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We have studied the level structure of the even-odd N =- 83 nuclei '60Nd, '6,'Sm, '64Gd, and "660y. In order
to explain the high level density above 2 MeV and low-lying high-spin states (J)13/2;E„).2.5 MeV}, a
Hamiltonian is constructed which in addition to the collective vibrations of the core, describes also the two
quasiparticle excitations of the protons in the Z = 50—82 shell. The results of the calculations are
compared with the experimental data concerning the lV = 83 nuclei.

NUCLEAR STRUCTURE X=83 nuclei Nd, Sm, Gd, Dy. Collective proton
bvo quasiparticle degrees of freedom. High-spin states. Calculated levels

J, n', BN'3).

I. INTRODUCTION II. CONSTRUCTION OF T' HE HAMILTONIAN

The purpose of this paper is the study of the
N= 83 nuclei with an even number of protons. Nu-
merical calculations are performed for ",ONd,

'62Sm, . ',46d, and '66Dy about which many experi-
mental data are available. ' ' Until now, these
nuclei have been studied within the framework of
the unified model' "only, which gives a good de-
scription of the energy spectrum below 2 MeV ex-
cept for a number of states with two-particle-one-
hole character. However, the energy spectrum
above 2 MeV has two characterisitics which are
not reproduced within a purely macroscopic par-
ticle-core coupling calculation, namely, (i) the
strong increase of the level density above 2 MeV, '
(ii) the observation of low-lying (E,=2.5 MeV)
high-spin states. ' ' In order to remove these
shortcomings, we have to consider also two-quasi-
particle excitations of the protons in the Z= 50-82
shell. We expect that as a result of coupling the
neutron single-particle configurations with the
various proton configurations, the level density
will become larger and also that the same coupling
with high-spin (Z" = 8', 10', 7, 8, 9 ) proton
states can give rise to the high-spin states ob-
served in the N= 83 isotones. A detailed investi-
gation of these assumptions is the purpose of this
paper.

In Sec. 0 a Hamiltonian describing the collective
as well as the proton two-quasiparticle excitation
modes of the core nucleus (N= 82) and their inter-'
action with the extra (N 83) neutron is constructed.
In Sec. III the proton-proton and proton-neutron
interactions are discussed. Section IV deals with
effects of configuration space truncation, and
finally in Sec. V we discuss parameters and re-
sults.

In order to construct a Hamiltonian describing
the N= 83 odd-mass nuclei with all characteristics
as described earlier, we start from the Hamilton-
ian describing the corresponding N= 82 core nu-
cleus in a quasiparticle description. This Hamil-
tonian reads

H = Q c c~ c~+—Q V~8), gc~cscpcy. (2.1)
n8)' b

H, u = Q @~~ Q (bx, b~j + 2), (2.2)

however, neglecting a number of specific excita-
tions of the protons in the 50-82 shell.

In our model we use the Hamiltonian Hqp +H ll

for the core nucleus. However, a number of ex-
citations are described twice by this Hamiltonian,
firstly in a phonon representation and secondly
in a quasiparticle (qp) representation "'" inde. ed,
when the Hamiltonian Hq„ is diagonalized in the
2qp space which consists of 2qp states coupled to
a given spin and parity, one observes that one
eigenstate separates from the rest. Moreover,

The summations extend over all possible single-
particle states in the Z= 50-82 proton shell, and
V &&z stands for the matrix element of the residual
two-body interaction between antisymmetric nor-
malized two-particle states. This Hamiltonian can
be handled further by means of the Bogoliubov-
Valatin transformation for which we refer to Ref.
11. The Hamiltonian (2.1) can describe the full
complexity of the N= 82 core nucleus.

