Hamilton-
ian only terms from H,",,'(t) [see E(I. (2.23)] and
omit second-order terms from H'(~&(t) which means
that we omit pair breaking processes in the inter-
mediate channel. The only terms which may con-
tribute to this process are now collected in the
"active H@miltonian":

H,"„'(t)= H.(t)+ H,(t)+ H,(t), (3.20)

with the definitions

ch &(jhj,)O
I
G,G,v, ", l(j,j,)o&«

The two-particle states l(j,j,)0)«are coupled to
AJ= 0,I= 0. The pairs of G operators act on the

coordinates of the two nucleons. The weighting
factors are selected in analogy to the gap equation
of ordinary pairing theory:

6= G Q u/v/ . (3.18)

Here the G denotes the pairing Constant.
If the matrix elements I/„,(t) have all the same

phase, the transfer amplitude gains an enhancement
of order (6,/G, ) ~ (t),,/G, ) due to the coherence of the
sum (3.1V). Whether this is true will be investi-
gated numerically. This enhancement would be a
simple extension of (p, t) and (t, p) results. "

The final result for the first-order transfer
amplitude is

A

I&1) ) lf1~1&BCS

I&-)) = G. ij) —~.&B«

= G,(-)'& m& "&
l j, —&n,&«, &n, )0

(3.16)

1& ( {) p ((, [p —m{{,{{))'

1~2

(3.21)
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H&(t) = —Q [W,', , (2)+ W, , ]:c~c,, :, (3.22)
1

ill'
1

H,(t) =
2 Q [W', , (1)+W, , ]:c2tc2t,:. (3.23)

2, 2d

The acceleration term is omitted and will be
discussed in the next section. The operators
Ht(t), H, (t) cancel against the two operator terms
of (3.10) if one applies also Wick's theorem (in
the backward direction) on the nonorthogonality
part of H&4„'(t) [see Eq. (2.24)]. Consequently only
the generalized Hartree-Pock potential contributes
to the successive transfer, which comes from the
fact that real particles and not Bogoliubov quasi-
particles are transferred. Thus unphysical. pro-
cesses where two particles @re destroyed or
created in the intermediate state cannot occur. If
we define the square bracket of Eq. (3.21) as
T, ,(t) we have

H,"„'(t)= P T, ,(t)ct c, . (3.24)

1E2

One can neglect normal product dots, because
the operators refer to different nuclei; so the con-
tractions vanish. %e let this operator act on the
initial and fina, l channel states (3.'t) and (3.8) which
yields:

H",'(t)
~

@ ) = —g T, ,( t) C C„v,u, c',
~

&u„n, —1, 1)
ls2

where we used the following definitions.

„.„3)-=f d..-3-

)&
™~

(u, .+ v, ,fact, ct, ,) ~0),
3t &0

3'Pl3 I

(3.2V)

(G„n„s =- —
&I) dz E "3 '

x(0i (u, .+v, ,sc,,c„).
3'$0

3t t)3 t

(s.28)

x cp u&„n„2),

1
(+E = (Z„n„2 c,

4&&'[ R '(1) R (2)]' '

(3.29)

From (3.25} and (3.26) the structure of the inter-
mediate states is clear: one pair level is blocked
in either nucleus and one single unpaired nucleon
is moving in this orbit. If one normal. izes these
states correctly, they form a biorthogonal, com-
plete set in the space of alloweg intermediate
states,

1
4 '[R,'(1),R,'(2)]'l' ') " '

x ct~ (u„n„2),

(g, ~H,"t(t) = P T, ,(t)C„*„C&,v,u,

(3.25) xt „(d,n— 1, 1
I c,

(4 i4', ,)=5,,
1 ~ 2

x((d2, n2, 2
~

c 2(()) n3) —)1 1 ~c)

(3.26)

where p stands for a pair of indices 1,2.
fnserting these results into Eq. (3.2) we get the

amplitude for successive transfer,

t 4c)o Pg

f& &

5 @2
dt' Q T~, (t)T t, (t')v~u, v~u2 c&ilh&&E6 Et))tc&il)))&E&) Ez)t'16&)-4C4

"2'
1~2

X,R,'(1),R,'(2) . (3.30)

