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Virtual state of the three nucleon system
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The existence of a virtual state of the three nucleon system is established on the basis of three diAerent

analyses. Values for its pole position and residue in the doublet, s-wave, n-d elastic scattering amplitude,
are obtained from a fit to the experimental data, from partial wave dispersion relations, and from an exact
three-particle, separable potential calculation. The calculations indicate that these parameters are determined
mainly by the one-nucleon exchange mechanism and the doublet scattering length a, . For a, = 0.65 fm our
best calculation gives an energy of 0.482 MeV below the elastic threshold, on the second Riemann sheet,
and a residue parameter C, = 0.0504, where C„' is defined in analogy to the triton asymptotic
normalization parameter.

NUCLEAR REACTIONS Three-nucleon virtual state; fits to data; dispersion rela-
tions; separable potential calculations.

I. INTRODUCTION

It is by no% well established that the doublet, s-
wave effective range quantity k cot6 has a pole just
below the elastic threshold for n-d scattering.
This pole has been incorporated in the phenomeno-
logical formula which has been used' to fit the low
energy data for k cot&. Its position and residue
have been calculated from dispersion relations as
well as exact solutions of three-particle equations
with separable interactions 2 The residue of the
pole is defined by

residue
k cot~

0

The calculations show that this residue is negative,
which implies that k cot& sweeps through a large
range of positive values for k &kp . Below the
breakup threshold the elastic scattering amplitude
can be written in the form

1(k') =
k cot&-N .

A virtual state exists if the denominator vanishes
for k negative imaginary. Since k cot& is an even
function of k, the above remarks suggest that there
is a virtual state in the doublet, s wave. Unpub-
lished calculations have found such a state. '4 It is
important to establish the existence of such a
state, as it may play as important a role in the
theory of the four nucleon system as the Sp two-
nucleon virtual state plays in the theory of the
three nucleon system.

Here we present calculations for the position of
the virtual state pole in f(k») .and its residue. We
define the residue parameter C„' in analogy to the
asymptotic normalization parameter of the triton'

C,'. W'e obtain values for the pole position and
residue from the van Oers-Seagrave fit, ' from
NlD solutions to partial wave dispersion relations,
and from an exact separable potential calculation.
The calculations indicate that these parameters
are determined mainly by the one-nucleon ex-
change mechanism and the doublet scattering
length a,. For'a, =0.65 tm our best calculation
gives an energy of 0.482 MeV below the elastic
threshold, on the second Riemann sheet, and

C„=0.0504.

II. VIRTUAL STATE POLE POSITION AND RESIDUE

The van Oers-Seagrave' fit to the low energy,
doublet, s-wave phase shifts is given by

k cot5 =-A+Bk2 —Cl(1+&k2), (2)

withe. =0.3105 fm ', B=0.85 fm, C =3.138 fm ',
and D =478.5 fm~. This fit gives for the pole in
k cot5 and its residue k = -2.09 x 10 fm, and
-6.56 X10' fm ', respectively, which agree well
with the results of Ref. 2 for a2=0.29 fm. From
(1) and (2), it follows that f(k') has a virtual state
pole at k„= -i0.129 fm-' or at an energy B„
=85'~k„~'j(4M) =0.515 MeV below the elastic
threshold, on the unphysical sheet. Here M is the
nucleon mass.

W'e define the residue parameter by"'

f(k')- (&)»2-»„' 2(k k„) .
From (1)-(8) we find C„'=0.0718 which is remark-
ably small compared to our value of C,2= 3.3 for
the triton. '