Alternatively, we can describe the collective
excitations in the N= 82 nucleus with a purely col-
lective Hamiltonian
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this eigenstate is a linear superposition of all 2qp
states with approximately equal amplitudes, and in
this way it can be identified with a collective 1
phonon state. The problem of double counting of
some specific excitations of the core nucleus can
be solved approximately if one does not consider
in the chosen configuration space of basic states,
those linear combinations of 2qp states which give
a microscopic description of the strong collective
states. For instance, the lowest J"=2' (8 ) states
which can be described within a proton 2qp space
correspond approximately to the macroscopic
quadrupole (octupole) phonon states, and, hence,
only the latter are admitted in the basis. The re-
maining overcompleteness of the basis (since the
1 phonon states do not coincide totally with their
microscopic description in 2qp space) is expected
to be small, and it is also rather unimportant for
our purposes since we are mainly interested in
high spin states (i.e. , the sequences Z" = 6', 8', 10'

H f cec@q (2 8)

and as interaction with the collective degrees of
freedom of the core'

and Z = 5, 6, 7,8, 9 ) which all have a pure
2qp character.

In the same way the 4qp states can be handled.
In a first approximation we consider only those
linear combinations of 4qp states which have a
collective character, i.e., only two-phonon states
are taken as basic states. In a second apyroxima-
tion we also consider one-phonon S 2qp states in
the basis. All other 4qp states are always neglec-
ted in our calculations.

The total Hamiltonian of the N= 83 nuclei also
describes the extra neutron outside the N= 82
closed shell and its interaction with the under-
lying core. We have as a single-particle Hamil-
tonian

H„„„=-g g ( t h&o„[b„+(-1) b„„](o,
( F~„(P)c c,

esp E + (2.4)

where n and P denote neutron states in the N=82-126 shell.
However, H„„» only describes the interaction of the extra neutron with the collective degrees, of free-

dom. Thus, we still have to consider the remaining residual intera, ction between the extra neutron and
the proton 2qp excitations within the Z = 50-82 shell. This interaction is of the form

H„„= V ~y6e cac c, .
Ot y6

(2.5)

Here, n and y denote neutron states and p and 5 proton states. V'
~„6 is the matrix element of the residual

proton-neutron interaction between two normalized proton-neutron states. After performing the Bogo-
liubov-Valatin transformation for the proton states (P, 6), we obtain

H„„=g v,'V~ s„sc c„+ V's»c c„(ssusvsasa s+ssvsu~ sas).
eyg Ot y5

a ~ asks"pa - ~ s) ss av-svs-)asaa ~

egy6

The total Hamiltonian of the model thus reads

H =Hsp+H coi~+ Hgp+ Hsy-co»+ Hsp-gp

In this paper the Hamiltonian is used to describe odd-mass N=83 nuclei, but a number of other nuclei
(for instance odd-mass N=81) could be des'cribed within the same model.

(2.6)

(2.V)

III. INTERACTIONS

For the proton-neutron interaction a schematic 6 interaction is used. This type of force takes into
account the short-range proton-neutron correlation rather well, and, moreover, simplifies the numerical
calculations considerably. The diagonal matrix elements of the interaction -V«[(l —o)+n(o„cs)]
6(r„-rs) are given in Ref. 14. Also, off-diagonal matrix elements have to be calculated in order to
perform the diagonalization, and the following expression results:
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(( ~ j.)(lf.j.)&I —v~. I(1 —a) +a(a. .a.) I'("—")I(-"'j')(-'4jl)~'&

=(- 1)~p'~n'~n'~n[(2j„+1)(2j„'+1)(2j&+1)(2j&+1)]~ (j&zgN 2 IeTO&(j&zg„' —z I J'0&2&+1—

I,
"

& „.,„,~, [(2j~+1)+(—1)t '~~'I(2j„+1)][(2j~+1)+(- l)~i'4' '(2j„'+1)]"2' 1 4J(j+1)

—~ l I& +(- &)'"""'ll&+(- &)'""'1I"". (3.1)

where 5„,imposes conservation of parity and E is the Slater integral for the radial wave functions of the
harmonic oscillator.

Before using this b force in the total Hamiltonian (2.7), we have tested this interaction in a simple model
for doubly odd %=81 nuclei, in which we suppose that the protons of the 50-82 shell can be described by
means of 1qp excitations only. '~ The best-fit values of n and V,«, which we obtained from these calcula-
tions, "were used as starting values in the model for the 1V =83 nuclei.

