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Asymptotic normalization parameter of the triton
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On the basis of exact separable potential calculations, we show that there is a significant variation of the
asymptotic normalization parameter C, of the triton with its binding energy. We present a partial wave
dispersion relation technique for determining this parameter from the triton energy, the doublet n-d
scattering length, the doublet, s-wave, n-d inelasticities, and the two-nucleon, on-shell scattering
amplitudes. We test the method and find it to be accurate and stable with only low-energy information used
as input. For a doublet scattering length of 0.65 fm we obtain C, = 3.3+0.1, where the error limits are
determined from uncertainties in the inelasticities and the analytic continuation of the two-nucleon
amplitudes to negative energies.

I

NUCLEAR REACTIONS exact separable potential calculations; partial wave
dispersion r'elations for n-d elastic scattering amplitudes.

I. INTRODUCTION

In recent years a great deal of attention has been
focused on the asymptotic normalization parame-
ters (ANP's) of the 'H and 'He bound state wave
functions. A summary of the results obtained
through January 19V4 is contained in the review
article of Kim and Tubis. '

The ANP's appear in a great many situations,
and there are a number of ways for determining
them. They play an important role in distorted-
wave Born-approximation calculations of direct
nuclear reactions, ' and, in fact, such analyses pro-
vide a somewhat indirect determination of them.

The peripheral model" provides a more direct
and less model dependent determination of these
parameters from nuclear reaction data. In this
model the amplitudes are determined by a small
number of singularities located close to the physi-
cal region. The ANP's are directly related to the
strengths of these singularities. The results ob-
tained with this approach are briefly summarized
in Ref. 5.

The peripheral model has also been used' in a
phase shift analysis of p-'He elastic scattering in
order to determine the phase shifts for 1.&1. The
ANP of 'He was determined by taking it as an ad-
justable parameter in fitting the data.

The analytic structure of scattering amplitudes
has led to another useful technique for extracting
ANP's: the so-called expansion technique in the
cos8 plane. ' " In this method the strengths of the
nearest singularities to the physical region in the
cos8 plane at fixed energy are determined from
differential cross section data. These strengths
are directly related to the ANP's. Conformal
mapping techniques have been used to increase
the effectiveness of the method when important

background singularities are present' ' and Cou-
lomb corrections have been incorporated. "'"

Yet another method based on the analytic struc-
ture of scattering amplitudes is the use of disper-
sion relations. Both forward"'" and partial
wave"" dispersion relations have been used to
determine ANP's.

The asymptotic part of the three-body wave
function makes an important contribution to the
matrix elements that describe the electro- and
photodisintegration of 'H and 'He, therefore vari-
ous analyses ' of these processes have led to
values for the ANP's. The photodisintegration
calculations"'"'" have used wave functions based
on separable potential: models of the three-nucleon
system. &he first determinations '" of the
ANP's from such wave functions gave values con-
sistently higher than those obtained from other
methods'; however, the most recent calculation"
shows that this is not a general feature of the sep-
arable potential model.

In the last few years several authors" "have
extracted ANP's from three-nucleon wave func-
tions obtained from exact solutions of the Faddeev
equations. Calculations have been carried out for
local, "'"'"as well as nonlocal"" potentials.
The results indicate that the ANP of 'H is sensi-
tive to the two-nucleon potential. It is worth noting
that various integral expressions have been de-
rived for the 'H ANP, "'""which make it possible
to calculate it from either configuration space or
momentum space wave functions.

Here we shall present two types of calculations
for the ANP of the triton: exact separable poten-
tial calculations and calculations based on partial
wave dispersion relations. The purpose of our
separable potential calculations is to study the
variation of the ANP with the triton binding ener-
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gy. Our results indicate that it is important to
use a potential which gives the experimental bind-
ing energy for the triton when calculating its ANP.
From the point of view of methodology, it is worth
noting that we extract the ANP from the residue
of the triton pole in the n-d elastic scattering am-
plitude rather than from the triton wave function.
Our procedure is numerically sta&le and quite
straightf orward.

