
PHYSICAL RKVIE% C VOLUME l9, NUMBER MARCH 1979

Critical analysis of statistical methods used to detect resonances in nuclear reactions
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The effectiveness of several existing statistical tests in locating resonances in compound nuclear reactions
above the Coulomb barrier is'examined, and a new test based on the number of maxima at any single

bombarding energy in a set of excitation functions is introduced. It was found that only the three tests based
on the deviation functions, summed cross sections, and the distribution of maxima were suitable for the
detection of resonances, and that the latter test was the most sensitive. The various tests were used to
analyze ' C(' C,a)' Ne, ' C(' N, a)"Na, and ' C("N,a)"Na excitation functions. Evidence for nonstatistical
structure was found in all three reactions by examining the distribution of maxima.

NUCLEAR REACTIONS C( C, n) Ne, E =18.0 —25.5 MeV; C( N n) Na,
E, =10.2-18.1 MeV; ~ C( N, o.) 3Na, E, =9.5 —17.3 MeV. Statistical model

predictions. Statistical tests examined. Nonstatistical structure observed.

I. INTRODUCTION

Recently there has been a great deal of experi-
mental and theoretical study of resonance pheno-
mena in heavy-ion compound nuclear reactions. ' '
Two of the earliest features to be noted were that
resonances were observed only in systems in
which ' C or '6Q was one of the reactants and in
which the number of levels available in the com-
pound nucleus was small. " In these reactions the
resonant features are easily discernible from the
normal statistical behavior due to corre1ations be-
tween different exit channels at the resonant ener-
gies. For many reactions, however, the resonant
features, if they exist, are not very striking and
at first glance do not appear radically different
from statistical fluctuations. There is also a high
probability of observing structure in excitation
functions which appears to be intermediate struc-
ture, but is fully explainable in terms of the sta-
tistical model. ' Standard statistical tests such as
cross correlations and autocorrelations are not
sensitive enough to detect the presence of only a
few resonances in excitation functions. ' Further-
more not all resonant features appear in the same
manner. Thus, one needs a variety of statistical
tests that are sensitive to the various types of
re sonant features.

It is our purpose in this paper to examine some
of the different types of statistical tests previous-
ly used to find resonances and to determine their
usefulness and sensitivity when applied to heavy-
ion reactions. Further we introduce a test based
upon the counting of maxima (this test was pre-
viously used' in a slightly different form). These
tests are used to analyze excitation functions (dif-
ferential cross sections at a single lab angle over a

wide bombarding energy range) from the following
reactions C(~ C, c))~ONe, C(~4N, o))~2Na
12'(15N +)23Na

It is important to differentiate between resonant
features and nonstatistical structures. Statistical
tests can determine whether features of cross sec-
tions are inconsistent with the statistical model
and thus locate nonstatistical structures. Reso-
nances are not necessarily the only means of pro-
ducing nonstatistical structure in excitation func-
tions, In the present work, however, we can only
sear ch for nonst3tistical structure. Assigning
these phenomena as resonances requires addition-
al information such as correlations in angle or ob-
serving them in other exit channels.

II. CRITIQUE OF STATISTICAL TESTS NOW IN USE

A. Deviation functions and sums of excitation functions

Tests based on sums of excitation functions and
deviation functions have been the tests most fre-
quently used to detect the presence of intermedi-
ate structure. The strength of these tests is that
sums over a large number of states tend to aver-
age over the statistical fluctuations thus making
correlated structure more apparent. One short-
coming of this method is that large fluctuations in
a particular state with a large cross section might
possibly be mistaken as nonstatistical structure.
In order to avoid this problem deviation functions
are sometimes used. There are two very similar
deviation functions for N excitation functions

777 1.979 The American Physical Society



778 L. C. DENNIS, S. r. THORNTON, AND K. R. . CORDKLL

(2) 0;E a;Q

where v, (z) is the differential cross section at a
given angle for the state i at bombarding energy
E, and ( & denotes an expectation value. At low
energies this method works well but at liigher en-
ergies there are three important characteristics
that limit the effectiveness of deviation functions:
(1) not all exit channels show the presence of a
resonance in the same manner, (2) not all states
in the same reaction channel show the presence of
a resonance, and (3) the energy of a, resonance
may shift slightly for different exit channels. ' Be-
cause of these effects the deviation functions and
sums of excitation functions may not always show
significant deviations from the average when reso-
nances are present.