As proton-proton interaction we used a Gaussian interaction of the form

V» ———Vo exp(- P
I
r, —r 2 I ) (P, +tP,), (3.2)

with I', and P, the singlet and triplet projection operators, respectively. The choice of parameters V„P,
and t will be discussed in Sec. V.

IV. MATRIX ELEMENTS AND CHOICE OF THE BASIS

(4.2)

%here d runs over all neutron single-particle orbits in the 82—126 shell.
(ii) energy correction for a

I
1phe lsp) state:

We have to make a choice of our basic states in order to obtain matrices that can be treated numerically.
Since the Hamiltonian of the core has a collective part as well as a quasiparticle part, the basis will in-
clude single-particle collective states (

I
n ph e lsp)) as well as single- particle-two-quasiparticle states

(I2qpe 1sp)). As single-particle states we consider all neutron states in the N=82-126 shell. For the
collective core states we truncate up to Ã, =3, N, =2 and (N, =1, N, =l), where N, (N, ) denotes the number
of quadrupole (octupole) phonons. As proton 2qp states we consider a selected part of those 2qp states,
which have no collective analog.

Concerning the more complex single-particle-collective-two-quasiparticle states
I (2qp lsp) lph),

we made three different approximations:
(Al) We neglect the

I (2qp 1sp) lph& states.
(A2) We calculate the effect of this truncation using second order perturbation theory, resulting in the

following expression:

E(o) ™E(o) (4.1)
m n m

where E~o' and E~~' are the zero order energies, E„ is an eigenvalue of the energy matrix, when it is
diagonalized within the truncated space, and E„' is the corresponding energy, corrected up to second order
for the neglect of the states I(2qpe 1sp) 1ph). The index m stands for all possible states of this type,
and V„denotes the matrix elements of the perturbation Hamiltonian (H, „»+H„„). Introducing the
explicit expressions of the matrix elements V„„into Eq. (4.1), the following results occur:

(i) energy correction for a I2qpe 1sp) state:

E"'
I

bz zM =~ ' I('Il"II"&(""'I 'Z ' I('ll "fl"&~'"'I
~~5(2j, +1) g, —k(u, —e„~7(2j,+1) g, —K(u, —e„

E'.„",(I((NP, ), (N. ft.))mfa;Z~&) = .
Je J++ |) ~a

x P X~""fu,v~E'(abed, 8'„)—(- 1)~~'~&' ~~u„vP" (abed, J„)]
Cy4

1
"(I+b.,)'~ (4.3)
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TABLE I. An illustration of the effect of theP-n interaction in the case of &p Nd. With
K matrix the lowering of the unperturbed energy by diagonalizing the K matrix is meant.

J' jl

Structure
K -matrix(MeV)

++
9 (3f 7/2
-0.10$

23 +
2

8 sf~/2
-0.508

2i+

7"/3f T)2-0.423
6+/3f 7)2
0.065

6+ (Sf7/ 2
-0.085

4 Sfvy2
-0.262

Here the X
"~' represent the amplitudes for a par-

~au
ticular configuration (c, d) with angular momentum

within a proton 2qp description of doubly even
N=82 nuclei, and b runs over all neutron single-
particle orbits in the m=82-126 shell.

(AS) We calculate the energy matrix in the ex-
tended base, including the states ~(2qp 1sp)
e 1ph).

In all three approximatioris matrix elements of
the Hamiltonian (2.7) between the various basic
states have to be calculated. In the Appendix
some particular important matrix elements are
given explicitly.

V. PARAMETERS AND RESULTS

I).
(2) the extension of the total basis to the more

complex ~(2qpe 1sp) 1ph) states. The effect of
this extension has been calculated up to second
order perturbation theory using formulas (4.2) and
(4.S). From Table II one can see that high-spin
states which are built from Qe configuration

~
2qpS 2f, f,) are lowered by nE„=0.5 MeV on the

average.
(ii) The results of the unified model calculations

concerning the spectrum below 2 MeV are not
altered by introducing 2qp excitations. This is
not obvious since the excitation energy and the
spectroscopic factors of the ~nphS 1sp) states

Numerical calculations were performed for the
nuclei ",,'Nd, ",,'Sm, ",~4Gd, and ",6Dy, with the
following general results.