The question arises, whether in this formula the
restriction to bound singl. e-particle states in our
basis and therefore the restriction in the set of
allowed intermediate states raises difficulties.
This is not so, as can be seen immediately. As
we consider ground-state transfers, the second
nucleon in a successive transfer must be put into
the same level as the first one to reach again a
completely paired state. If this level is very high,
this state contains a highly excited pair and has
therefore very little overlap with the ground state.
Formally this is exhibited by the fact that the pro-
ducts uv in (3.30) are very small for single-par-

I

ticle states far from the Fermi energy. So con-
tinuum states will not contribute.

To investigate more closely the matrix-element
T, ,(t) we define

(3.»)
1t

and analogously V,. Then T»(t) may be written as

3', ,(t)= (3,
' ' '-+ );+ )3, t)). (3.33)

Now we omit nonorthogonal. ity corrections which
imply the replacement (3.14) in V„V„and T»(t}.
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+ V, 4',) = c, ill, ) . (3.33)

A
The quantities lV, ) and V, are given by

A + A

V, = G~V, G, .
Transforming into the moving frame we have

(3.34)

{[/ m/), ())-]'
p) ~

)

'

~( ) (3.35)

In zeroth order in the overlap which corresponds
to the neglect of nonorthogonality effects we ob-
tain

The single-particle wave functions satisfy a Har-
tree-Fock equation in their rest frames: (0 0)=o (»8)

~ ~ ~

~

2m

and arrive at the simplified transfer matrix
element

~...(f) =(4,
~
~.~((,). (3.37)

The change of this result due to nonorthogonality
corrections up to first order in the overlap is dis-
cussed in Appendix A. Furthermore we use ap-
proximation (3.13) and neglect in the Galilean
transformations G, the shift operator in momen-
tum space. So we work in the no-recoil approxi-
mation which is discussed in the next section.
Taking V, as local and using the time-reversal
properties of the BCS states we find the final for-
mula for the amplitude of successive transfer:

f '"= p u/ (n, —l)u/ (n, ) v, (n~) v/ (nh+ 1)
~2'~+ 1 2j2+ 1

&j.&2

matrix plays the same role as I, in the simultaneous transfer (3.17}. It is defined by
2 1 2 1.

"+"dt
()()( -((/h&&((& (' Iye-( /h& «h

~ ~ m ) +
/2/1 (2' +1)(2 +],) ~ ~ g CS 2 h h 1 1 C

m2&& 0

' dt'
x —et~&at e-(t/a)y&t~) (ri yg I p e &t/&) r(t')t l

l~l l~cs

(3.38)

. +00 dt A
e(~hh(e «/»& «& -() &n I y e-«/h& "«»Ig &n )CS 2 2f 2 1 1 CS

lC

t
&& &(~h &-(( /h ((t&~&(&~ ~ ) y e-((lh&r(t'&h )~ &n )h:

h CS 2 2( 2 ( j. .1 C
~00

(3.39)

where we have introduced the quantities

[see Eq. (3.15) and also (2.3) of DH].
If all E matrix elements have similar phases we

have the same enhancement as in the simultaneous
transfer. The explicit expressions for the E&,&,
and I.

~
. xnatrix elements are given in Ref. 14.

, J2dj
Several. approximations have been made to cal-

culate the amplitudes (3.19) and (3.38): In both
cases we neglect in the Galilean transformation
(3.15) the shift operators in momentum space.
This means neglecting recoil effects in the two-
nucleon transfer matrix elements (form factors}.
Furthermore we omit pair breaking in the succes-
sive transfer as we do not include H((4&(t) in the

second-order matrix element. This operator
would produce broken pairs in one nucleus as inter-
mediate state in the two step transfer. %e discuss
these approximations in the next section.

It should be noted that there exists an alternate
formalism for the description of two nucleon
transfer by Gotz et al. ' The reader who is inter-
ested in connections and differences between the
two formulations may consult Appendix B.