Our partial wave dispersion relation calcula-
tions are an attempt to determine the triton ANP
from the two-nucleon, on-shell amplitudes, the
triton energy, the doublet, n-d scattering length,
and the doublet s-wave, n-d inelasticity. It is
known"' that the discontinuity acxoss a, signifi-
cant part of the left-hand cut (I HC) in the partial
wave, n-d elastic scattering amplitude depends
only on the analytic continuation of the on-shell,
two-nucleon amplitude to negative energies. Part
of the LHC discontinuity in our region of interest
also depends on the deuteron wave function, which
is off-shell two-nucleon information; however, we
find that this contribution to the LHC discontinuity
has an insignificant effect on our results. We use
a conformal mapping technique to parametrize
the effect of the omitted portion of the LHC. This
introduces two parameters which we adjust to the
triton energy and the doublet scattering length.
We take inelasticity effects into account by means
of Froissart's" method. We present tests of our
approach which show that it is accurate, and not
very sensitive to the input once the triton energy
and doublet scattering length have been specified.

In Sec. II we present the results of our exact
separable potential calculations of the ANP of the
triton C,' for a range of values of its binding ener-
gy. Section III gives our partial wave dispersion
relation approach for determining C,'. The analy-
tic structure of the doublet, s-wave, elastic n-d
scattering amplitude is discussed and analyzed in
Sec. IIIA. In Sec. III B, we derive the N(D equa-
tions used to solve the partial wave dispersion
relations. Our numerical results are given in
Sec. III C. Section IV provides a brief summary
and discussion of what we have found. Throughout,
we work in units such that 5 /M is one, where M
is the nucleon mass.

II. SEPARABLE POTENTIAL CALCULATIONS

The model of the three-nucleon system that we
use is that given by the well known Amado- Love-
lace equations, "'"which corresponds to the use
of spin-dependent, central, s-wave separable po-
tentials to describe the two-nucleon interaction.
Our notation and normalizations are given in Ref.
32. Throughout, the two-nucleon triplet and sing-

let states are denoted by 1 and 2, respectively.
For the triplet form factor we assume

gi(p)

where

n(P)
P +P'' (2.1)

4n
(1 —np)

[-(I;i~) ~~(e- e,)j. (2.2)

f „(p,q; s) =g„(p)A„(s)g„(q), n = 1, 2

with

x'g„'(x)
X 2 7

0 P -s

(2.3)

(2.4)

. where s is the two-body energy parameter, and X„
determines the strength of the interaction. In the
triplet state, we eliminate A., by- demanding that
6;(s) have a pole at s =-n' This giv. es

a, '(s) =(s+n'

We set

J x'g, '(x)
(x'+ n')'

25(x'+n')(x' —s) '

(2.6)

which is just the bound state -normalization condi-
tion; The on-shell amplitude is given by

— 2 1
tn(p~pip +'I&) =-

p t~ pg p cot5 —zp
(2.7)

The representation (2.1) for the deuteron vertex
function has been obtained by a number of au-
thors. "'" We shall see in Sec. IIIA that using
this form ensures that the branch point of one of
the low energy singularities in the n-d scattering
amplitude occurs in the right place. In (2.2) n is
the deuteron wave number; i.e. , n' is the deuteron
binding energy in fm ', p is the deuteron effective
range, p, is the inverse pion Compton wavelength,
V, is the strength of the one pion exchange poten-
tial in fm ', and g and p, are adjustable parame-
ters. The V,/p, term in (2.2) can be justified' on
the assumption that the deuteron wave function
corresponds to a two-nucleon interaction with a
Yukawa tail. Since we ax'e assuming central for-
ces Vp does not have a well defined theoretical val-
ue for the triplet state where the tensor force oc-
curs. For the singlet state it would be 10.463
MeV." We rather arbitrarily choose a value of
20 MeV to account for the fact that the triplet force
is stronger than the singlet force, and we take p.