(i) All unperturbed high-spin states [i.e., when
one considers only the single- particle contribu-
tions of the Hamiltonian (2.7)] occur too high in
energy. Various calculations performed within
the three different approximations mentioned in
the previous section showed that lowering of the
high-spin states is mainly the result of two ef-
fects:

(1) the K-matrix elements (see Appendix) of the
proton-neutron interaction. Explicit calculations
showed that K-matrix elements can lower the
energy considerably. For instance, in the case
of '43Nd, the effect becomes particularly impor-
tant for the Z'=&2, ' and J'=~' states (see Table

TABLE II. Energy corrections in MeV due to the
basis truncation. In the left column the single-particle
configuration is mentioned, together with the nature of
the state to which it is coupled. The abbreviation coll
stands for any collective state and 2qp stands for any
two-quas iparticle state.

3.5-

3.0—

)
X

~ 2.5—
UJz
W

z
O
I

1

o 2.0—
LLj

1.5—

1.0—

O/2'

9/2,
ll/2 ~~

7/2',
5/2,
3/2
1/2'

13/2

Theory

Ii; =+

13(+

9/2
3/2

1/2

1/2'

3/2

13/2'

Nd
60 83

Experiment

II:=+ TI.=-

5/2

3I/2-11/2

9/2

1/2-

3/2

Theory
Tl;--

-3/2

P/2
&Q2

.1/2,15/2

7/2

5/2

9/-
-1V2

"/2

9/2

3/2

143
60 Nd83

145
82 Sm83 147

64 Gd83 (;8 &y83
149 0.5—

Lo k/2S coll)
ip3/2S coll)

fs,r 2 coll)
f&/2 coll)
hei 2(3 coll)

Ii &3g2S coll)
If&y2S 2qp)

-0.039
-0.071
-0.041
-0.061
—0.092
-0.122
-0.544

-0,037
-0.059
—0.216
-0.048
—0.059
—0.056
-0.502

-0.035
-0.049
-0.067
-0.041
-0.063
-0.101
-0.434

-0.047
-0.048
-0.068
-0.033
-0.048
-0.055
-0.508

0.0 7j2 7/2

FIG. 1. Density of states for the nucleus &&Nd. The
experimental spectrum is taken from Hefs. 4, 5 and re-
ferences cited therein. The parity assignments (71 =+,
7r = -) are shown in different columns. Experimental.
levels with unknown parity are shown in the rnid&le.
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&ABLE GI. Single-particle energies in Mev.

Proton single —particle energies Neutron s ingle —particle energies

143
eo Nds3

145
e2 Sms3

147
e4 Gds3

148
ee Fs3

3.35 3.85 0.60 0,00 2.7

3 35 3 85 0 40 0 00 2 3

2.05 1.45 2.30 0.00 1.35 1.40

2.10 1.25 2.30 0.00 1.35 1.30

S1/2 d3/2 d5/2 g7/2 ~11/2 ~1/2 ~3/2 f5/2 f7/2 @8/2 13/2

3.28 3.55 1.25 0.00 3..50 1.80 1.30 2.32 0.00 1.26 1.60

3.43 3.85 0.85 0.00 3.15 2.00 1.21 2.30 0.00 1.35 1.50

could possibly be changed because of two reasons:
(1) the 2qp-core coupling, i.e., the influence of

~
2qp I3 1sp) states on

~ nph lsp) states via the
interaction matrix elements of the type (2qp
S 1sp~H~ lsp). These matrix elements turn out to
be very small and so will be the changes in excita-
tion energy and spectroscopic factors of the ~nph
S 1sp) states.