IV. NUMERICAL CALCULATIONS AND RESULTS

A. Potentials and wave functions

As an example, the formalism is applied to the
'"Sn('"Sn, "'Sn)'"Sn reaction. The tin isotopes
are single-closed-shell nuclei because the pro-
tons form a closed-shel. l configuration. This im-
plies spherical symmetry which leads to a high
degeneracy of the neutron level. s at the Fermi en-
ergy. Therefore tin nuclei are very good super-
conductors. In the general case, where neutron
and proton shells are not closed, one finds de-
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V(r)

(MeV)

280

Ferrel-Visscher force":

v(r„)= exp — — (V,&„+Vo&0~)

270
Ve= 33 MeV, ~0= 19 MeV,

(4.2)

250—

240
14 r (fm) l5

FIG. 1. The nucleus-nucleus potential as a function of
the relative distance r between the two Sn nuclei.
At r =12 fm lies the barrier of 278.4 MeV. The poten-
tial was calculated in the EDF formalism (see Refs. 15
and 16) and contains the Coulomb repulsion assuming
two uniformly charged spheres of radius R =1.20 x (A'/&
+A'/'3~ fm.

formed ground states. Then one has a smaller
density of single-particl. e states at the Fermi en-
ergy and superconductivity is less marked for
these systems.

Considering collisions below the interaction bar-
rier we use a classical orbit determined by the
internuclear Coulomb and strong interactions. Be-
cause very little mass, energy, and no charge is
transferred we neglect recoil effects in the orbital
motion. The nucleus-nucleus potential was deter-
mined from the energy-density formalism (EDF)
(Ref. 1&) in the parametrization of Ref. 16. It is
very similar to the proximity potential and is
given by the expression

Here the P operators project on the even-singlet
and odd-triplet states. Arvieu" showed that by
calculations in the tin region that forces with

~
V,p'~ = 110 MeV fm' yield optimum fits. The

Ferrel-Visscher force underestimates this by 11
MeV fm'. The singlet part seems to be rather
well established, whereas the contributions from
the triplet part seem to be very uncertain (see
listings in Ref. 19). The transfer calculation
showed very little contributions from the triplet
force, so this uncertainty is not important.

In the simultaneous amplitude, harmonic-os-
cillator (HO) wave functions are used for the bound

particles for simplicity of the calculation. Accord-
ing to Moszkowski's prescription" the oscillator
parameter was b= 2.24 fm. The influence of the
wrong asymptotic behavior of these functions will
be discussed in Sec. IVB. Inthe successive am-
plitude, however, wave functions of a finite Woods-
Saxon well, expanded in HO functions, were
chosen. Using ten expansion coefficients the as-
ymptotic behavior was correct up to nearly twice
the nuclear radius. In the parametrization of
Ref. 21 the Woods-Saxon potential reads

V(~) = V, [z(r) ~g-(~)~I ],
r-r A' '

F(r) = 1+ exp

Vgr)= — ,'(, ', (, V, exp( 0.27 s'), s~0

s=r —1.0(A,' '+A, ' '), V, =30 MeV r, =1.25fm, a=0.65 fm, X= 25

(4 3)

where A„A, are the mass numbers of the colliding
nuclei.

As can be seen from Fig. 1 the full potential be-
tween two tin nuclei shows an interaction barrier
at a distance of 12.0 fm between the centers of
the nuclei and at a potential energy of 278.4 MeV.
It has a shallow pocket because we are just in the
region of Z„Z, values where the pocket vanishes.
Because in experiment the barrier is not very well
known, the relevant quantity is not the absolute
energy of relative motion in the collision E, but
its difference to the barrier top Eb „-E, . The
trajectories have been calculated numerically in
this potential.