=0.7 fm '.
The parameters g and p, are fitted to" n

=0.23161 fm ' and p =1.701 fm as follows. The t
matrices for our potentials can be written in the
form" "
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where 5„is the two-nucleon, s-wave phase shift.
In the triplet state, we can use effective range
theory to write

shift, g the inelasticity, and k the neutron wave
number in the c.m. frame, then we have for the
n-d amplitude"""'"

p cot6, = -n+-,'p(p'+ n') +

from (2.3)-(2.8), we obtain

where

(2.8)

(2.9)

f(k') = (zle" —I)/(2ik),

where

~2 ~ 3)2

(2.12)

(2.13)

(2.14)

(2.10)

Equations (2.6) and (2.10) give us the two condi-
tions we need to determine & and P,.

For the singlet form factor we choose

gz(p) = [1- (popo)']l(p'+ p.')", (2.11)

where p„p„and the integer n are adjustable pa-
rameters. This form is chosen for its simplicity
and because it gives us the freedom to sweep out
a range of triton binding energies, while maintain-
ing a fit to the singlet scattering length a and the
effective range rp. Our procedure is to choose pp
and n, and then fit X, and P, to a=-23.715 fm and

rp 2.73 fm, using the method of Ref . 37. With
n=2 andpp ranging from 1.27 fm ' to 1.74 fm ',
we find triton binding energies ranging from 6.53
to 8.81 MeV, respectively. The potential that re-
produces the experimental triton energy of 8.48
MeV has pp=1.64 fm '. From now on we shall re-
fer to this interaction as the reference potential.

In order to find the ANP of the triton we use the
relation between it and the residue of the triton
pole in the doublet, s-wave, elastic, n-d scatter-
ing amplitude. If 5 is the corresponding phase

with E, the triton energy in fm ' and C,' the ANP
of the triton. as defined' in Ref. 1.

The triton pole occurs in the integral term in
the Amado-Lovelace equations [see Eq. (6) of Ref.
32], and sits on the one-nucleon exchange cut
which is carried by the Born term (see Sec. IIIA).
We locate the position of the pole and its residue
by using the Pade approximant technique of La-
vine. " Our results are given in Fig. 1.

We see that there is a significant variation of
C,' with the triton energy. For the reference po-
tential the value of C,' is 3.66, while for the ener-
gy of the Reid potential, "E, =6.70 MeV, the value
of C,' is 3.21. This is somewhat higher than the
value of 2.86 found by Kim and Tubis. " If we ex-
trapolate their value to the experimental energy
by simply using the ratio of our calculated values,
a value of 3.26 is found.

We study the sensitivity of C,' to the vertex func-
tions by refitting the parameters in (2.2) and
(2.11), starting with different values for,VO and n.
In order to prevent a proliferation of numbers, we
adjust pp in each case so that E, comes out to be
8.48 MeV. Some typical results are given in Ta-
ble I. The first row is our reference potential.

3.6

Fro. &. Asymptotic nor-
malization parameter of the
triton as a function of its
binding energy,

REID EXPT.

I

7.0
I

7.5
E, (MeV)

8.0
I

8.5



586 9. A. GIRARD AND M. G. FUDA l9

V, (MeV) po (fm )
2

t

20
20
20

' 0

1.64
1.60
1.58
1.67

3.66
3.68
3.68
3.63

TABLE I. C& for various potentials. imaginary part in the usual way, i.e.,
[f(z+ie) -f(z —ie) j/2i =Imf(z+ie) .

From (3.2), we have on the RHC

1 2

Imf(z+i&) =z ~
I f(z)l'+ &iy~,

(3.3)

(3.4)

See Sec. II for the meaning of the parameters.

We see that within our framework there is very
little sensitivity to the two-body potentials. This
should not be interpreted to mean that Fig. 1 rep-
resents a universal function relating C,' and E&.
The local potential results ' do not fall precise-
ly on our curve, although they do follow its gener'-
al trend. Also, the results of Sec. III show that for
a given value of E„noticeable changes in C,' arise
from small variations in the doublet scattering
length. Our results should be interpreted as only

giving a rough indication of the variation of C, '
with E,.

where the inelasticity g = 1 for 0 ~s ~ 1 and g & 1

for z&1. We shall be using values of g taken from
separable potential calculations as well as from
experiment.

