Communications

The Communications section is for brief reports on completed research. A Communication may be no longer than the equivalent of 2800 words, i.e., the length toswhich a Physical Review Letter is limited. (See the editorial in the 21 December 1970 issue of Physical Review Letters.) Manuscripts intended for this section must be accompanied by a brief abstract for information retrieval purposes and a keyword abstract.

α -transfer spectroscopic factors in ²³Na

W. Chung

IKP, KFA Julich GmbH, Postfach 1913, D-5170, Julich, West Germany

H. T. Fortune

Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104

B. H. Wildenthal

Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (Received 10 October 1978)

 α -transfer spectroscopic factors computed from shell-model wave functions for ¹⁹F and ²³Na generated in the full *sd*-shell model space with the Chung-Wildenthal interaction are in good agreement with experimental ¹⁹F(⁶Li, *d*)²³Na results, contrary to previous SU(3)-type calculations.

[NUCLEAR STRUCTURE ²³Na; Calculation of α spectroscopic factors in full sd] basis; comparison with experiment and SU(3).

In a recent study¹ of the reaction ¹⁹F(⁶Li, d)²³Na, relative α -transfer spectroscopic factors S_{α} were found to be in serious disagreement with both pure SU(3) predictions² and with results of a shellmodel calculation¹ that included only leading SU(3) representations in the model space. Among the major difficulties were the following:

(1) For the ground-state $K = \frac{3}{2}$ band, the predicted relative α -transfer spectroscopic strengths for the two J values of each L transfer disagreed with the experimental results, i.e., the predictions as to which member of each pair was more strongly populated disagreed in each case with experiment.

(2) The first $\frac{1}{2}^{*}$ state, at 2.39 MeV, observed experimentally to be strong, was predicted to have zero strength, whereas the second $\frac{1}{2}^{*}$ state, at 4.43 MeV, was observed to be weak but predicted to be strong.

(3) Relative to the average of all the other states, the observed ground state α -transfer spectroscopic strength was much stronger than predicted.

Recently, theoretical α -transfer spectroscopic factors for *sd*-shell nuclei calculated from wave functions generated in the full *sd*-shell model space have been reported³ for transitions between all pairs of experimentally accessible ground states. Using the same method and set of consistent wave functions⁴ as in Ref. 3, we have calculated α -transfer spectroscopic factors for the reaction ¹⁹F(⁶Li, d)²³Na. The results are found to be

TABLE I. Excitation energies and S_{α} 's for ²³Na.

			1.2			
Exp.	(MeV) Calc.	J^{π}	(⁶ Li , d)	S _α Full-sd	SU(3) ^a	
0.0	0.0	$\frac{3^{+}}{2}$	1.0	1.0	1.0	
0.44	0.39	<u>5</u> + 2	0.40	0.78	3,38	
2.08	2.15	$\frac{7}{2}$	1.98	2.81	2.29	
2.39	2.14	$\frac{1}{2}^{+}$	4.0	5.02	0.0	
2.70	2.76	$\frac{9+}{2}$	0.66	1.39	5.83	
2.98	2.83	$\frac{3}{2}^{+}$	0.85	0.64	3.75	
3.92	3.70	$\frac{5^{+}}{2}$	(1.12)	6.68	1.37	
4.43	4.37	$\frac{1}{2}^{+}$	0.54	2.05	6.67	
4.78	4.69	$\frac{7}{2}$ +	1.44	3.17	6.53	
5.38	5.41	$(\frac{5^+}{2})$	0.34	0.01	3.52	
5.54	5.64	$\frac{11}{2}^{+}$	(1.84)	0.75	0.89	
6.23	6.21	$\frac{13}{2}$ +	o • 0	0.49	2.67	

^a Reference 2.

530

©1979 The American Physical Society

	Summed strength					Summed strength			
	$J^{ \pi}$	Exp.	Full-sd	SU(3)	L	Exp.	Full-sd	SU(3)	
	$\frac{1}{2}^{+}$	(4.5)	7.07	6.67	0	(4.5)	7.07	6.67	
	$\frac{3^{+}}{2}$	1.85	1.64	4.75	2	3.71	9.11	13.62	
	$\frac{5^{+}}{2}$	2.86	7.47	8.27					
	$\frac{7}{2}$	3.42	5.98	8.82	4	4.08	7.37	14.65	
	$\frac{9^{+}}{2}$	0.66	1.39	5.83					
	$\frac{11}{2}^{+}$	(1.84)	0.75	0.89	6	(1.84)	1.24 ^{`a}	3.56 ^a	
	<u>13</u> + 2	• • •	0.49	2.67				· ·	
	$K = \frac{3}{2}$ ground-state band All others					5.88	7.22 ^a	16.06 ^a	
						8.29	17.57	21.84	

TABLE II. Summed spectroscopic factors for ${}^{19}\text{F} \rightarrow {}^{23}\text{Na}$.

^a Include predicted S_{α} for $\frac{13^{+}}{2}$ state.

in good agreement with the experimental observations, contrary to the previous SU(3) predictions.

In Table I are listed the excitation energies and values of S_{α} for all states⁵ below 6 MeV excitation in ²³Na whose structures are reasonably well understood (Refs. 5 and 6 and references therein) and the $\frac{13}{2}$ state of the ground-state $K = \frac{3}{2}$ band: It can be seen that the calculated excitation energies are in very good agreement with experiment. In addition to the values of S_{α} from the present full-sd wave functions, the pure SU(3) predictions² are also listed for comparison. It is immediately apparent from Table I that most of the deficiencies of the SU(3) predictions do not appear in the new shell-model results.

