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A scheme based on variation after approximate angular momentum projection from a triaxially symmetric

intrinsic wave function has been developed and applied to the study of ground-state band and y band of '"Os
and '"Pt nuclei. The intrinsic calculation has been performed in the framework of Hartree-BCS theory

employing the pairing + Q Q interaction of Baranger and Kumar. The calculated level energies, B(E2)
values and electromagnetic moments compare quite well with the available experimental values-. The position

of the K = 4+ band, many B(E2) values and electromagnetic moments have been predicted. This study

predicts relatively more rigid triaxial shapes for these nuclei than have been usually believed.

NUCLEAR STRUCTURE Variation after angular momentum projection with tri:
axial symmetry, ~ Os and 8 Pt; level energies, B|',&2) values, elec&omagnetic

moments of ground and y band, pairing+ Q Q interaction.

I. INTRODUCTION

The experimental and theoretical studies of the
collective properties of nuclei in the Os and Pt
region have been pursued with great excitement
during the recent years. This being a shape tran-
sition region, it has provided the opportunity to
test various models of nuclear structure. The
extensive studies of Baranger and Kumar' ' em-
playing the pairing+ Q Q force in the rare-earth
region have been quite successful in accounting for
the ground-state deformation. One beautiful fea-
ture of their theory is that simultaneously it can
describe the ground band, P band, and y band.
They determine the collective parameters of the
Bohr Hamiltonian and then solve the corresponding
Schrodinger equation. These calculations have
been very involved and contain very few adjustable
parameters. However, their method has been un-
doubtedly the only method which provides a great
wealth of prediction with very few parameters.

In this paper we aim at developing a different
approach based on variation after angular mo-
mentum projection' theory which has been applied'
in recent years to the study of high spin states with

considerable success in this region. Over the
years it has been rather well established that this
theory, though apparently suitable for the descrip-
tion of nuclei having rotational spectra, can de-
scribe the spectra in the backbending region which

are far from rotational in character. Hence, it
appears that a scheme based on this type of theory
should be able to describe transitional nuclei in the
Os and Pt region.

.The experimental evidence for the nonaxial
collective motion in these nuclei has been quite
convincing. So an intrinsic wave function char-
acterized by both the symmetry parameter P and
the asymmetry parameter y needs to be con-
sidered and angular momentum projection from
such a state must be done. Assuming the nuclear
Hamiltonian to be separable into intrinsic and
collective parts, we have developed an approxi-
mate angular momentum projection scheme from
a triaxial intrinsic wave function which could
simultaneously describe the ground-state band
and y band. The nuclear state in this scheme
would have definite P and y in contrast to that
of Baranger and Kumar where the states are a
superposition of all possible P and y. It would
be interesting to see how well such a picture
would be valid. A further interest in this scheme
arises from the recently developed interest"' on
the question of the existence of a static triaxial
shape in this region. The static calculation' of
Baranger and Kumar shows that only 3 nuclei out
of 80 nuclei they considered are triaxial, but the
deformation potential is very shallow and soft to
y deformation. For example, in case of '"Os,
they find that the triaxial solution is more bound
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than the'axial solution by only 44 keV. Calcula-
tions' using the deformed oscillator model and
Strutinsky shell correction yield similar results.
In a paper' published recently, Giraud and Gram-
maticos have investigated the possible existence of
static triaxial shapes in the framework of Hartree-
Fock-Bogoliubov theory. In a few cases they find
triaxial minima, but the potentials are very shal-
low. They feel that the zero-point collective mo-
tion might wash out these minima and thus have
concluded that y softness is a common feature.
This would give rise to nonzero dynamical mean
values of y as is borne out in the dynamical cal-
culations' of Baranger and Kumar. On the other

hand, opposite views have been expressed by Lee
et al.' who, from the experimental study of""'"""Ptand model analysis of the results have
concluded that these nuclei are not y soft. Further
in the study of odd A nuclei by Meyer-ter-VehniP
and Toki and Faessler, "the assumption of rigid
triaxial shapes for the neighboring even-even nu-
clei yields satisfactory results in agreement with
experiment. In view of the above, we hope our
study would be quite useful. An outline of our
theory is presented in Sec. II. The details of our
calculation and the comparison of our results with
experiment are discussed in Sec. III. The discus-
sion and conclusions are given in Sec. IV.