The nearest left-hand singularity is the one-nu-
cleon exchange cut, whose discontinuity is given
by"

Imf( zi+e) =a/[+3. (1 —np)z], -3&z &-1/3.

(3.6)

In all of our calculations we use the values for n
and p given in Sec. II.

The two-nucleon exchange cut begins where the
one-nucleon exchange cut ends, and has a model
independent discontinuity across its leading edge
given by the relations"

HI. PARTIAL %(AVE DISPERSION RELATIONS

Imf(z+ie) =
3 1 —npz

(tg I' '-~3)/2
x Ji„ duf „(u' —1+z),

A. Analytic structure of the n-d amplitude

We begin by discussing the analytic structure of
the s-wave, doublet, elastic, n-d scatteririg ampli-
tude. Following Barton and Phillips, we intro-
duce a dimensionless energy variable and ampli-
tude by means of the relations

z = 3k'/(4n'),

f(z) = (ne"' 1)/(2iz' ') .-
(3.1)

(3.2)

In general, ' '"'"'~ this amplitude has an RHC due
to two- and three-particle unitarity, and an LHC
associated with the exchange of nucleons and me-
sons. Since we are dealing with a real, analytic
function the-discontinuities are related to the

Here we shall present a. method for extracting
C,' from the N/D solution of partial wave disper-
sion relations for the n-d scattering amplitude.
The essential difference between our approach and
that used previously by other authors' '" is that
our amplitude is constructed so as to give the ex-
perimental triton energy E, and doublet scattering
length a2. We have seen in the last section that
C,' is sensitive to E,. We sha. ll see in Sec. IIIC
that using an amplitude with specified values of
E, and g2 makes the calculated value of C,2 insen-
sitive to the discontinuities across the distant parts
of the LHC and right-hand cut (RHC).

n =1

'(r/n)'&-z -&-3,
j. ~ 3

~ll 4& ~12 4 r

f„((o)= e'+ sinO„/(u'~', (u = s/n' .

(3.6)

Here the Jl are spin-isospin recoupling coeffi-
cients, the f„are dimensionless two-nucleon elas-
tic scattering amplitudes with s the two-nucleon
c.m. energy, and -y' is the location of the nearest
singularity of the g„(p) in the p'-plane (see Sec.
II). It is important to note that the recoupling co-
efficients weight the singlet contribution (n =2)
nine times as much as the triplet contribution (n
=1). Also, it can be shown" that for the range of
z values in (3.6), the range of &u values in the in-
tegrand is

-~(r/n)'-1- ~- -4. (3.7)

The next nearest singularity goes by a variety
of names: the anomalous branch point of the nu-
cleon-deuteron vertex function with one nucleon
off shell, "the g-triangle singularity, ' and the 4'
singularity. " For the sake of brevity, we shall re-
fer-to it as the d' singularity. Here we shall de-
rive an expression for its discontinuity within the
framework of potential theory.

The on-shell Born term for doublet, s-wave,
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elastic n-d scattering that arises in the three-par-
ticle formalism of Alt, Grassberger, and Sandhas

36

[ I I I I I I I I I I I I I

(3.8)

where

h(p') =gl(p) . (3.9)

N
4

The result is

h (p +ie) -h (p -i&) =-2&ilp
I 'o(lpl)h(p'),

(3.11)

where K(p') is the principal value form of (2.1).
Using the Cauchy integral theorem, we obtain

(3.12}

Inserting this into (3.8) and converting to the di-
mensionless amp1itude (3.2), we find

1/2
z' ~'I'I e(nu)K( n'u')-

Illlf(z +X&}=—2~ du 2(1 g)
Qo

3 n

u. =(Il+o')/a, z ~ -3[(Il+~)/o'],
u, = lz l'~'/v 3, z 4.-3[(p,+ o.)/n]' .