B. Autocorrelation functions

The autocorrelation function for each state i is
defined as

Since the statistical model predicts that the cross
correlation should be zero with some variation due
to the finite range of the data (FRD),"the results
of this test can be directly compared to the statis-
tical model. Using a running average to calculate
average cross sections removes the effect of grad-
ual trends in the data and thus reduces the average
correlation coefficients. Relating nonstatistical
results of a cross-correlation analysis to a. parti-
cular resonant feature is difficult because the
cross-correlation coefficient is not dependent on
energy and thus cannot single out a localized fea-
ture of the excitation function.

D. Energy dependent cross-correlation function

Qne cross-correlation coefficient" that can de-
termine energies of resonances is

where & & denotes the expectation value, but must
be determined experimentally by calculating the
average cross sections for an energy interval I
and by then averaging Z;(c) over the entire excita-
tion function. The usefulness of the autocorrela-
tion function to detect the presence of intermedi-
ate structure was demonstrated by Singh et al.'
in studies of the 'Al(P, n)23Si reaction. This tech-
nique, first suggested by Papallardo, "involves
studying changes in the variance of an excitation
function R;(e= 0) as the length of the averaging in-
terval is increased.

When broad structures are present the variance
will increase steadily with increasing averaging
interval until the ave'raging interval is comparable to
the width of the structure. At this point the variance
remains constant until the averaging interval be-
comes larger than the structure width. ' This plat-
eau is very distinct when the structure has a much
larger width than the fluctuation width and it is one of
the dominant features of the excitation function. Un-
fortunate Jy, this method does not allow comparison
with statistical model predictions so random Quctu-
ations may be mistaken as nonstatistical structures.

C. Cross-correlation function

Cross-correlation coefficients have been used to
look for correlated structure in excitation func-
tions. '" The cross-correlation coefficient be-
tween two excitation functions i and j is given by

where the subscripts i and j are indices used to
label the excitation functions. A running average
can be used for average cross sections. This func-

- tion gives indications of correlated bumps and dips
in the cross sections. The major difficulty with
using this function is that it is not a true correla-
tion coefficient. C(E) is not bounded by 1 and -1
and can not easily be altered to a, function that is
bounded without destroying its usefulness. Be-
cause it is not a true correlation coefficient, stan-
dard methods cannot be used to determine the sta-
tistical model prediction for the range of C(E).
One can obtain an estimate of the probability dis-
tribution of C(E) values using a generalization of
Chebyshev's inequality which states that"

Here P is the probability of observing a value of
C(E) greater than t(M„)'~" where

for n greater than I. For n=2 this is the standard
Chebyshev's inequality

p(IC(z)-&C(z)&I/vari C(z))'"-t)-t, (8)

where var(C(E)) is the variance of C(E).
Figures 1(a)-1(c) show C(E) for the

12C(12+ ~ }20Ne 12C(14N ~ )22Na and 12C (15N ~ )23Na

excitation functions (these data will be discussed
in Sec. III). There are several energies where
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F, IG. 1. The energy dependent corre1ation coefficients
for (a) i2C,(i2C ~)20Ne (b) i2C(f4N ~)22Na and (c) i2

("N, &) 3Na reactions catcu1ated using Eq. (5). The
bombarding energies are in the c.m. system.

C (E) exceeds one, but we found that the magnitude
of C(E) sometimes depends on the length of the en-
ergy interval used to calculate the average cross
section. In Sec. III we will briefly examine the re-
liability of using C(E) to predict nonstatistical
structures. We can see from Eq. (I) that very
large deviations are needed before the probabilit-
ies become small. A better method of calculating
the probabilities would make the C(E) function
more useful.

E. Runs statistic

The runs distribution and length of runs distribu. -
tion were first determined by Mood. '4 These dis-
tributions were utilized by James, "Moore, ' and

Baudinet-Robinet and Mahaux" to detect interme-
diate structure in excitation functions. In using
this test a single "run above" is defined as an un-
broken string of observed quantities above a pre-
determined reference value r; a "run below" is
similarly defined. We let u be the total number of
runs both above and below a reference value in a
sample. If p the probability for a value above r
and q the probability for a va, lue below r are un-
known then when one observes N, data values above
r and N, data values below r the expected numbers

Whenever both N, and N, are greater than 10 the
variable

lu —E(u) I-'-
var(u)'"

is approximately normally distributed with a mean
of zero and a variance of one."