(2) the extension of the basis to the
~
(2qp@ 1sp)

S 1ph) states. One observes from Table II that the
energy levels below 2 MeV (all of nature

~
nph

8 lsp)) are not much affected (shifted by about
AE„= 0.05 MeV-) by this extension.

(iii) Calculations pointed out that the 5 force
which we used as proton-neutron interaction can
reproduce in most cases the correct ordering of
high- spin states.

(iv) The level density above 2 MeV becomes very
large, as was qualitatively expected (see Fig. 1),
and no further detailed comparison between theory
and experiment is possible for low-spin states
in this energy region. A possible way to handle
this problem should be based on statistical argu-
ments.

In Tables III and IV all parameters are collected
which we have used for diagonalizing the energy
matrices within an extended basis. The proton
single-particle energies and the parameters of
the Gaussian interaction are determined by the
study of the corresponding N =82 nuclei, 'e

whereas the neutron single-particle energies and
the collective parameters are taken from Ref.

15. We have estimated the parameters for '4', Dy
by linear extrapolation, since in the previous
works no fits were done for '4e8eDy, and, moreover,
no experimental data exist on '&~Dys2. The value
of he@3 was taken as h&3=1.80 MeV because this
parameter probably goes through a minimum for
Z=64. In this way the variation of the E3 transi-
tion probability B(E3; —'3'--'),„,with the number
of protons can be explained, as is shown in Fig.
2.

In Figs. 3-5 we strow experimental level schemes
together with the theoretical predictions according
to the various approximations. We indicate for
each level the structure of the main component
in its wave function. In the case of strong admix-
ture we give two components. The abbreviations
Q and 0 stand for quadrupole phonon and octupole
phonon, respectively.

In Ref. 1, positive parity was tentatively as-
signed to the levels of '4p3Nd between 2.0 and
2.5 MeV (J'= —""—""—""—'~ "). On the basis.2 2 2 2
of our theoretical results a negative parity assign-
ment is very tempting, and in this way the parti-
cular levels could be explained as the coupling
of a J'=4' or 5' state with the 2f&&, neutron state.
Also, the b J=1 y cascade starting from —"
which is experimentally observed in eoNd can be
associated with the J'=9 -8 -7 -6'-4' sequence
jn

In Fig. 4 a comparison is made between the
two approximations (A2) and (A3) in the case of
'e28m. It is noticed that explicit diagonalization

TABLE IV. Unified model parameters and interaction parameters.

5602

(MeV)

Unified model parameters
A(d3

(MeV)

Gauss interaction
Vp

P (Me V)

P -n interaction
V«f

u (MeV fm3)

143
eo Nds3

145
e2 SmS3

147
e4 Gds3

148
ee DS"s3

1.58

1.58

1.60

1.81

1.60

1.80

1.2

1.0

1.4
1.6
1.7
1.8

0.2

0.2

0.2

1.0

3.4

3.4
3.4

-36.8
-37.8
-40.0
-41.0

0,21 400

0.15 300

0.15 342

0.11 342
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l45
62 83

THEORY(A2) THEORY(A3) EXPERIMENT THEORY(A3) THEORY(A2)

10 —.

y theory

experiment
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23/2'
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)i9 f 7/2

i9 tfftf 7/2
8 tmtf 7/2 i

12/ t 7/2
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iO'@ t7/2
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10 Nt t 712 ii

8 I 7/2

6. ~ f7/2, /'

26/2

21/2-
17/2-

23/2
27/2

I I I I I

ec ee

FIG. 2. The transition probability B(E3;t/i j ) as a
function of the mass number A in the N=83 isotones.
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Tl+ORY(A3)

9 f 7/2

26/2"

2 '2 /' i 13/2
21/2

, /
~ 6 f7/2
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i6 f 7/2

23/2 8 S f 7/2

i7/2' ' / 23/2'
15'' Q i 13/2

9/2-7 f 7/2

~~7 f 7/2

143Nd
60 83

EXPERIMEN T THEORY(A3)

62 iaaf 7/2
19/2

13/2

13/2 0 f7/2+&13/2~ 5' 8 f7/2
i7/2-

f2
I

+2.5—

OC
tLI

2.0—

9/2I 1

17/2'1

»/2"