(3.13)

We see that this discontinuity is model dependent
in the sense that it depends on off-she11, two-nu-
cleon information; to be precise, knowledge of the
deuteron wave function is required. It is worth
noting that the discontinuity vanishes at the branch
point.

In order to get some feeling for the relative
strengths of the three discontinuities considered,
we calculate them for our reference potential (see

The one-nucleon exchange cut is associated with
the vanishing of the denominator in (3.8), whereas
the 4' cut is associated with the singularities of
the deuteron vertex function which has the form"'"
(2.1).

In deriving the discontinutiy across the 6' cut it
is convenient to work with a representation for
h'(p'). From (2 ~ 1) it is clear that h'(p') is analy-
tic in the p -plane, cut along the negative real axis
beginning atP'=-(p, +o.)'. The discontinuity across
this cut is easily calculated with the help of the
identities

h'(p'+ ie) —h'(p' —ie) = [h(p'+ ie) + h(p' —ie)]

x jh(p'+ i@) —h(p' —ie)]
(3.10)1 1

~+ zie(p'+ p') .

0—
-l2 -IO

Z

FIG. 2. Left-hand cut discontinuities in the doublet,
s-wave, elastic n-d scattering amplitude for the refer-
ence potential.

Sec. II). The results are shown in Fig. 2. The
model independent one-nucleon exchange discon-
tinuity falls by an order of magnitude over its
range. The two-nucleon exchange discontinuity
starts at zero, but rises rapidly. The 6' discon-
tinuity also starts at zero, but fortunately, never
gets very large, at least in the range we are in-
terested in.

The function R(z) has RHC's starting at z.= 0 and
z =1, but no LHC's and is such that F(z) satisfies
a two-body-like unitarity relation, namely

ImE '(z + ie) = -z'~', z ~ 0 .
On the I HC we have

I m(zzL +)z=lmf(z+ie)/R(z), z & —-', .
We write

&(z) = N(z)/D(z),

(3.16)

(3.17)

(3.18)

with N(z) carrying the LHC and D(z) the RHC. It
is straightforward to show" that D(z) can be ob-
tained by solving the equation

8. N/D formalism

Here we shall derive the equations needed to
construct a doublet, s-wave, elastic n-d scattering
amplitude with the discontinuities described in
Sec. IIIA, and specified values of E, and a, . We
start by translating the N/D scheme of Froissart"
into our notation. We introduce an effective am-
plitude E(z) through the relation

f(z} 1 1
E(z}=

( )
+ . y2 ( )

—1 (3,14)

where

R(z) = exp — dy, &, }
. (3.15)

iz'~' "
Inq(y)

7I l y (y —Z
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D(y) Imz(y + le)
1/2

(
1/2 1/2) 0 0864 (3.26)

and that N(z) can be obtained from

N(z) = -z '/'ImD(z + ie), z )0 .

(3.19)

(3.20)

From (3.19) it follows that" D(z) is an analytic
function in the z' ' plane, except for a cut along
the negative imaginary axis, beginning at i/v -3.

In our approach we put ip only part of the LHC
explicitly, and parametrize the effect of the omit-
ted portion. We do this by breaking the integral in
(3.19) into an integral on the range -~ to -5, say,
and one on the range -b to --,'; i.e., we write

where the square root is defined by

(zl/2 pixel/2)1/2 —+ ~zl/2+ $1/2)/2e'te/2 7fj2 (g( 3v/2

D(z) =1+ U(z'/')

iz'/' '/' D(y) ImE(y + ie)
( )1/2

(
1/2 1/2)

where U(z'/') stands for the integral on the range
-~ to -b. In Ref. 36, where we were only inter-
ested in small values of z(~z ~

S 1), we parametrized
U(z'/') by expanding it in powers of z'/'. Here we
are interested in larger values of z(~z ~( 10), so
this is not good enough.