II. THEORY

A. The interaction

We take precisely the Hamiltonian of Baranger and Kumar' which consists of pairing and quadrupole
interactions:

H=g a'C'C ——,
' g G, gC'C C„-C„——,'X' g a, c&, , g (~~Q'«&~y)(6(q'& ' ~P)C" C~C, C„,

(l)

where n, P, . . . , stand for the complete list of
spherical harmonic oscillator single particle
quantum number ~nljm), v' is the isospin pro-
jection, G, is the pairing force strength, y is
the strength of Q Q force,

where hen is the oscillator energy. Then one
solves the eigenvalue equation

where the eigenstates ~i ) have the structure

(4)

and b, is the oscillator strength parameter. n,
is a factor close to unity, the details of which are
given in Ref. 2. Hartree-Bogoliubov calculation
with the above interaction boils down to Nilsson-
BCS calculation which we outline below briefly.

B. Solution of Nilsson Hamiltonian

(2)

where A; refers to the spherical single particle
Hamiltonian, the deformation variables Dp and D2
have dimension of energy and are related to the
usual parameters P and y by

1
D, =If &upcosy, D, = ff a&psiny, (3)

For a triaxially symmetric system, the relevant
¹ilsson Hamiltonian is

~&, r) =P C&„~j~r) (6)
fm

and q,''s are the eigenvalues. The states ~i) have
e"~g Symmetry and hence all m's differing by 2
will appear in the above summation.

C. BCS solution

A BCS transformation is performed from the
Nilsson states to a deformed quasiparticle state.
For proton and neutron, the energy gap 4, chemi-
cal potential X, and the corresponding wave func-
tions U,. and V,. are generated separately. Thus
the intrinsic wave function which is a function of
P and y is obtained as

(6)

where ~0) is the closed shell vacuum state. The
operator a~, creates a particle in the Nilsson
state ~i, r) and a~„ in the corresponding time
reserved state.
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D. Angular momentum projection

The nuclear stationary state
~

nIM ) can be ex-
panded in terms of basis states having good band
quantum number K as

Hence to make angular momentum projection we

have to set up the Hamiltonian matrix in the basis
and then the coefficients A„» [Eq. (7)] would be
obtained by solving the eigenvalue equation

I
c™&= Q A.r»(P»)~»» (7) P&e„', ~H ~e„' &A.„(P,y) = Z,A.„,(P, y) .

H =H,-+H„,

H„has the usual form

H„=A„Z„'+A,Z,'+A, Z,'

(8)

where I,M are the angular momentum and the
projection across Z axis in the laboratory frame
and n is any other quantum number necessary to
specify the states. We assume the nuclear Hamil-
tonian to be separable into intrinsic part H; plus
the rotation part H„

The matrix element of the Hamiltonian H is

&y„', fH
/ g ) = &@ /H, /4 & n„,

+ &4»», /A„J„'+A„J„'+A,J,' [@„»& .
(12)

Putting A„=A- 6.and A, =A+ 6, H„reduces to

and A.„=1/28„, A„=1/28„, and A, =l/28, where8„
8,, and 8, are, respectively, the x, y, and z
components of the moment of inertia. Equation
(7}can be written in the form

H =AJ'+(A -A) J ' —~~ 6(J '+J ')

We know that

(13)

~o.IM& =e(P, y) Q A., (P,y),
(14)

& [Dr e + ( 1)r»Dr * ] (10) Using Eqs. (13) and (14) in (12) we get

[H(e' &
= &4(H(e& — " ' — " — ' ' +AJ(J+1)+(A, -A)K'

x g

——,'g[(J —K)(J +K+ 1)(J —K —1)(J +K+ 2)]' ~'" &». ,»,2

+[(J+K)(J —K+1}(J+K- l)(J -K+2)] ~»~, »+2]' . (15)

The correctness of the above formula can be tested
by applying it to the following two cases:

laderived by Das Gupta and Ginneken" and used by
Nair and Ansari" in the study of backbending.

l. Axially symmetric case 2. Triaxially symmetric case

In this case A„=A„, A, =O so 8„=8,=8 and &=O.

