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Reactive content of the optical potential
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A simple unitarity relation is derived for the elastic projectile-nucleus scattering amplitude. This result
provides an alternative interpretation and justification for the ordinary distorted wave impulse approximation,
and thus may serve to correct a misapprehension concerning this approximation which might erroneously be
obtained from recent trends in the literature.
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Recent studies" of the reactive content of the
optical potential in a single-scattering model, and
applications' of this result to (m, nÃ) reactions,
have pointed out that the lowest-order optical
potential has implicit within it a description of
single-nucleon knockout with too little absorptive
effect. It seems important to emphasize that this
should not create an impression that —at least in
knock-out reactions —the usual distorted wave
impulse approximation (DWIA) may not be fully
consistent, or that one should modify the DWIA
for (v, ~N), say, so that the outgoing pion is not
distorted and the outgoing nucleon is distorted
On~& by the real potential which initially binds the
nucleon. The ordinary DWIA would have the knock-
out process governed by the matrix element

&x, x~4~, Pt., x. 0,}, (1)
j= 1

where t,'„" is the pion-nucleon scattering amplitude
for the ith nucleon and P„and P„, are the initial
and final nuclear wave functions for A and (A. 1}
nucleons, respectively. Distorted waves with
absorptive parts appear for the initial pion in
g' and for the final state pion and outg-oingnucleon
in X,'. ' and y'„, '. The conclusion which is inferred
from the considerations of elastic unitarity for the
lowest-order optical potential in Refs. 1-3 is that,
in the final state, the pion there appears as a
plane wave, X',, '- P... and the nucleon is distorted
by a real binding potential. These authors correct-
ly attribute this situation to the use of a single-
scattering approximation. Nonetheless, the pre-
cise nature of the breakdown in this approximation
has remained implicit and a dangerous impression
may thus be left —not intended by those authors—
that an approach which is in some sense "more

consistent" than that used to derive the ordinary
f)WIA might suppress full final-wave distortions.

We shall therefore attempt a very simple, and
essentially exact, derivation of the general uni-
tarity relation for the elastic amplitude, in the
course of which we hope to clarify both the con-
ventional result and the unconventional one.
Since the manipulations and considerations are
very straightforward, and their presentation here
justified only by the need to avoid the possibility
of a serious misinterpretation, we strive for
maximal concision by using the notation of Ref. 2,
though with the suppression of the ubiquitous
index e for "elastic" there. Thus the transition
operator for scattering on the many-nucleon
target at system energy E is given by the solution
to the Lippmann-Schwinger equation

T(E)= V+ VG(E)T(E),

where V=K", , v, is the sum of the individual
interactions and

G(E) = (E+ ie —K —Hr)

(2)

T(E) = V(E)+ V(E)PG(E)T(E),
and the optical operator satisfies

V(E) = V+ VqG(E)V(E) .

(4)

We now exploit the theorem on unitarity in Eqs.
(44}-(46}of Ref. 2, namely, for operators such

with K the projectile kinetic energy operator and
H~ the target Hamiltonian. The projection opera-
tor P is defined to project onto the target ground
state, the remaining nuclear space being subsumed
in @=1—P. With standard and straightforward
manipulations, we may then introduce an optical
operator" V(E) such that
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that

A(E) =B(E)+B(E)C(E)A(E),

the discontinuity

(6)
U —= g r'+ g r '(QG)v= g ~'+ U(QG) g ~',

f=l j=1 j= 1 j=l

nA(E) ==A(E+iq)~ A(E-+fq) -=2midiscA(E) (7)

is given by

6A = A BACA+ (A~C~+ 1)&B(I+ CA) .

Applying this to Eq. (4) yields immediately

(6)

n. T = T~b,(PG)T+ [T (PG)'+ 1]&v[1+(PG)T], (9)

while Eq. (5) gives the discontinuity for the optical
operator equally directly as

~v= v'~(QG) v,
since V is assumed energy independent. We note
that the lowest-order optical potential does not
satisfy this (exact) relationship, which may be
viewed as a signal for the troubles noted in Refs.
1 and 2; on the other hand, Eq. (10) has the same
form as the approximate result arising from nu-
cleon correlations alone in the second-order opti-
cal potential. It is now convenient to introduce the
strictly elastic phase space factor

where for lucidity an innocuous approximation is
made which is valid to order A ' and is easily
eliminated by noting that our projection operators
refer to antisymmetrized nuclear states and using
the techniques of Ref. 5 [compare Eqs. (7)-(10)
of Ref. 21. The single-scattering operator satisfies

~'(E) = ~, +~.,.QG(E)~*(E) . (17)

Thus Eq. (13) can be rewritten, in a form exact
to order A ', as

discT= T~i&T+ (T~(PG) +1][U (QG) +1)

x Q r'M g 7'[I+ (QG)U] [1+(PG)T].

(18)

This is to be contrasted with Eq. (56) of Ref. 2
where the optical potential has been approximated
already in Eq. (9) as

A(E) = disc(PG),

and its strictly inelastic counterpart

PVP=P g ~'P, (19)

M(E) —= disc(QG) .
Inserting Eq. (10) into Eq. (9) and using these
definitions yields the result for the elastic uni-
tarity

(12) and the factors [1+(QG)U] and its Hermitian con-
jugate are lost. For the inelastic amplitude of
Eq. (15) we can write, using the second form in

Eq. (16),

discT = T~AT+ P T~A„T„=T~&T+ T,„,+1T„,q,

(14)

where n refers to inelastic channels whose ampli-
tudes are obtained from T,.„,. Thus a particular
inelastic amplitude for a transition from the
elastic channel e to channel x, whose nucleon state
is projected from Q by R, is given by Eq. (13)
as

T„=RU[1+ (PG)T]P. (15)

Now the optical operator can also be viewed as
satisfying the relationship

discT= T~AT+ [T~(PG)~+ 1]UMU[l+ (PG)T].

(13)

(This equation ignores the problem of connected-
ness discussed in detail in Ref. 2 [see below their
Eq. (47)] and is therefore expected to be valid
only where rearrangement is small. ) To identify
a given inelastic amplitude, this must be compared
with the general unitarity relation

T„=R[1+U(QG)] Q &'[I+ (PG)T]P,
i=l

again exact to order A '. If we now invoke this
same hierarchy of diagonal terms here, we will
select out of Q only the state R, obtaining the
lowest-order DWIA result for the pertinent transi-
tion operator

T„=R[1+U(RG)] R—g7'P [1+(PG)T]P; (21)

higher-order corrections to the DWIA have been
treated in Ref. 6. In Eq. (21), the diagonal factor
[1+(PG)T]P distorts the initial pion in the full
optical potential, while the diagonal factor

R[1+U(RG) ]—=R 1+ Q &'(RG)

distorts the outgoing pion in a lower-order optical
potential, which is-defined with respect to the final
nuclear state R and not the initial one P. The
inclusion of the factor R[1+U(RG)] is the analog
here of calculating elastic scattering with the
amplitude which is the solution for the optical
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potential, and thus iterates successive diagonal
scatterings on the ground state, rather than using
lowest-order impulse approximation for the elastic
amplitude. The key nondiagonal step is in the
"hard" collision B&,&'E. Lastly, ,the final nuclear
system in the state 8 is to be an eigenstate of the
full nuclear Hamiltonian and so, for knock-out
processes, will contain optical distortion for the
outgoing nucleon when projection is made for a
particular state of the residual nucleus. Thus Eq.

(2&) shows that the ordinary DWIA indeed emerges
from a treatment of elastic unitarity which is not
restricted to lowest order.
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