In order to get a satisfactory parametrization,
we use a conformal mapping technique in which
we map the z' '-plane, cut along the negative imag-
inary axis from i~ to--iM5, onto the interior of
the unit circle in the zo-plane, centered on the ori-
gin. The mapping we use is given by

i n'/4( 1/2 t 1/2)1/2
(z ) 1 2/4 1/2 151/2&1/2 d ~ d )0 (3.22)

We expand U(z' ') as a power series in w, which
leads to a series that converges everywhere in
the cut z'/'-plane. The fa.ct that D(z) is a real,
analytic function of z implies that U(z' ') has the
property

U(-Z 1/
) = U+(Zl/2) (3.27)

U(0) = 0 . (3.26)

We keep the three leading terms in the power
series, and using (3.28) write our parametriza-
tion in the form

U(z'/') = c,[w(z' ') -co(0)]

+ c,[ur (z'/') -2@{0)]'. (3.29)

We now determine c, and c, so that our ampli-
tude will have a specified triton energy E, and
doublet scattering length a2. From (3.20), (3.21),
and (3.27) we obtain

U(-z'/') —U(z'/').
N(z

D(y) Imz(y +is)
+ dg

-b
(3.30)

which in turn gives with the help of (3.18), (3.19),
(3.22), and (3.29)

1 -i/3
E(0) = Bcl+-

F
D(y)imF(y+ie)

(3 31)e.

where

for z positive and real Si.nce our mapping (3.22)
has the same property the coefficients of the power
series in lc are real. According to (3.19) and
(3.21) the coefficients are also constrained by

(3.23)
d

51/4(f 1/4+ d)2 (3.32)

5"-d Mat '/' d-
&1/4 d

Re (w ) (3.25)

We choose d to be the number that makes the two
limits in (3.25) equidistant from the origin, name-
ly d= (2b)'/4. This minimizes the magnitude of the
two limits simultaneously. With this choice the
maximum value of ~m~ on the line given by (3.25)
1S

The left-hand side of the cut is mapped onto the
upper half of the unit circle in the ce-plane, , while
the right-hand side is mapped onto the lower half.
Our calculations are carried out along the line

(3.24)

which is mapped by (3.22) onto the line

According to (3.1), (3.2), (3.14), and (3.15) we have

F(0) = — '+— dy =-A2na2 1 "
Inll (y)

2 3/I'2 (3.33)

D(z, ) =0,
where

(3.34)

(3.35)

Carrying out the elimination of c„we arrive at
our final equation for D(z):

which when combined with (3.31) gives us an ex-
pression for c, that can be used with (3.29) to
write (3.21) as an equation for D(z) with c, appear-
ing linearly. This parameter can be eliminated by
requiring D(z) to have a zero corresponding to the
triton energy, i.e.,
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D(z) =1- (A/B)[w(z"~') -w(0)] —(1 —(A/B)[w(z, '~') -w(0)]j

-X/3 iz' ' w(z' ') —w(0)
dy D(y)lmF(y +le),z, „, ,~„+F

iz, ' ' w(z, ' ') -w(0) w(z' ') -w(0) (3.36)

C. Numerical results

Our calculations of C,' proceed as follows. A
doublet scattering length and a set of inelasticities
are used in (3.33) to determine A. This parame-
ter, the triton energy parameter z„and the dis-
continuities described in Sec. III A are put into
(3.36). This equation is then solved numerically
for D(z), using Gauss-Legendre quadrature rules
to convert it to a standard linear matrix equation.
In doing this the integral is broken up into three
pieces, corresponding to the three discontinuities,
so as to have a smooth ihtegrand within each range
of integration. The solution for D(z) is then used
in (3.30) to obtain a set of values for N(z) in the
neighborhood of z,. It should be noted that in this
neighborhood N(z) is complex, except exactly at
z, where it is real. We work with only the real
part of N(z) when using Lavine's" method to ex-
tract the residue of Il (z) at z, . This residue is
converted to C,' by means of (2.12), (2.13), (3.1),
(3.2), (3.14), and (3.15).