Taking the diagonal term which represents the en-
ergy of the state with angular momentum I belonging
to the band K is

Bouten, Elliot, and Pullen' have shown that the
expression for energy El ~ of a state with angular
momentum, I and band quantum number K projected
from a trixially symmetric intrinsic wave function
4 ls

Es,» = &+»» IH I+»»&

&4
i

J2 ie& J(J+1)
28 28

EI « =E,+ nK'+ AI(I+ 1), (17)

This agrees with the approximate projection formu-
where E„n, and A are characteristic of intrinsic
structure. The diagonal term obtained from Eq.
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(15) is

&+mr III I+us & =Ex,z

diagonalization of the energy matrices at the above
minima. This guarantees the mutual orthogonality
of all the states.

=&4 IIII@&

2$

+AJ'(Z+ 1)+(A, —A)K'

which is similar to Eq. (1V).

E. Scheme of calculation

(18)

F. Electromagnetic moments

Here we derive the expressions which are used
in our calculation of spectroscopic quadrupole
moments, E2 transition probabilities and magnetic
dipole moments.

J. E2 transition probability

& the lab system the E2 operator is given by

(i) For a fixed value of P and y, the Nilsson
Hamiltonian [Eq. (2)] is solved, the eigenvalues
and eigenstates [Eq. (4)] are obtained for protons
and neutrons separately.

(ii) The BCS calculation is performed over the
¹ilsson states. The pairing gap 4, the chemical
potential ~, the wave functions U and V, and con-
sequently the intrinsic wave function 4 [Eq. (6)]
are obtained.

(iii) With the wave function 4, the moments of
inertia 8„, 8„and 8, are calculated using the
cranking formula. Then the Hamiltonian matrix
[Eq. (15)) for each angular momentum state is set
up and diagonalized to obtain the stationary state
energies and the corresponding eigenfunqtions.
Then the values of p and y are changed and the
steps from (i) to (iii) are repeated until the minima
in the (P, y) space are obtained for each state of
the ground band. Then the levels of the y band and

E =4 bands are the higher states coming from the

K(E2, m) = Q e y 'y, (gp), (19)

SR(E2, m) = Q D~„~SR'(E2,K) . (21)

Using (10), (21), and (20) we obtain

where m =0, +1, +2 and r~, Q~ and e~ represent,
respectively, the radial coordinate, angular co-
ordinate, and the effective charge of the particles
outside the core. The transition probability is
given by

B(E2, n; I,- n~ If)

= „"',1&~~&ylI5R(E2) ll~;I;& I' (20)+

The E2 operator [Eq. (19)] is related to the
corresponding operator 5R'(E2, K) in the intrinsic
frame as

B(E2,n, I,- n~Iy. ) =

E 2

x & yl ISR'(E2, K) ICq &A
(22)

where C refers to usual Clebsch-Gordan coeffi-
cients.

2. The spectroscopic quadrupole moment

The spectroscopic quadrupole moment of a state

I@I& is given by

Q(nI) ='-,' w & nI, M =I
I
3R(E2, 0)

I
nI, M =I ) . (28)

Using (10) and (21) in the above expression,
Q(nI) is obtained as

16~ &~ 1
0(+I)

5 ( Ii I I ) [(1+ 5 ) (1 + 5 ) ]1/2 f C(I2I; K; KKy) +(-1) C( I2 I; —K)KK~)]'
4"f

x (4 I5R'(E2, K) Ic&A„, .A. ,„.
(24)
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3. Magnetic dipole moment

Following Baranger and Kumar" we use the cranking model expression for the intrinsic magnetic mo-
ment. The K component of the intrinsic gyromagnetic ratio in this model is

c ~' (U ~~ IIP ) (i '~«j)(j

where E, and E& are the energies of the quasi-
particle states i and j, respectively, and M is the
usual single particle magnetic moment operator

M =g, l+g, s

The expectation values of the operator 9g ' in the
intrinsic states are written as

(4
~
5R'(Ml, 0}~4) = (3/4m)' ~' p

with different gyromagnetic ratios g, and g, for
neutrons and protons. gz and 8z are the core
gyromagnetic ratio and core moment of inertia
whose values are the same as in Ref. 2. The K-
component p,~ of the intrinsic magnetic moment
is given by

(4~5K'(Ml, +1)~4)=p (3/8m) ~ (p, + ip, ) .