The runs test can tell us if there are correlations
within a single excitation function. Statistical mod-
el excitation function cross sections are not ran-
dom sequences of numbers but are correlated when
the energy step size is comparable to the coherence
width. Thus any test which checks for randomness
within a. single excitation function is sure to find
nonrandom behavior in such excitation functions and
ca,nnot be used to support the presence of other
types of nonstatistica. l structure.

F. Distribution of maxima

Another test that ean be used to cheek for non-
statistical structure is based on counting the num-
ber of maxima that occur at each energy in a group
of excitation functions. Resonances may result in
an anomalously high number of maxima in a given
energy region; thus by comparing statistical mod-
el predictions for the number of maxima to what is
observed, one may be able to locate nonstatistical
components in excitation functions. The predicted
number of maxima in each excitation function de-
pends only slightly on the spin and energy of the
final levels, ' '" the number of effective channels,
and any direct component""; these effects are
small and can. be neglected. For example, varia-
tions in I' for the three reactions studied here
were very near the variations found in I" for the
synthetic excitations studied by Van der froude.
Statistical effects on the number of maxima are
small, 2' less than 3% in the excitation functions
considered here. Variations in the number of
maxima, with energy within a single excitation func-
tion are smaller than the expected variation taking
sample size into ac@'ount. ""Since the effects dis-
cussed above are small, one can consider the num-
ber of maxima in each excitation function as differ-
ent statistical estimates of the same number. Al-
so since the number of maxima is linearly propor-
tional to the energy interval, ' we conclude that the
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probability of observing a maximum at any energy
in any excitation function is the same. Thus the
distribution of the number of maxima at each en-
ergy in any group of excitation functions should
follow a binomia1. distr ibution. The probability
parameter P for the binomial distribution can be
determined by counting the number of maxima in
all the excitation functions and dividing by the num-
ber of points. The statistical error on the binomi-
al parameter P is given by

var, (P) =r(l-P)
e 4e'

where n is the total number of points checked for
maxima. The probability for observing N or more
maxima P(N) in N„excitation functions is

P(N) =, -,p'(& -P)™'. (»)k! (N —k)!

We can further strengthen the test by adding other
conditions to the maxima, such as that o(E)/(o'(E))
be greater than a given reference value ~ and that
it be significantly higher than its nearest neigh-
bors. In a, ll cases the binomial parameter must be
redetermined using the new conditions.

The tests based on the distribution of maxima
can be used to study structures whose maxima
are spread over several energies. This situation
can be handled in a very straightforwa, rd wa, y by
making P the probability for a maximum in the en-
ergy interval E+ sE. Of the three reactions stud-
ied here all showed possible nonstatistical struc-
tures based on the number of maxima occurring at
two or three adjacent energies. Exactly how large
an energy inverval can be used effectively in this
test depends on the relative sizes of the energy
spacing of the data points, the coherence width of
the compound nucleus and the widths of any non-
statistical structures present. The likelihood of
finding nonstatistical structure does decrease as
the energy width is increased due to the smaller
nonstatistical structure to fluctuating background
ratios. In general the shifts in energy from one
reaction channel to the next are expected to be
less than the decay width of the structure. Reso-
nances that were previously reported in light ion
reaction channels had widths ranging from 100 to
400 keg. Thus we expect energy shifts of rough-
ly this size. For each of the three reactions we
examined, our largest energy interval was about
250 keV. This width should be large enough to de-
tect most nonstatistical structure present.

To 'illustrate how these ideas fit the data, Figs.
2(a)-2(c) show typical fits to several observed dis-
tributions. In each case the parameter p was the
probability for a maxima under the given condi-
tions determined by counting the number of such
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maxima in a group of excitation functions and
dividing by the number of points checked. As can
be seen from Fig. 2 the fits are quite good, but
there are some energies where the number of
maxima is larger than might be expected by the
statistical model. We wish to determine at which
energies these large numbers 'of maxima occur.