The simultaneous transfer of Egs. (3.17) and
(3.19) is due to the nucleon-nucleon force. We
take an effective interaction of Gaussian form as
used in shell-model calculations, especially the

The depth V, was adjusted to reproduce the neu-
tron binding energy (well-depth method). Since
Sn nuclei are single-closed-shell nuclei only neu-
trons contribute to superconductivity, and we have
to take into account the single-particle states being
filled in this region, i.e. , the Ss&/, 2d, /,
1g,/. , 1hll/2 levels. In the intermediate state of
the successive transfer we have one extra nucleon
outside the superconducting core. The binding en-
ergy of these neutrons is just the binding energy
of the core plus the excitation energy of the one-
quasiparticle state. These exc itation energies
were taken from Ref. 21, where they were calcu-
lated according to the prescription:

(4 4)

The sum runs over the experimental states of the
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"'Sn and '"Sn nuclei over which the strength of
the quasiparticie state distributes. S,.(l&) are
spectroscopic factors in a (d, p) reaction. In the
even-even isotopes the simple one neutron sepa-
ration energy was used to determine the wave
functions. In the energy exponentiais of (3.39) the
energies of Eg. (4.4) were also taken into account.

The transferring potential, which is in principle
the Hartree-Fock potential, was approximated by
a Woods-Saxon well with parameter set (4.2) ex-
cept for X=O and a depth of V, =50 MeV. Similar
parameters were used in Ref. 21 as real part in

single nucleon optical potentials. The u, e coeffi-
cients in Eqs. (3.19) and (3.38) have been taken
from Kisslinger and Sorensen. " The values of
Arvieu" would not change the results.

Finally we neglect the acceleration term in Eq.
(2.23), because the inertial force per nucleon,
which is exerted by the motion on the trajectory,
is much smaller than the nuclear interaction,
which is felt by the nucleon in the contact region
where the transfer takes place.

B. Transfer results

In both transfer amplitudes, recoil effects were
neglected which implies local transfer matrix
elements (form factors). The inclusion of recoil
would lead to a scaling constant in the relative
position vector as well as to a change of angular
momentum selection rules. ""The scaling con-
stant deviates from 1 by the ratio of the trans-
ferred mass to the. mass of the nucleus; so this
is a small quantity in our reaction. Secondly one

may estimate easily the angular momentum mis-
match which would destroy the coherence in ground
state to ground state transfer. It starts to be im-

portant for scattering angles below 150' for our
reaction conditions. After all for scattering close
to the barrier and around 180' recoil effects are
very small (for an extensive investigation see
Ref. 23).

As stated in Sec. IVA the simultaneous transfer
amplitude was calculated using HO wave functions.
These exhibit wrong behavior in the asymptotic re-
gion outside the nucleus. Several methods have
been devel. oped to remedy this. " For numerical
simplicity we proceed as follows: %e utilize the
fact that we know the successive amplitude calcu-
lated with Woods-Saxon wave functions (WS) which
have the correct asymptotic behavior. For fixed
relative kinetic energy E, and f ixed scattering
angle 8, we calculate the simultaneous and suc-
cessive amplitudes with pure HO wave functions
for various oscillator parameters b. The ampli-
tudes then change strong'. y due to the varying range
of the HO wave functions. The ratio between the
amplitudes, however, remains constant within
narrow limits. This reflects the fact that the ma-
trix elements for the two processes depend on the
asymptotic behavior of the wave functions in the
same way. Calculating this ratio for every 8,
and E, and assuming that this ratio also holds
if one would calculate both simultaneous and suc-
cessive amplitudes with WS wave functions, one
arrives at a corrected simultaneous amplitude
from the knowledge of the successive amplitude
for VfS functions. In every case the simultaneous
amplitude is much smaller than the successive
one.

In Fig. 2 the absolute values of the corrected
amplitude of simultaneous transfer (f,"') together
with the successive amplitude (f"') is given as a
function of the kinetic energy of relative motion in

l.0

4)

E

05
Xl
cf

Xl
O

CL

FIG. 2. Absolute values
of transfer amplitudes for
simultaneous (f~ ) and
successive (f '

) pair
transfer as a function of the
kinetic energy of relative
motion of the two Sn nuc-
lei at infinity. The c.m;
scattering angle is, fixed at
180'.

260
I

270
I

Ec~ (MeV) 280
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150' the amplitudes should decrease even more
rapidly due to angular momentum mismatch.