%e use the definition

1, = I~+ jI2

(28)

I E gK E

Following the same procedure, the magnetic
moment operator in the laboratory can be ex-
pressed as

(26)
and

g, = l(gi~ga) ~

(29)

9R( Ml, m) = Q SR '(Ml, K)D « .
Using (26)-(29) and Eq. (10), we obtain the ex-
pression for magnetic dipole moment as

4 1/2

i (~I) = — (oII~ 6it(M1, 0)
~
~II)

C(I1I,I0I} Q )(1
—

)(1
—

)PI,
E)p ' Kgo

i f
x [g,(RI « C(I 1I; K, +. 1, 1, -K&) + (--1)'R-I «C(I1I; K,-+1, 1,K-&)-

+RI «C(I1I;K, +1, -1,K~)+(.-1)~R~ «, C(I1I;K(+1,-1,-Ky)}

+g (R~ « C(11I; -K—, —1, .-1, Kq)+R, «C-(I1I;K, -1,—1,Kq)

+ (—1)'R~ «C(l lI; —K, -1, -1,Ky) + (-1)'RI „.C(I1I;K; —1, —1,K~)}

+g~K;(C(I&I;K;OKy)+(-1)~C(IlI;K(, 0, -Ky)}], (80)

where

R, , = [ ,' (I K)(I+K+1)]'~-2-

m. RESULTS

A. Parameters and minima

Following Baranger and Kumar' we have chosen
a core consisting of 40 protons and 70 neutrons.
For the protons &= 4 and 5 oscillator shells and
for the neutrons N=5 and 6 oscillator shells have
been taken as active shells. The values of the

parameters t", single particle energies, etc. ,
are exactly the same as has been used by
Baranger and Kumar in Ref. 2 and then our cal-
culation has no adjustable free parameters.

In Table I we have presented a comparison of
the various minima obtained in our calculation.
The axial and triaxial intrinsic minima are the
ones obtained by minimizing in the space of p and

(p, y), respectively, which correspond also to the
potential minima V(P, y). The triaxial intrinsic
minima are more bound by only 44.0 keV, and
50.6 keV, respectively, for "Ps and "'Pt. For
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TABLE I. Description of axial and triaxial minima. The
energies E" and the y" are in MeV and degrees, respectively.

Nucleus

Intrinsic
calculation

Axial Triaxial

Angular momentum

projection

Axial Triaxial

'"Os
P 0.178 0.182 0.180 0;178

0.0 22.0 0.0 26.0
E -308.782 -308.826 —310.254 -310.968

P 0.170 0.174 0.170 0.170
Pt y 0.0 20.0 0.0 31.0

E -305.076 -305.126 -305.563 -306.288

'"Qs, Baranger and Kumar' have also reported
the same result in Ref. 2. However, when varia-
tion after angular momentum projection is per-
formed for the ground state following our above
scheme, the triaxial minima get more bound thag
the corresponding axial minima by 0.714 MeV and

0.724 MeV for ' Qs and "'Pt, respectively. Thus,
our calculation predicts more rigid triaxial
shapes compared to that of Baranger and Kumar
and also of Gotz gt a).' This result seems to
support the view of I ee et a$.' who strongly feel.
that Pt nuclei are quite y stable in sharp contrast
to the generally held notion of very y soft char-
acter of these nuclei. From a comparison of the
equilibrium values of P and y between axial and
triaxial cases, we find that the values of y are ~

larger for the latter than for the former. It is
sati. sfying to note that our value of y for Qs is
26' which agrees remarkably with the mean value
(26.5') obtained by Baranger and Kumar' in their
dynamical theory.

B. Level energies

In Tables II(a) and III(a) we have presented the
calculated and experimental energies, the equi-
librium values of P and y and the wave function
A ~,~ which are the weight factors of various K

TABLE II. (a) ' Os: Energies (MeV) of the levels of ground state band, y band and K = 4 band and the
corresponding equilibrium values of P and y and the components A ~&'s of wave functions fsee Eq. (10)].
(b) ' Os: The moments of inertia (8'), the quadrupole moments (QM) and magnetic moments (MM) are
given in MeV, e b and p&, respectively, of the various states. Quantities in parentheses refer to experi-
mental values.