Figure 3 shows the detailed behavior of P(N) as
a function of ~ for three energies measured in the
"C('4N, n) 'Na reaction excitation functions. The
dashed line in Fig. 3 also shows the behavior of p
as a function of r. The strong oscillations in P(N)
for all three energies are the result of a change
in the number of maxima observed at the particu-
lar energy being studied. These oscillations are
not due to sample size effects on P. This is clear
because of the lack of correlation in the large
oscillations at the different energies and the rela-
tive smoothness of p as a function of r for ~ less

0 I ~~ I

0 5 l0

Number of Nlaxima

FIG. 2. The histograms show the observed distribu-
tions of the nuznber of bombarding energies with a given
number of maxima at a sing1e bombarding energy for the
excitation functions of the C(~ C 0.) ONe, C( N, n)~25a,
and C( N, n) Na reactions under the conditions given.
The solid curves show the statistical model predictions
calculated from the binomial distribution using the de-
duced probability p for a maximum under the same con-
ditions.
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show P(N) values for structures that have low prob-
abilities of occurrence over a wide range of r val-
ues and could be called nonstatistica1. - The curve
in c shows much lower values than in 5 over a larg-
er range in x, and one has more confidence in call-
ing this structure nonstatistical. The structure
whose P(N) values are shown by curve a does not
exhibit probability' values that would normally be
considered nonstatistical. By sampling a fern val-
ues of x one can find most nonstatistical structure.
Any arbitrary dependence on the choices of ~ re-
sulting in missed structure can be removed by ex-
amining more values of r.

)O6 I I . t l I

0 4 .8 1.2 1.6 20 24
r = e(F)/&0'(E))

I'IG. 3. The probability P{N) of [Eq. {12)] for three
energies from the C{» N, n) Na reaction is shown as a
function ofw. The c.m. bombarding energies are 10.89,
13.29, and 1{).62 MeV for curvesa. , b, and c, respec-
tively. The dashed curve shows the behavior of p, the
probability of a maximum, as a function of r.

than 2. Sample size effects on P and thus P(N) can
be seen in the small oscillations in P for ~ greater
than 1.2 and in similar oscillations in P(N) which
are most easily seen in the downwa. rd sloping seg-
ments of the sobd curves in Fig. 3.

When interpreting the results of the distribution
of maxima tests for the various choices of ~ it is
important to realize that nonstatistical structure
mill not necessarily have low probabilities of occur-
rence for all values of ~. This is easily seen for
large values of x because one can always choose
an r so large that none of the excitation functions
contain a maximum for which o(E)/(o(E)) is great-
er than ~. For small values of-x the expected num

ber of maxima is often so high that the probability
for a maximum in all the excitation functions in
one energy region is not extremely small. Since
we are looking for a distribution of maxima in a .

sma11 energy interval that is substantially differ-
ent from the predicted distribution, we need only
consider the range of r values where the predicted
and observed distributions can be significantly dif-
ferent. Thus me. restricted our study to r values
between l.0 and 1.5 (the precise limits for the
range is somewhat arbitrary). Any structure
which shows a small probability for any value of
r can be considered nonstatistical (though most
nonstatistical structures mill have small probabil-
ities for a range of r values). Confidence in call-
ing any structure nonstatistical increases for
smaller probabilities. This is illustrated by the
three solid curves in Fig. 3. The curves b and c

III. EVIDENCE FOR THE EXISTENCE OF NONSTATISTICAL

PHENOMENA

Of the tests described in Sec. G only those based
on the number of maxima and deviation functions
mere used to locate nonstatistical structure. Be-
cause these tests will yield nonstatistical results
when there are correlations between different exit
channels me can use nonstatistical. results as evi-
dence of resonant behavior. '4 Of course the great-
er the deviation from statistical predictions the
stronger the evidence, but for smaller deviations
the separation between nonstatistical and fluctua-
tion behavior is nontrivial. Making the separation
based solly on the results of large deviations such
as seen in the exit channels of the '~C-' C reac-
tions may mean missing similar but weaker effects
in other reactions. In making our decisions we
followed Dayras et al.25 and called any event with
a probability of 0.01 or less rionstatistical. At
this probability level we would expect, from sim-
ple statistical considerations, about one such
event over the entire range of the excitation func-
tions.

A. The reaction ' C{'2C,n) Ne

Twenty-three excitation functions (8„,=5'} for
~'Ne excitation energies from 0.0 to 17.44 MeV
with bombarding energies taken in 62.5 keV steps
for center of mass energies from 18.0 to 25.5 MeV
(Ref. 1) were analyzed with the tests described in
Sec. II. Fortune et al. ' postulated the existence of
four resonances at 18.4, 18.6, 19.0, and 19.4 MeV
(c.m. }based on the number of peaks they observed
at these energies.