C. Dependence on the paranlters
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FIG. 3. Like Fig. 2 as a function of the c.m.-scattering
angle at fixed relative energy E~~ =250 MeV.

the c.m. system E, . The scattering angle is
fixed to 8, =180'. At about E, = 273 MeV (about
5.4 MeV below the barrier) perturbation theory
starts to diverge, i.e. , the transfer probability be-
comes larger than one for the successive ampli-
tude. This breakdown of perturbation theory means
that the probability for the two pair transfer is not
simply given by the square of the one pair trans-
fer probability, Higher order transfers must be
very important but can only be calculated in a
coupled-channel calculation. The solutions of these
calculations would have the properties as deduced
from simple models' if pair breaking processes
are sufficiently weak. Under the same condition
it can be said according to our calculation that
multiple pair transfer (at least two pair transfer)
is possible at E, = 273 MeV due to successive
transfer mechanism. The simultaneous transfer
is much smaller and would not al.low multiple pair
transf er.

The phase of f,"' is purely positive imaginary
while the phase of f '" varies little. between 1.08'
and 115'(depending on 8, and E, ) which yields
a somewhat constructive inter'ference between the
ampl. itudes. Because in Eq. (3.19) all L& &

have
2 1

the same sign and in (3.38) all Ez &
have very sim-

2 1
ilar phases, both processes gain the same en.-
hancement by superconductivity. The same result
was found by Hashimoto and Kawai for (p, t) re-
actions. " In our calculation the enhancement factor
ranges from 100 to 1000 in the cross section.

In Fig. 3 the absolute vat.ues of the amplitudes
are given as a function of the c.m. scattering an'-
gl.e at the. fixed energy E, = 250 MeV. Below

Checking the reliability of the results, the pa-
rameters have been changed to see the effect on
the amplitudes. A change of the range parameter
of the Ferrel. -Visscher force from p. =1.732 to 2.0
fm increases the simultaneous amplitude by about
25%%uo. The change in the transferring potential to
parameters r, =1.27 fm ore. =0.75 fm [see (4.3)]
yields an increase of the successive amplitude by
about 17%%uo. These parameters do not influence the
results strongly. The biggest uncertainty, how-
ever, comes from. the single-particle wave func-
tions themselves. If one increases the magnitude
of the exponential tail by some factor, the ampli-
tudes are increased by the same factor to the
fourth power as can be seen from (3.12) and (3.39).
Calculating the wave functions with respect to a
Woods-Saxon well with parameters z, = 1.3 fm and
a =0.65 fm the amplitude for successive transfer
increases by about a factor 1.7 to 2. The ratio of
simultaneous to successive transfer should not be
changed (see discussion in Sec. IVB).

D. Nonorthogonality effects

To estimate nonorthogonal. ity numerically bvo
calculations have been done: the norm (A5) and
the nonorhhogonality contribution (A7) to succes-
sive transfer have been evaluated. All quantities
were calculated for numerical simplification at
the distance of closest approach for head-on col-
lisions at E, = 250 and 273 MeV. Because the
correction term should be integrated over the
whole trajectory and nonorthogonality corrections
are largest at the distance of closest approach our
results are necessarily upper limits for the true
corrections.

The norm (A5) gives results between 0.01 and
0.06 for E, =250 MeV and between 0.03 and 0.1
for E, =273 MeV. So condition (A5) is fairly
well satisfied. To obtain a numerical estimate of
nonorthgonal. ity effects in the successive transfer
we consi.der the quantity

c= Q T, ,(to)T, ,(t,)v,u, v,u,
le2

at the distance of closest approach (time= t,). Re-
membering (3.13) this is a direct measure of f'".
Comparing e with matrix element (3.37) and with
matrix element (A8) one finds a reduction of a by
9%%uo (E, =250 MeV) I by 23%%uo (E, =273 MeV)
due to nonorthogonality. Because of the double
averaging over the trajectory in the time integra-
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tion (3.30) the true corrections should be much
smaller. So the amplitude for successive transfer
would still. diverge at slightly higher energies (a
reduction of 23% would be compensated at E
= 274 MeV). The simultaneous transfer would be
influenced in the same way by nonorthogonal. ity.
Because the ampl. itude is already small we did not
consider nonorthogonality corrections in this case.