Level

I

(a)
%ave function

K=O K=2 K=4 K=6 K=8 K=10

0+

2'
4+

+

8+

10'
2 I+

3 I+

4 +

4 I(+

0.0
0.155
0.478
0.948
1.588
2.244
0.633
0.790
0.966

0.0
0.163
0.478
0.884
1.361
1.915
0.656
0.808
1.216
3.394

0.178 26.0
0.186 18.0
0.198 14.0
0.218 27.0
0.234 27.0
0.242 28.0
0.186 18.0
0.186 18.0
0.198 14.0
0.198 14.0

1.0
0.998
0.996
0.751
0.695
0.641

-0.050
0.0

—0.086
0.000

0.050
0.086
0.644
0.682
0.696
0.999
1.0
0.996

-0.011

0.001
0.142
0.225
0.312

0.011
0.999

0.008
0.033 0.001
0.078 0.009 0.000

Level

I

(b)

MM

4+

6+

8'
10'
2

I+

3 1+

4!+

4 I/+

13.641
14.372

15.242
18.032
19.591
20.280
14.372
14.372
15.242
15.242

5.689
8.108

9.890
7.829
8.750
8.847
8.108
8.108
9.890
9.890

3.075
1.789

1;300
4.873
5.552
6.246
1.789
1.789
1.300
1.300

0.0
—1.420

(- 1.47)
-1.875
-0.412
-0.385
-0.251

1 420
0.0

-0.903
2.777

0.0
0.586

(0.62)
1.206
1.750
2.343
2.918
0.656
0.931
1.246
1.360
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TABLE III. (a) ' Pt: Same as Table II (a). (b) ' SPt: The moment of inertia(8), the quadropole

moments (QM) and magnetic moments (MM) are given in MeV ', e b, and ILf&, respectively, of the various

states.

Level

I Eex Eth 'y

(a)

K=2
Wave function
K=4 K=6 K=8 K=10

0+

2'
4+

6'
8+

10'
2 t+

3 t+

4t+

4tt+

0.0
0.266
0.671
1.185
1.782
2.436
0.606
0.936

0.0
0.245
0.671
1.219
1.862
2.603
0.713
0.920
1.287
3.006

0.170 31.0
0.186 20.0
0.198 17.0
0.214 22.0
0.226 22.0
0.238 23.0
0.186 20.0
0.186 20.0
0.198 17.0
0.198 17.0

1.0
0.996
0.984
0.853
0.790
0.728

-0.083
0.0

-0.176
0.001

0.083
0.176 0.003
0.518 0.059
0.602 0.111
0.660 0.183
0.996
1.0
0.984 0.024

—0.024 0.999

0.002
0.008 0.000
0.023 0.001 0.000

Level

I

0+

2'
4+

6'
8'

10'
2 t+

3 t+

4 t+

4tt+

&x

11.923
14.018
15.239
16.993
18.192
19.287
14.018
14.018
15.239
15.239

3.719
7.212
8.826
8.679
9.524

10.268
,7.217
7.217
8.826
8.826

(b)

3.748
2.223
1.913
3.201
3.463
3.980
2.223
2.223
1.913
1.913

QM

(e b)

0.0
—1.259
—1.549
-0.886
-0.841
—0.733

1.259
0.0

—1.020
2.594

MM

(p~ )

0.0
0.427
0.836
1.324
1.741
2.162
0.696
0.842
0.965
1.538

components in the wave function [Eq. (10)] for
s Os and Pt, respectively. Since we have not

taken into account the core, following the stan-
dard practice, ' we have incorporated the effect of
the core approximately by multiplying a renor-
malization factor X to all the calculated level en-
ergies. The value of X is determined from the
relation

XZ i(1=4)=E.„(I=4),
where p,z and &„ are, respectively, the calcu-
lated and experimental level energies of the
lowest (ground band) I=4 state. These renor-
malized values are presented in Tables II(a) and

111(a).
An analysis of the weightage factors A~~ pre-

sented in Tables 11(a) and III(a) reveals that
I=0, 2, 4, 6, 8, 10 predominantly belong to the K =0
band. For I=O, 2, 4 the mixing of other bands is
very small. However, with progressive increase
of p, the mixing increases very rapidly. For I
= 10, in case of ' 'Pt, the probability of g =0 is
only 53% and the remaining strength is spread

mainly in &=2, K=4, K=6 components. In ease
of "'Os, I=10 contains only 41% of ff =0, and
49% of K = 2. Though I = 6, 8, 10 are very much
mixed states, we will refer to them as belonging
to ground state band in our discussion. The
1= 2', 3', and 4' states have the probability of the
& = 2 component more than 97% for both nuclei.
Hence these states would beong to y band. The
I=4" states have the probabilities of K=4 com-
ponent close to 99% for both the nuclei and hence
these states belong to the K = 4 band.