Table 1 shows the P(N) values for selected bom-
barding energies under several conditions on the
maxima. The number of digits to the right of the
decimal for the energies listed indicates whether
the P(N) values are for P(N) values determined
from single energies (two digits) or from a range
of energies (one digit). The energies listed in
Table I are the only ones that showed consistently
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TABLE I. Statistical model probabilities for observed structures.

Reaction

i2C (i2C ~)20we

&c.m. r=1.0
Probabilities calculated using Eq. (12)

r= 1.1 r= 1.2 r= 1.3 r= 1.4 r= 1.5

18.4
18.6
20.75
21.9
22.44
24.75

0.015
0.016
0.053
7.4x10 3

7.4x10 3

4.3x10 3

4.6x10 3

7.3 x 10
0.027
3,2x10 3

3.2x10 3

7.3x10 3

0.020
0.017
0.071
1.7x10 3

3.5x10 3

0.017

8.9x 10"3

0.037
9.3x10 3

0.018
1.5x10 3

9.3x10 3

5.4x10 3

0.021
0.021
5.4x10 3

1.4 x 10"3
0.021

0.020
0.042
9.5x10 ~

0.020
5.7 x 10"3
0.15

"C(r5N o)»wa

10.6
13.29
13.7

11.47
12.4
15.4
16.2

1.3x10 5

2.6xl0 4

6.9x10 4

0.038
1.7xl0 3

5.7x10 3

0.041

1.7x10 '
5.].x10 '
3.3x10 3

0.015
0.043
5.0 x 10"3
0.014

1.9x10 ~

4.8x10 3

2.9x10"'

0.018
0.050
7.5x10 4

0.021

9.4 x 10"8

7.8 x 10"3
7.1x 10"3

5.3x10 3

0.057
2.0x 10
0.017

6.2 x 10
3.1x10 3

1.7 x10"3

0.020
0.020
3.9x10 4

5.0 x 10"3

6.8x10 8

0.034
1.5x10 3

0.025
6.0x10 3

2.1x10 3

'7.0x10 ~

low values of P(E) as r varied. The majority of
energies have been excluded from the table as they
do not show low probabilities in any of the tests.
As can be seen from Table I the criterion outlined
above is.satisfied by the structures at 18.4, 18.6,
20.75, 21.9, 22.44, and 24.75 MeV. Only two of
these energies, 18.4 and 18.6 MeV, agree with
those given in Ref. 1. These structures are the
most striking of those seen in this reaction. %hen
the results from the distribution of maxima test
are compared to the energy dependent correlation
function shown in Fig. 1(a) one observes that they
are only slightly correlated with the energies for
the nonstatistical structures. Secondly, the strong-
est peak in Fig. 1(a) does not correspond to the

energy with the most maxima but instead exhibits
a peak between 18.4 and 18.6 MeV; thus it indic-
ates the presence of one rather broad structure in
this energy region. This broad structure is also
seen in the deviation function. Because of this we
decided that what wa, s previously called two re-
sonances is probably only one. If resonances do
occur at 19.0 and 19.4 MeV their strength is spread
out enough so as not to be detected by this test.
The maxima at the latter two energies may be due
to the correlated minima reported by Greenwood,
et aL." at E, =19.2 MeV.

B The reaction '2C(' N n)~ Na

Twenty excitation functions for "Na levels less
than 5.44 MeV excitation energy were analyzed by
the use of the distribution of maxima tests. These
twenty excitation functions were for n particle
cross sections measured from 'bombarding ener-
gies of E,.m =10.15 to 18.09 MeV at 8„„=7." From

the probabilities given in Table I we see that there
is evidence for nonstatistical structure at three
energies: E, =10.6, 13.3 and 13.7 MeV. The
structure at 10.6 MeV is very striking considering
just the maxima at 10.6 MeV, but there are also
a large number of maxima, at the next two lower
energies 10.5 and 10.4 MeV. This indicates the
presence of a broad structure whose strength is
spread over these three energies. This structure
is also seen in the C(E) distribution and in the de-
viation function where the peak at 10.6 MeV has a
statistical probability for occurrence of about
0.002. The structure in the total cross section
has a rather wide width with I', being about 400
keV. Because of this we conclude that there is
only one structure near 10.6 MeV and not three
closely spaced structures.