E. Coulomb excitation

Winnik' has shown in a numerical calculation
using a schematic model that Coulomb excitation
stroly suppresses the pair transfer amplitude.
Be found an effective decrease of the pair transfer
coupling constant by 25% which leads, in the region
where perturbation theory is correct, to a reduc-
tion of the cross section by a factor of 2. Checking
Winnik's results with the analytic formula of Baltz
qt gf."one finds that Winnik underestimates Cou-
lomb excitation. Therefore we calculated the
probability for Coulomb excitation using the
deBoer-Winther code. We found that the probabil-
ity for both nuc1. ei to be in the ground state after
the collision was 30%%up for energies at the barrier,
which is far below Winnik's value of about 50%.
Therefore we expect a decrease of the pair trans-
fer amplitude by about 50% instead of Winnik's
25%. This shows that Coulomb excitation strongly
suppresses the pair transfer process. But even
the reduction of the amplitude by a factor of 2 al-
lows multiple pair transfer at 2.5 MeV below the
barrier. In all these calculations only the Cou-
fi.omb excitation of the first 2' level in '"Sn was
considered. We want to stress, however, that the
inclusion of higher excited states does not change
the results, because it is expected that higher BE2
values are much smal. ler than predicted by a pure
phonon model. " This leads to a bottleneck effect
because electromagnetic transitions to higher
states are strongly suppressed. In every case a
better estimate of the pair transfer amplitude
would require a coupled-channel calculation in-
cluding Coul. omb excitation.

V. DISCUSSION OF THE RESULTS
I

In the ' Sn('"Sn, "'Sn)"28n reaction under back-
ward angles we find the amplitude of the succes-
sive pair transfer mechanism to be about a factor
of 6 larger than the simultaneous one. This im-
plies the case of weak correlations of Ref. 7. The
nucleons are preferentially transferred by the
Hartree-Pock potential of the reaction partner in
two steps rather than in one step as a correlated
pa, ir. The same relation between simultaneous
and successive transfer amplitudes has been found

by Broglia et gl. ' fairly below' the barrier. It is
important to note that both mechanisms gain the
same enhancement due to superconductivity. "'"

Because the successive transfer is so dominant
we consider the consequences of this process in
the following. As already mentioned in the Intro-
duction, we define the nuclear Josephson effect
as a multiple transfer of nucleon pairs between the
ground states of superconducting nuclei in a heavy-
ion collision. Asking for the existence of the nu-
clear Josephson effect we must distinguish three
different regions for the relative kinetic energy
of the colliding nuclei.

(i) Fairly below the barrier (more than 10 MeV)
perturbation theory is valid. So the probability for
the transfer of two pairs is approximately the
square of the probability for one pair transfer,
which is clearly smaller than 1. Therefore multi-
ple pair transfer is strongly suppressed.

(ii) Immediately below the barrier (about 5 MeV)
perturbation theory diverges, i.e. , the transfer
probability is larger than I. So multiple pair
transfer is possible and could only be calculated
by coupled-channel calculations, which would yield
an oscillating excitation function in the pair trans-
fer channels typical for the existence of Joseph-
son currents. ' However, two types of pair break-
ing mechanisms will reduce this effect. Including
Coulomb excitation, we expect that perturbation
theory does not diverge before 3 MeV below the
barrier. Pair breaking channels due to nuclear
forces should be of direct character below the bar-
rier like one nucleon transfers and inelastic ex-
citations. They produce absorption in the pair
transfer channels. Because these processes do
not gain the enhancement due to superconductivity,
we expect them to be weak for energies where
Josephson currents just establish.

(iii) Above the barrier the nuclei interpenetrate
deeply (Fig. I) and many different reaction chan-
nels open which lead to strong absorption and prob-
ably suppress the Josephson currents. Such a re-
sult was found in a recent paper by Broglia et al."
by using a %KB technique with complex turning
points.

As a consequence one may expect the Josephson
effect just below the barrier where the collision is
very slow and very soft. Little is known about ab-
sorption for these nuclei. If the pair breaking ef-
fects are larger than expected in (ii) the Joseph-
son effect could be destroyed: however, the pair
trarisfer channel must be very strong. It should
be mentioned 'that the semiclassi. cal approximation
is still valid at 3 MeV below the barrier, i.e. ,
contributions from classically forbidden regions
are very smalI. .