For states of the $K = \frac{3}{2}$ ground-state band, the present calculations, carried out in the full sdshell space with the Chung-Wildenthal interaction, correctly predict the observed "strong-weak" feature of the $\frac{3}{2}$ + $-\frac{5}{2}$ + (L=2), $\frac{7}{2}$ + $-\frac{9}{2}$ + (L=4), and $\frac{11}{2}$ + $-\frac{13}{2}$ (L=6) pairs of states. The experimental value of $S_{\alpha}(\frac{3}{2})/S_{\alpha}(\frac{5}{2}) = 2.5$ is to be compared to the new theoretical value of 1.3 rather than the pure SU(3)value of 0.3. Similarly, the experimental value of $S_{\alpha}(\frac{7}{2})/S_{\alpha}(\frac{9}{2}) = 3.0$ is to be compared to the new theoretical value of 2.0 rather than the pure SU(3) value of 0.4. The new theoretical value of $S_{\alpha}(\frac{11}{2})/S_{\alpha}(\frac{13}{2})$ = 1.5 rather than the pure SU(3) value of 0.3. While the cross section of the $\frac{11}{2}$ state at 5.54 MeV was measured in the experiment of Ref. 1, the $\frac{13^{+}}{2}$ state at 6.23 MeV was not directly observed. The experimental upper limit thereby set on the cross section of the $\frac{13^{*}}{2}$ state relative to the $\frac{11^{*}}{2}$ state is thus consistent with the predictions of the present calculation but, again, inconsistent with the pure SU(3) prediction.

The present calculations also remedy the glar-

ing discrepancies which existed between experimental and pure SU(3) theory for the $\frac{1}{2}^+$ states. The new predicted $S_{\alpha}(\frac{1}{2})$ are 5 and 2 for the first and second $\frac{1}{2}^+$ states, in much better agreement with the values 4 and 0.5 experimentally measured than were the pure SU(3) values of 0 and 7. Additionally, the new predicted S_{α} for the second $\frac{7}{2}^+$ state is in better agreement with experiment than is the much-too-large SU(3) value.

The present calculations fail to improve the agreement between theory and experiment for the second and third $\frac{5}{2}^{*}$ states in that they predict a larger value than is measured (albeit with a large uncertainty resulting from the incompletely resolved 3.85 MeV $\frac{5}{2}^{-}$ state) for the 3.92 MeV, second $\frac{5}{2}^{*}$ state and a vanishing, rather than only smaller, value for the third $\frac{5}{2}^{*}$ state.

The summed α -transfer spectroscopic strengths (relative to the $\frac{3}{2}$ ground-state strength) for various J and L values for all the states listed in Table I are listed in Table II. It can be seen that the summed spectroscopic strengths for the full shell-model calculation are also in better agreement with experiment than are the SU(3) values. The principal remaining discrepancy is for L = 2or $J = \frac{5}{2}$, where the large difference in spectroscopic strengths comes mainly from the previously mentioned 3.92 MeV $\frac{5}{2}^{+}$ state, which was not resolved from a nearby $\frac{5}{2}$ state in the experiment. Otherwise, all the summed spectroscopic strengths are within a factor of 2 of the experimental results which is quite acceptable at our present state of competence in extracting experimental values of S_{α} . In Table II are also listed the summed α -transfer spectroscopic strengths (again relative to the $\frac{3}{2}$ ground-state strength) of members of the ground-state $K = \frac{3}{2}$ band, and of

all other states listed in Table I. The full-sd calculation correctly accounts for the ground-state band strength, while overpredicting the summed strength of the remaining other states by a factor of approximately 2. The SU(3) predictions,² on the other hand, give summed strengths which are in both cases larger by almost a factor of 3 than experiment.

The conclusion of the present investigation is that α -transfer spectroscopic factors calculated from wave functions characterized by full configuration mixing in the $d_{5/2}$ - $s_{1/2}$ - $d_{3/2}$ model space give a rather successful accounting of the experimental results of the $^{19}F(^6Li, d)^{23}Na$ reaction, in contrast to the inadequacies of simple SU(3) predictions. It remains to study the puzzle of why the introduction of a limited amount of configuration mixing to the pure SU(3) structure as was done in the shell-model calculations whose results are quoted in Ref. 1 should yield even poorer correspondence with experiment than those of the pure SU(3) model.

This work was supported in part by the U.S. National Science Foundation.

¹H. T. Fortune *et al.*, Phys. Rev. C <u>18</u>, 255 (1978). ²J. P. Draayer Nucl. Phys. <u>A237</u>, 157 (1975).

- ⁴W. Chung, Ph.D. thesis, Michigan State University, 1976 (unpublished); W. Chung and B. H. Wildenthal (unpublished).
- ⁵P. M. Endt and C. Van der Leun, Nucl. Phys. <u>A214</u>, 1 (1973); (unpublished).
- ⁶H. T. Fortune et al., Phys. Rev. C <u>18</u>, 1 (1978).

³W. Chung *et al.*, in Proceedings of the Third International Conference on Clustering Aspects of Nuclear Structure and Nuclear Reaction, University of Manitoba, 1978 (unpublished), p. B18.