In our dispersion theory calculations we shan
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include inelasticity effects,. so we replace (1) by

f(k2) - (7Je2@ ])/(2ik) (4)

where g, the inelasticity, is one below the break-
up threshold and less than one above it. We intro-
duce a dimensionless energy variable and ampli-
tude by means of the relations

z = 3k2/(4n2) (5)

f(z) = (ne"' -I)/(»z" ')

where a = 0.231 61 fm ' is the deuteron wave num-
ber. In generaP' " this amplitude has a right-
hand cut (RHC) due to two- and three-particle
unitarity, and a left-hand cut (LHC) associated
with the exchange of nucleons and mesons. Two-
particlelike N/D equations can be written in terms
of the effective amplitude F(z) defined by""

f(z}
))(z) Rim"' A(g)

where

integration are from -~ to -b. The point z = -b
divides the LHC into apart (z& —b) whose discon-
tinuity will be put in explicitly, and a part (z & -I))
whose effect will be parametrized through the
function U(z'/'). The point z = —3 lies at the junc-
tion of the one- and two-nucleon exchange
cuts.""The function U(z'/') is analytic in the
z' ' plane, cut along the negative imaginary axis
from -i~ to iWb. -

In Ref. 2 the pole in k cot& was studied by means
of the above N/D equations with )1 =1 and b =3,
thereby neglecting inelasticity effects, and includ-
ing explicitly only the one-nucleon exchange cut.
The function U(z'/') was expanded in powers of
g' ' and only the term linear in g' ' was retained.
In general the constant term does not appear,
since U(0)=0. The coefficient of the linear term
was determined by fitting f(z) at z = 0 to the doublet
scattering length a, . An approximate analytic
solution of the N/D equations was obtained by ap-
proximating the Born amplitude by a pole term.
The approximate D function is given by Eq. (20)
of Ref. 2. If this function is set equal to zero, a
quadratic equation in g' ' is obtained, whose solu-
tions are

iz'/' " In)I (y)B(z) =exp — dy „„F ~ p (g —g)

The function R(z) has RHC's starting at z = 0 and
z=1, but no LHC's and is such that E(z) satisfies
a two-bo&y-like unitarity relation, namely,

ImF '(z+zc) = -z'/' z ~ 0

z',"= i(2y)-'((1 -&3/5 P)

~[(1—))'3/5 P)'+ 443/5 y]' '),

where &

P = 2na, /&3,

(14)

(15)

on the LHC we have

i~( +is) = imf(z+is)/If( ), z- -k. (10)

and

2v'3/5P+2v'5/3 d —Pd
243/5+d

We can represent E(z) by

E(z) = N( )/D(z),

with

8
5v3 (1-o.'p)

D(z) = 1+U(z" ')

iz' ' ' ' D(y)imF(y+is)
)./2( i/2+ 1/2) (12)

with N(z) carrying the LHC and D(z) the RHC. It
is straightforward to show that" D(z) can be ob-
tained by solving the equation

Here p is the deuteron effective range which we
take to be" 1.701 fm. For reasonable values of
a2, y is positive, and therefore @~+~2 and g are
positive and negative imaginary, respectively.
Clearly z,' ' and g' ' give the triton and virtual

- state poles in our approximate amplitude. The
parameter d =1.524 is approximately 2v'3/5. If we
approximate d by this value and expand to first
order in)3, we find

and that N(z) can be obtained from

N(z) = -z '/'ImD(z+is), z &0. (13)
z, =- —,', (3~v5 )(1+ z &3P}.

Here U(z'/') is given by the same expression as
the integral term in (12), except that the limits of

A few numerical calculations show that (18) is a
good approximation to results obtained from (14).
Thus our simple theory predicts that the triton
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and virtual state energies are linear functions of
the doublet scattering length. The Phillips
plot"" shows that an approximately linear relation
exists between calculated values of the triton ener-
gy and doublet scattering length. Equations (14)
and (18) do not give good quantitative agreement
with this plot, however, we shall see that they
give fairly accurate results for the virtual state.

From (3) and the results of Ref. (2), it is
straightforward to show that the approximate am-
plitude that led to (14) and (18) gives for the resi-
due parameter

2( g. ' ' —g ' ')(v'3/5 —g ' ')
3( g, '~g+ z ' 2)(43/5+ z ' ).

For a, = 0.29 fm [the value from Eq. (2)] we find
from (14) and (19) B„=0.542 MeV and C„'—P.P630,
while for the latest experimental value' of a,
= 0.65 fm, we find B„=0.578 MeV and C„'=0.0547.
We see that our approximate N/D amplitude gives
somewhat different values for the virtual state
parameters than (2), and also predicts a non-
negligible variation of B„and C with a, .