An ana. lysis of the level energies shows that the
calculated energies agree quite well with the ex-
periment for all the levels. As for the ground-
state band the maximum discrepancy occurs for
10' levels. Even in this ease the level energy
is reproduced within 7% and 14% of the experi-
mental values for "'Pt and "'Os, respectively.
The positions of the y-vibrational band head
are higher by only 107 and 23 keV, respectively,
for ass Pt and zssOs . The y -band spreads are gi.ven
correctly in either case. Experimentally the
positions of the K =4' bandhead have not yet been
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measured. Our calculation predicts them to be
3.394 and 3.006 MeV, respectively, for "'Os and
188pt

C. Equilibrium values of P and y

The equilibrium values of p and y [see Tables
II(a), III(a)] for various levels do show the ex-
pected behavior. With the increase of angular
momentum, the p value increases which is a
manifestation of the centrifugal stretching. Up to
I= 6, the value of p increases by 22% and 23% of
their values at ground state for "'Qs and '"Pt
nuclei, respectively. However, these numbers
increase by 33% and 41% for J= 10 levels. For
"'Qs, Kumar and Baranger have calculated the
root mean square values of y and p. Their rms
values of p are in general larger than the equi-
librium values of p calculated by us.

For all the states except the ground states of
'Pt, the equilibrium values of y do not exceed

30. However, in the calculation of Baranger and
Kumar ' for a few levels in SOs the root mean
square value of y slightly exceeds 30. The root mean
square values of y up to I =4 calculated by Baran-
ger and Kumar for "'Os show that y decreases.
We find a similar trend up to I=4. However, with
increase of I further, i.e. , for I= 6, 8, 10, the
value of y increases with the increase of I.
Baranger and Kumar have not calculated these
states. This rising trend of y with increase of
angular momentum is. indeed observed in cranked
Hartree-Bogoliubov calculation. " It has also
been anticipated by Bohr and Mottelson" that a
nucleus would favor triaxial intrinsic shape en-
ergetically at higher angular momentum states.
It is worth mentioning here that in our scheme
the 2', 3' states (y band) and 2' state (ground band)
originate from the same intrinsic structure.
Hence the values of P and y for these three states
are identical. Due to the same reason 4' (ground
band), 4" (y band) and 4'" (K =4' band) have the
same values of P and y.

D. Electromagnetic moments and moments of inertia

In Tables II(b) and III(b) the three components
of moments of inertia, spectroscopic quadrupole
moments and magnetic dipole moments are pre-
sented for "Os and ' 'Pt, respectively. In the
ground-state band, the g and y components of the
moment of inertia increase with the increase of
angular momentum, whereas the g component,
which is the smallest of the three, first shows
some decreasing trend for 2+ and 4', and then
increases consistently with the increase of an-
gular momentum. This overall increasing trend

TABLE IV. B(E2,i ~f) values in e X 10~ cm (quantities
in parentheses refer to experimental values).

188 pt76

0+

{}+

2/+

2"
2/+

2'

2'
3 t+

3 t+

3 t+

2'
2 t+

4+

4+

4 t+

4+

4/+

4 //+

6'
8+

2/+

4/+

4+
4//+

2/+

4/t+

4+

4/+

4/t +

3 /+

t+

'

4/+

4//+

4//+

6+

6+

6'
8+

10+

2.716
(2.75)
0.339

(0.250)
1.588

(1.41)
0.621

(1.05)
0.005
0.128
0.144

(0.146)
0.030

(0.020)
0.0002
0.080
0.977
0.059
0.110
1.372
0.097

(0.159)
0.00005
0.016
1.273

(1.68)
0.498
0.007
2.021
2.162

2.215
(2.60)
0.378

1.376

0.497

0.011
0.164
0.214

0.018

0.001
0.172
0.795
0.102
0.121
1.218
0.160

0.00037
0.028
1.230

0.153
0.001
1.654
1.798

is very much expected in view of the centrifugal
stretching effect.