Finally we want to mention a possible experi-
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ment to detect the nuclear Josephson effect. As
the pair transfer cross sections are of the order
of the Rutherford cross section between 8, =180'
and 8, =150 we expect rather big cross sections
of several tens of p,b's for the pair transfer. In-
stead of measuring directly the fragments after the
collision, one may detect them by activity mea-
surements. " In a "'Sn -"'Sn collision for ex-
ample, where all relevant propertie5 are the
same as in the '"Sn -'"Sn case (as we have
checked), one may detect the unstable" Sn iso-
tope by its radioactive decay products. Because
in a central collision the "'Sn nucleus is stopped
in the target and all fragments from contaminant
reactions are not stopped due to the high kinetic
energy of the incoming "'Sn nucleus, it is a rather
clean exper iment.
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~here V2 is now tHe HF potential of nucleus 2.
The corrected successive transfer matrix-ele-
ment reads:

(A6}

APPENDIX A

Introducing the overlap matrix M, ,=(g,
~ P,) and

separating the diagonal part, we obtain the matrix
K [see Eg. (2.13) of DH],

M=. 1+X. (A1)

(A4)

A similar expression holds for (g, ~. A necessary
condition that nonorthogonality contributions are
small is that the norm of (giNo

~

is small:
-Z/2

[(yNofpo)]1/2 p i(@ /@ )i
2

(A5)

If E=O, the basis is orthogonal; so the matrix
elements of E are a direct measure of the non-

orthogonality. K has the properties

(A2)

In first order of the nonorthogonality we get [see
(2.12)]

M ' = 1+K=(1+K) '= 1 -K.
Equation (2.13) reads now in first order in K,

APPENDIX B

Because the formulation of Gotz et al.7 for two-nu
eleon transfer will be more common to most read-
ers, we try to compare the two formalisms. First
we state the main features of Ref. 7. The total
Hamiltonian is decomposed according to the dif-
ferent channels, which leads to different channel-
Hamiltonians implying different systems of basis
functions for different channels. By their very
definition basis functions referring to different
channels are not orthogonal on each other. Treat-
ing the T matrix up to second order one is led,
according to the different Hamiltonians, to different

representations such as prior and post represen-
tations for the first order T matrix and prior-
prior, prior-post, post-prior, and post-post rep-
resentations for the second order T matrix. If
one neglects correlations between the nucleons,
the transferring potential is only the HF poten-
tial, which is a one-body operator: Then simul-
taneous transfer is not possible. In the formula-
tion of Ref. 7 it turns out in this case that si.mul-
taneous transfer vanishes only due to a cancella-
tion of the first order T-matrix element and the
nonorthogonal. ity term of the second order T ma-
trix. This means there is no clear cut distinction
between simultaneous and successive transfer,
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because these processes are not simply given by
first and second order T-matrix elements.

In the DH formalism, however, only one Ham-
iltonian is used in second quantization. The basis
is determined by a BCS (or HF) calculation, which
means that one puts the effects of two-body forces
acting within one nucleus as far as possible into
one-body operators such as the HF potential in
(2.19). But there are still two-body matrix ele-
ments which scatter between the nuclei and which
are not taken into account by the basis. These
matrix-elements are then responsible for the
simultaneous transfer (3.9). If one neglects two-
body forces, the simultaneous transfer amplitude
automatically vanishes. The HF potential exerted
by the nucleons of one nucleus on the nucleons of

the other is responsible for successive transfer
(3.37), which means that there is a clear and
unique distinction behveen simultaneous and suc-
cessive transfer. Furthermore nonorthogonality
enters differently: each process may be corrected
for these effects separately and there is no inter-
weaving of the perturbation expansion and non-
orthogonality corrections as in Ref. 7. However,
the DH formalism has two disadvantages: (i) It
may be applied only to heavy systems, because
one has only one Hamiltonian. So properties such
as the HF potential must not change strongly in the
transfer process. (ii) It is not possible to transfer
clusters with more than two particles simultan-
eously because there are at most two body op-
erators.
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