In order to display more thoroughly the model
dependence of the virtual state parameters, we
present a set of calculations based on the N/D
equations with various treatments of the RHC and

LHC. The numerical method is described in
Ref. 7. Initially we consider only a2=0.65 fm. If
we solve exactly the N/D equations that led to the
approximate amplitude considered above we fi.nd

B„= 0.491 MeV and C„'=0.0485. This model can
be improved upon by using the conformal mapping
technique of Ref. 7 to obtain a better parametriza-
tion of U(g'~'). We use Eq. (3.22) of Ref. 7 to
map the g-' ' plane, cut along the negative imagi-
nary axis from -i~ to -ivb, onto the interior of
the unit circle in the m plane, centered on the or-
igin. We then expand U(g'~') as a power series in
ce(z'~'), which converges everywhere in the cut
g' ' plane. If we keep the two leading terms of the
series and insure that U(0) =0, we have

from the results-with /=1.
The treatment of the LHC can be improved upon

by using the reference potential model' of the two-
oueleon and 4' cuts with b = -12.134. Using the
calculated inelasticities, we find B„=0.482 MeV
and C„'=0.0504, or changes of 1%%d and 2% com-
pared to the results i~mediately above. In
Table I we give the virtual state parameters for a
set of doublet scattering lengths. The N/D model
used is the one just described. We see that there
is a significant variation of B, and C„' for the
range considered.

It is possible to carry out straightforward sepa-
rable potential calculations for the virtual state
parameters if one realizes that the n-d elastic
scattering amplitude can be written in the form-

(21)

. where h(g) is an even function of z' '. The proof
of this follows. On the interval 0- g + 1, f(z)
satisfies the two-body unitarity relation (9). This
implies that h(z) is a real, analytic function of z,
'except for a LHC beginning at z=3, a RHC be-
ginning at g =1, and poles at. the zeros of f(z).
Such a zero exists and gives rise to the pole in
k cot6 discussed in the Introduction. If one re-
moves this pole from h(z), a function is obtained
which can by expanded as a Taylor series in
powers of z, which converges for ~z ~& 3. This
leads to a representation for h(g) which is clearly
even in g'~'. It is easy to calculate values of h(z)
for z' ' positive imaginary. From these f(z) can
be obtained for z' ' negative imaginary, which
makes it possible to determine the virtual state
parameters. The results of such a calculation
with the reference potential described in Ref. 7

are a, =0.986 fm, 8„=0.498 MeV, and C„'=0.0448.
This potential reproduces the experimental triton
energy. AnN/D calculation with the model used for
Table I gives 8„=0.503 MeV and C„'=0.0438 for

U(g' ')=c[w(z' ') -m(0)]. (20)

The parameter c is real, and can easily be deter-
mined by the doublet scattering length. ' Using
(20) in (12) with 5=3 and @=1, we find „B= 407 8
MeV and C„'=0.0512. We see that the mapping
technique produces changes of 3% and 6% in B„and
C„', compared to the results immediately above.
From now on we use the parametrization given by
(20).

If we keep everything the same, but put in the in-
elasticities calculated from the reference poten-
tial of Ref. 7, we find B„=0.486 MeV and C„'
=0.0496, which differ by 2% and 3%, respectively,

g2 (fm) a„(MeV) C„2

-1.2
-0.9
-0.6
-0.3

0
0.3
0.6
0.9
1.2

0.374
0.391
0.407
0,424
0.442
0.460
0.479
0.498
0.517

0.0932
0.0857
0.0783
0.0711
0.0643
0.0577
0.0514
0.0455
0.0399

TABLE I. Virtual state parameters for various doublet
scattering lengths.



B. A. GIRARD AND M. . G. FUDA 19

a, =0.986 fm. Thus our most sophisticated NlD
model gives results for the virtual state parame-
ters which agree very well with those obtained
from the exact solution of three-body equations
with separable interactions.

The calculations presented here, as well as
others we have performed indicate that the re-
sults of Table I are reliable, and furthermore that
the virtual state parameters are determined mainly

by the one-nucleon exchange mechanism and the
doublet scattering length.
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