In order' to test our method, we use it to ex-
tract C,

' from the reference potential model of the
triton as given i;n Sec. II, which we recall gave
C,'= 3.66. This model gives a doublet scattering
length of a, = 0.986 fm. We calculate the inelastic-
ities up to a lab energy of 200 MeV or z =59.9,
and use them to evaluate the integrals in (3.15)
and (3.33). We initially take 5 in (3.36) to be
~(y/n)' which according to (3.6) is the lower end
of the model independent part of the tw'o-nucleon
exchange cut. Recall that -y' is the location of
the nearest singularity of the g„(p) in the p'-plane.
For the reference potential this turns out to be
given by y = p, + n, which leads to b = 12.134. We
take the discontinuities across the LHC to be those
shown in Fig. 2. Our N/D method gives a value of
C,

' = 3.65 which is within 0.3% of the exact value.
Since the value of b is somewhat arbitrary we

need to know the sensitivity of our results to it.
Table II gives the results which show that even
with b =5.39, the 6'-branch point, our method gives
a C, which is within 4% of the exact value. The
value at b = 3 indicates clearly that it is important
to include some of the two-nucleon exchange cut
so as to get a reasonable value for C,'. In order

2

12.134
9.0
8.0
7.0
6.0
5.39
3.0

3.65
3.66
3.67
3.70
3.75
3.80
5.36

5 is the parameter in (3.86)

to see the effect of the inelasticity, we carry out
a calculation at b =12.134 with q set everywhere
equal to one. This gives C, =3.36 which is within
8/g of the value calculated with the theoretical in-
elasticities, so the inelasticity produces a non-
negligible, but not overwhelming effect.

In order to extract C,
' from experiment, we

must use experimental values for the triton ener-
gy E„ the doublet scattering length a„and the in-
elasticities. For E, we use 8.48 MeV. The value
of a, has moved around a great deal over the
years, ' with the latest value being a, = 0.65 fm,
so we calculate C,' for a range of values for a,.
We use the inelasticities of Arvieux" which are
available up to a lab kinetic energy of 46.3 MeV
or z =13.9. For the LHC discontinuities we use
those shown in Fig. 2, which were calculated with
the reference potential. The value of b in (3.36)
is 12.134. The results are given in Table III. We
see that the values of C,' are quite sensitive to a,.
The experimental value of 0.65 fm gives G', ' = 3.31,
whereas the value for our reference potential,
0.986 fm, gives a va, lue 10% higher,

In order to study the sensitivity of our results
to the LHC and RHC discontinuities, we perform
a set of calculations with a, =0.65 fm. The most
model dependent LH discontinuity is that associa-
ted with the two-nucleon exchange cut, and here it
is the singlet two-nucleon amplitude that is most
important. If we use the Yamaguchi form factor
[(2.11) withp, =~ and n=l] to construct the singlet
amplitude, we find a noticeable change in the two-
nucleon exchange cut discontinuity, but find that
C,' changes only from 3.31 to 3.36, or 1.5%. We

'fABLE II. Dependence of C& on b.
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TABLE III. && for various doublet scattering lengths. to interpret the results it is useful to know that

g2 (fm) 2 Ing(y)
dy 3~, = -0.662,

y
(3.38)

0.1
0.3
0.5
0.65
0.8
0.986
1.2

2.88
3 ~ 02
3.18
3.31
3.45
3.65
3.90

find that other models for the triplet and singlet
form factors, such as those described at the end
of Sec. II, give similar changes in C, , so the un-
certainty associated with the LHC is of the order
of a percent or two.

In studying the uncertainty in C, associated with
the inelasticity, we use the reference potential
model for the LHC. The inelasticities enter the
calculations through the integrals in (3.15) and
(3.33). In the calculations of Table III, the inte-
grals are simply cut off at z =13.9. If we use the
theoretical reference potential inelasticities over
the range from z =0 to z =59.9, we find no change
from the value of C,' = 3.31, given in Table III.

Another way we can estimate the inelasticity un-
certainty is to break up the integral in (3.15) into
two pieces and approximate the piece involving the
experimentally unavailable inelasticities by its
value at z = 0; i.e. , we write

In71 (y) "'
In@ (y )

y' '(y -z), y' '(y -z)

TABLE IV. Inelasticity effect on ~& .