15/2

i6 8 f 7/2
19/26' f 7/2 15/2

~6 /31 f7/2

4'Q f 7/2
ll/

I8 ,-f, Qt 7/2

FIG. 3. High-spin states of the nucleus ~4+Nd. Only the
lowest levels with 8& if' and E„&2 MeV are shown in the
theoretical spectrum. The experimental spectrum is
taken from Ref. 1.
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17/2

K
LLI
X
Ul

Z
O
l

CJX
LLJ

2.5-
13/2

2.0

7 f7/2

7 t7/2
QS t 13/2

%=tat f 7l2
Qi l3/2

~ ef7/2 83/2/
/

21/2'

16/2, 1'//2

19/2('

13/2
'

i7/2'

17/2('1

iS/2('I

/
//

/
6't7/2 / /
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/
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i
/

/
/

17/2
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within the extended basis yields better results
than a calculation up to second order perturba-
tion theory, regarding as examples the J'=—'
level with structure

(
9 8 2f, /2) and also the 3'

levels with structure ~4'@ 2ft/2), ~6'
2ft/2). Nevertheless, the same problem arises
for the parity assignment of the experimental
levels J'=~" and J'='7" at an excitation

2 2

energy of 2.050 MeV and 2.230 MeV, respec-
tively. Moreover, we cannot associate the theo-
retical J'= 2' level at 3.00 Me& with an experi-
mental level uniquely since two J= ~' levels occur

2
in that energy region.

In Fig. 5, a comparison is made between the
two approximations (Al) and (A2) in the case of
'6tDy. The energy correction (second order per-
turbation theory) shifts the high-spin states
towards the correct energy region, but spacing
and ordering of the levels differs from the experi-
ment. These shortcomings are probably due to
the particular choice of a zero-range proton-neu-
tron interaction. In this case also we caIl asso-

FIG, 4. High-spin states of the nucleus '4~2Sm. Only
the lowest levels with J& fbi and E„&2 MeV are s.hown
in the theoretical spectrum. The results of two different
approximations (A2) and {A3) are shown. The experimen-
tal spectrum is taken from Ref. 1.
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)490
66 83

THEORY(Al) THEORY(A2) EXPERIMENT THEORY(A2) THEORY(Al)

the J =7 state, we calculated a half-life of 0.040
s, and in the case of a 7) h, ((2@mg, ) 2 configuration
we obtain 0.173 s. In calculating these half-lives
an effective charge e&

——1.5e has been used together
with the experimental conversion coefficient
o.«, ——22. We conclude that the (v//f$/2I8 7/g'//2)7
I8 vf, (2 configuration is the most probable for the
J'= —,

'' state.

2i/2,
'19/2

17/2'
q) 3.0—
X

c3

LU

UJ

Z
C)
I—

1
2.5—

i3/2

lU

)

I

$0 i13/2

7 f 7/2

l5 f 7/2 q 21/2

O13f 7/2+ i 1$2 1

17/2.

2 7/2

//

o 13 i3/2 j/
I

// /

// /

10' 1 7/2 / I /

0 Q i 13/2 /~-
8f7/2

10'Q f 7/2

6'Q f 7/2

/

//' 1 7/2 /

25/2

2i/2
27/2

i7/2:

15/2

15/2

19/2

2.0—
r

I 0 13/2' , 13/2, O17/2 ~
13/2

ciate the z cascade J'= 2' ——,
' '- 2''-~2' with the z

sequence J'=10'-7 -5 -3 in the corresponding
N =82 nucleus. We also calculated the half-life
of the 0.1104 MeV E3 transition J'= —",

assuming a three particle configuration for both
the initial and final state. This assumption is
quite realistic for the J'= —" level, since it al-
most coincides with the (7/hIf/ p 18I 7fkf f/ p) fp+I83 vs/2
three-particle configuration. In the case of the
J' =—"' level with structure 7 C8I vf, /„ the J' =7
state does not coincide with a pure two-particie
configuration, and, moreover, its structure de-
pends critically on the single-particle energies
used. Assuming a gh„(, (3 gd, ], configuration for