I

C. Thy gggggjpn C( N 0.) Ng

Twenty-eight excitation functions for states in
"Na less than 8.94 MeV excitation energy, which
were measured in 89 keV steps for center of mass
bombarding energies from 9.51 MeV to 17.33 MeV
at 8 &,b

= 7',"were analyzed by the statistical tests
described in Sec. II. The only test that showed
evidence of nonstatistica. l fluctuations wa, s the test
based on the distribution of taaxima. Referring to
Table I we see evidence for the presence of four
nonstatistical. structures at E, =11.5, 12.4, 15.4,
and 16.2 MeV. The most prominent structure lo-
cated at 15.4 MeV, can be based on the maxima at
15.29, 15.38, and 15.47 MeV. Also the nonstatisti-
cal nature of the structure at 16.2 MeV is based on
the maxima from two adja, cent energies.

In Ref. 2 a much larger number of correlated
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structures were advocated. The fact that the pres-
ent test does not detect these structures may re-
sult from the abnormally large value of p, the bi-
nomial probability for a maximum, that such a
large number of correlated maxima could produce.
However, the observed value of p for the
"C("N, n)"Na excitation functions is consistent
with that predicted using I'= l4 exp[-4.69(A/E„)' ']
MeV and the methods described in Ref. 22 for ex-
citation energy, E„and nucleus of mass A..

IV. DISCUSSION

Statistical tests do not prove the existence of
resonances; they merely indicate where they are
most likely to be found. As long as the probability
for some structure is not zero, it is possible that
it can be explained by the statistical model. There-
fore, further evidence is needed, such as the mea-
surement of different angu1ar momentum depen-
dences on and off such structures, or correlations
in angle or exit channel, before one can claim a
resonance has been found.

The major difference between the structures ob-
served here and the quasimolecular structures ob-
served at lower energies is that these structures
are not nearly as pronounced as the quasimolecu-
lar resonances. Further these structures do not
appear in all of the excitation functions, the strong-
est at 10.6 MeV in "C("N,o.)"Na appears in 18 of
20 levels. This leads one to believe that there is
either a selection rule in operation or the struc-
tures are not due to entrance channel resonances.

The energies of the "C("C,n)"Ne structures fit
in well with the. quasimolecular model. Whether
the structures in the other reactions can be under-
stood with this model mould require the location of
more structures at other energies, in other chan-
nels and the measurement of angular momentum
values at each of the structures. The reactions
in which these structures occur are basically
statistical in nature and the structures, with the
possible exception of the one at 10.6 MeV in the
"C("N, a)22Na reaction, produce only minor de-
viations from statistical model predictions for
average cross sections or coherence widths. ~
Gomez del Campo' has suggestedthat the struc-
tures in the "C('~N, n)2~Ma reaction are due to the

excitation of isolated high-spin states in the com.-
pound nucleus. Such high-spin states would have
an angular momentum above the Yrast line but
below the critical angular momentum cutoff.

Another possibility arises in light of calcu1ations
with synthetic S matrices by Moldauer. " These
calculations showed that when large transmission
coefficients are involved in the calculation of com-
pound nuclear cross sections a broad resonance
tends to show up strongly in all channels. Moldau-
er's calculation was done using a much smaQer
number of compound nuclear states than are pres-
ent in these reactions so that an extrapolation from
his calculations to the cases studied here is not ob-
vious. Generally the resonances Moldauer is con-
sidering are much broader than those observed
here, nevertheless the correlated peaks we ob-
serve could be a manifestation of this effect in
this higher density region.

V. CONCLUSION

The analysis of the three sets of excitation func-
tions has produced evidence for nonstatistical
structures in aQ three sets of excitation functions.
This evidence is based on the number of correlated
maxima observed at each energy. Other statisti-
cal tests, such as those that look for nonstatistical
deviations in the summed cross sections, do not
give evidence for these nonstatistical effects with
the exception of the structure at 10.6 MeV in
"C("N, ~)"Na.

The tests do not give an indication of the cause
of such structures; thus more work needs to be
done to determine whether these are some type of
resonance phenomena or whether they represent a
breakdown of the stati. stica1 model due to the pres-
ence of large transmission coefficients or small
density of high-spin states.
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