J dy y~~'In'(y)
13.9

-0.05
-0.1
-0.2
-0.5
-1.0
-1.5

1
0.911
0.830
0.689
0.394
0.155
0.061

2

3.31
3.31
3.31
3.31
3.32
3.37
3.58

Defined by (3.39).

(3.37)
13.9

For 1 &y & 13.9, we use Arvieux's g's." It is easy
to see that this approximation gives for z & 0 val-
ues of A(z) that are smaller than the true values,
and thereby [see (3.17)] exaggerates the influence
of the inelasticity on the LHC discontinuity in
E(z). The second integral on the RHS of (3.37) also
appears in (3.33), so we include its effect there as
well. The results are given in Table IV, In order

and to calculate an effective inelasticity by

3.9
dyy-'~'= dyy-'~']. ng y .

13.9
(3.39)

We see that the integral in Table IV must be some-
what larger in magnitude than that given by (3.38),
and g must be quite small in order for the value of
C,' to deviate significantly from 3.31. Arvieux's
inelasticity and the reference potential inelasticity
at z =13.9 are 0.540 and 0.605, respectively, and
rising. It thus appears that a conservative esti-
mate for the inelasticity uncertainty in C,' is a
percent or two.

If we assume that the experimental doublet scat-
tering length is 0.65 fm, then we must conclude
that based on our calculations C,'=3.31 with an
uncertainty of at most 3-4/p associated with the
LHC discontinuity and the inelasticity.

IV. SUMMARY AND DISCUSSION

We have shown by means of exact separable po-
tential calculations that there is a significant vari-
ation of the ANP of the triton C,' with the triton
energy E,. This strongly suggests that theoretical
calculations of C,' should be based on models of
the triton which reproduce the experimental value
of E,. Using Fig. 1, we have extrapolated C,' for
the Reid potential" to the experimental value of
E„and have obtained C,' =3.26. This agrees rea-
sonably well with the extrapolated value of 3.48
found by Goldfarb et al."

We have developed a partial wave dispersion re-
lation technique for extracting C,' from a knowl-
edge of E„the doublet, n-d scattering length a»
the doublet, s-wave, n-d inelasticity, and the analy-
tic continuation of the on-shell, two-nucleon, s-
wave scattering amplitudes to negative energies.
Our method has been tested and found to be accu-
rate, given information over a limited energy
range. Moreover, it is stable against fairly
sizable uncertainties in the inelasticities and the
two-nucleon amplitudes. Our extracted result is
C,'=3.3+ 0,1 for a, =0.65 fm, where the error lim-
its are based on the above uncertainties.

We now briefly compare our result with those ob-
tained by other workers. We compare only with
ANP's for the triton, and not those of 'He. The
DWBA analyses of nuclear reactions""'" give
values of C,' in the neighborhood of 3. The aver-
age value for the peripheral model analyses is'
C,' = 2.64+ 0.64. The expansion technique in the
cosa-.plane gives' C,

' =2.8 and'" C,' =2.9+ 0.1.
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The most recent value based on the use of forward
dispersion relations is" C,' =2.6+ 0.3. Previous
partial wave dispersion relation calculations give"
C,'=3.4 and" C,'=2.6+ 0.4.

Goldfarb et aE."have obtained an average value
of C,'=2.9+ 0.6 based on a number of sources.

Calculations of C,' based on separable potential
models of the triton"' '9' wave function give
values of C,' ranging from 2.6 to 3.8.

Of the various purely theoretical calculations" '
of C,', the one based on the Malfliet-Tjon poten-
tial ~ has the most realistic value of E„namely
8.5V MeV. This potential gives C, =3.8.

%e see that our value of C,' lies somewhat above
the middle of the range of values given above. It
agrees well with the extrapolated values for the

Reid potential. For future reference it should be
kept in mind that (see Table III) changes in a,
from the value of 0.65 fm we have used as the bas-
is for our comparison can significantly change our
value of C,'.
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