FIG. 5. High-spin states of the nucleus «Dy. The ex-
perimental spectrum is taken from Ref. 2. Only a lim-
ited number of the calculated levels is shown. The left
column represents the levels without correcting for the
truncation of the basis, and the column in the middle
shows the spectrum with this correction taken into ac-
count

VI. CONCLUSIONS

The results of our study of N = 83 isotones on
the basis of a macroscopic particle-core coupling
with the inclusion of anharmonic effects of proton
two-quasiparticle excitations can be summarized
as follows.

(i) The correct prediction of the unified model
concerning the.energy and the spectroscopic fac-
tors of levels below 2 MeV are not altered.

(ii) The level density of the theoretical spectra
increases above 2 Met/", but no detailed com-
parison with the experimental levels is possible.

(iii) Many high-spin states occur as a result of
the coupling of the neutron single-particle 2f, /,
configuration with the two quasiparticle states
of two sequences in the corresponding N= 82
nuclei (the J'=4'-6'-8'-10'and the J'=5 -6-
7 -8 -9 sequence). Moreover, the ~J=1 y
cascade observed in ',",Nd can be associated with
an analog y cascade in the N= 82 nucleus, whereas
in the Dy isotopes correspondence should exist
between the J =~a ~2 - ~2 - ~2' y cascade and
the J "= 10'-7 -5 -3 y cascade (not observed
experimentally as yet). No such observations are
possible in the case of ",,'Sm, reflecting the more
complex decay properties of this nucleus.

(iv) Energy levels are shifted towards the cor-
rect energy region as a result of the proton-neu-
tron interaction and the extension of the basis.
The latter effect can be estimated fairly well by
second order perturbation theory, but explicit
diagonalization of the Hamiltonian matrix in an
extended basis yields better results.
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APPENDIX

All quantities O', I', T', 8', K', defined with a prime, refer to proton-neutron matrix elements. %e give
here the explicit expression of two matrix elements in which G'(abJc, g BR) denotes the normalized anti-
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symmetric state of two quasiparticles coupled to J, which is coupled with j, to p, i.e.,

G" (abJc,gOR) =
1 & bblR g (jGv)dyn[]]JM)(JMj, ~, l8%)aa~at8czt:1+~~) ~. RW

(i) (0[G(abJc, Pal)HG'(deJ'f 8'5il')( 0) =([(eG+&,+Z())D(ab de, J)+ Q(ab de, J)]& f&~~

Qg~5mmi+ &'(abJc, deJ'f; 8)j (A2)

where we have used the abbreviations D and Q of Ref. 11 and

K'( ab,dcdafdd)=-g (-1)'"' ' ' (Rd+))[(Ra+1)(22'+2)]'C'I ' )' ' )c ' 2'(cafd 2 )2
J ' J

0 je

(-1)""d' (2J,+1)[(2J+1)(2J'+1)]'' ' j' ' ' j ', T'(cafe, J,)bq„
J j ' J

ja

(-1)' "~'~ (2J, + 1)[(2J+1)(2J'+ 1)]'~' ' ~G ' .f,' T'(cbfd) J,)&„
J ' J

+ 2J,+1 24+1 2J'+1 'i' " .' ' ' .~,' T' eb e,J, 6,„,
with

T'(abed, J) = u,u,G' (abed, J) + v,vQ'(abed, J), (A4)

21'( b d, d')a= c— g (22+ 1) .' .', G'( b dJ),ac,ja
(A5)

G'(abed, J)=(j,l,j,l(J~]Vf,„~j,l,j&l+;
z/a

(ii) (O~c„Il G'(bcJd, 8 OR)(0) = (-1)'"' ~ . [u,v, t"'(adbc, J') -(-1)'('" uG, v(+'(abed, J)]
jo bc

(A6)

with

F (acdb, d')= g(RJ'+ 1)(-1) "*" .' ', G'( b dd). ac, (A8)
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