For the calculation of quadrupole moments and
transition probabilities, we have used the effec-
tive charge of proton as e~ = 1+1.7 (Z/A) and of
neutron as e„=-1.7 (Z/A). These values of effec-
tive charges have also been taken by Baranger
a,nd Kumar in Ref. 4. For only 2' state of ground-
state band in "'Os, the experimental value of the
quadrupole moment has been given by Hoehn et gt."
which is presented in parentheses in the table.
The value given by Russo et a). and Lane zt al."
are -1.26 and -1.32, respectively'. Our result for
this state compares well with that of Hoehn. The
signs of the quadrupole moment of 2' state (y
band) and 2' (g band) are positive and negative,
respectively. This feature of the results of
Baranger and Kumar is borne out in our calcula-
tion. Qur values of the quadrupole moments are
somewhat larger than those of Baranger and Kumar
for the few states of issQs they have given Re
garding magnetic moment, our results compare
well with those of Baranger and Kumar. For the
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TABLE V. The branching ratio 8(E2, i ~f)/8(E2, i ~f').

expt.

188os77

Present
theory expt.

188 pt

Present

theory

2t+

4 I+

2'

2'/0'
4'/2'
4'/0'

2.92 + 0.15
14.3 + 3.6
2.565 + 0.25

10.95

2.765

2.250
6.236
2.920

2.7 + 0.7 2.892
16.0
3.115

2' state (ground state) the experimental value is
available for Os only and this is presented in
parentheses. Our calculation predicts it to be
0.586 p,„which is in good agreement with the ex-
perimental value 0.62 p„."

In our calculation of B(E2}values, we have used
the expression (22) given previously. The various
B(E2}values for "'Os and "SPt are presented in
Table IV. The available experimental quanti-
ties"" are presented in parentheses. For "'Os
altogether eight B(E) values for intraband and
interband transitions (between ground band and

y band) are experimentally known. In most cases
our results agree quite well with experimental
data. The transition probabilities provide a test
of the nuclear wave function and consequently the
model used to calculate them. Hence, in view of
our good agreement for both the intraband and
interband B(E2) values, our model appears to be
quite successful. Baranger and Kumar ' have
not calculated many of the transitions like 4- 6,
6-8, 4-4, etc. However, the ones they have
calculated agree in trend. with our results. In
Table V, we have presented a compa. rison of the
available experimental branching ratios with our
calculated values. We have also included the pre-
dictions of Baranger and Kumar for the cases
wherever available. It can be seen from Table V
that our results compare well with experiment.

IV. DISCUSSION AND CONCLUSION

We have developed a scheme to study simul-
taneously the ground-state band and y band of
nuclei with static triaxial intrinsic shape. The
scheme is based on the variation after an ap-
proximate angular momentum projection from an
intrinsic wave function having triaxial symmetry,
We have applied this theory to the study of Os
and "'Pt using pairing + Q Q interaction the
parameters of which have been kept fixed. The
level energies up to I=10 in the ground-state band
and up to I=4 in the y band have been calculated

and are in good agreement with experiment. The
position of the K =4 band has been predicted. The
quadrupole moments, magnetic moment, and the
g2 transition probabilities calculated with our
wave function agree closely with experiment. For
"'Os, the results of the dynamic calculation of
Baranger and Kumar are available up to I=4
states in the ground-state band and y band and

these compare quite well with ours. It is thus
quite satisfying to note that our wave function
characterized by fixed P and y is adequate to de-
scribe the two bands and the results are com-
parable to those of Baranger and Kumar who use
a wave function smeared over a, large region of
the p-y plane. This may be due to our arriving
at lower minima in (p, y) space as a result of
variation after angular momentum projection.
However, our theory in the present form is in-
adequate to describe the p band simultaneously
and needs to be improved.

Our calculations predict deeper triaxial minima
compared to the corresponding axial ones for both
the nuclei:. Thus this study somewhat supports the
view' of more rigid triaxial shapes for both the
nuclei than have been usually believed. Similar
conclusion has been arrived at by Faessler
et a/. "in their recent study. However, we feel
that our minima are not deep enough to justify
the existence of a strong y deformation and more
work needs to be done in this respect. The pre-
sent result is quite encouraging and the method
presented here with improvement may be quite

.useful in the study of the rare-earth region.
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