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Role of the small components of the nucleon-nucleus distorted wave in (p, m) reactions

Louis S. Celenza

(Received 4 August $978)

A formalism, based upon a covariant reduction of a Bethe-Salpeter equation for nucleon nucleus scattering,
is presented. The aim is to focus attention upon the relativistic components of the nucleon nucleus scattering
wave functions and the role they play in inelastic reactions such as the (p,m) reaction. One result is a
renormalization of the pion-nucleon vertex function due to these components.

t

tNUCLEAR REACTIONS Relativistic effects in proton-pion reactions. ]

I. INTRODUCTION

In a number of processes of the direct reaction
type, for example (p, v) or (p, y) reactions at
intermedia. te energies, & =0.5 GeV/c to 1.5
GeV/c, the impinging nucleon has a velocity com-
parable with the speed of light. Most analyses' '
of such processes include the use of distorted
waves for the incoming proton. In this energy
region the nucleon-nucleon cross sections have
not leveled off to the 45 mb value characteristic
of higher energy. In fact the PP total cross sec-
tion doubles as P goes from 0.5 GeV/c to l
GeV/c. Furthermore, the Fermi momentum of a
struck target nucleon is approximately 280 MeV/e
so that Fermi averaging of the nucleon-nucleon
transition matrix over the combined energy of the
projectile and target nucleon can be a delicate
procedure.

The Glauber approximation' and the multiple
scattering theories, "are fixed scatterer theories
in that the target nucleons are considered frozen
when struck. These approximations are generally
capable of being adjusted so that good fits to the
elastic nucleon-nucleus total and elastic differential
cross sections are obtained. Inelastic reactions,
such as the (p, v) reaction when treated in the
distorted-wave Born approximation (DWBA), re-
quire off shell information not demanded in elastic
scattering. Thus, in addition to the aspect of
Fermi averaging in determining the appropriate
distorted wave, the correct treatment of kine-
matics is also needed. It has been shown in the
pion-nucleus problem that a covariant treatment
of pion-nucleus scattering can lead to a more
fundamental understanding of the problem. '."
Both the role of Fermi averaging and kinematic
corrections are clarified and extension to higher
energy" is shown to be compatible with fixed
scatterer results. Whereas these effects may not

be as important in nucleon-nucleus scattering
because of the larger mass of the nucleon, the
nucleon possesses another quality, namely spin,
which requires a covariant treatment especially
for (p, v) reactions.

The lower or relativistic components of nuclear
wave functions have been dealt with in (p, v) re-
actions, ' but only in the context of the bound state
into which the nucleon is absorbed. The results
of Miller and Weber are somewhat in doubt be-
cause the orthogonality coristraints upon the bound
state and continuum wave functions involved were
not utilized. " It would appear that an appropriate
technique by which to discuss the various aspects
of high velocity nuclear motion in this problem
is the covariant reduction scheme. Such methods
in addition to their use in the aforementioned pion-
nucleus problem have been employed in the nu-
cleon-nucleon problem. " " In addition the pionic
disintegration of the deuteron" has been investi-
gated including the role of the relativistic com-
ponents of the deuteron wave function. However,
the effects of the lower components of the nucleon-
nucleus scattering wave have not been included.

The Dirac equation" has recently been applied
to calculate the full distorted nucleon-nucleus
wave using the vector and scalar meson transfer
model" of the effective one body potential ex=
perienced by the nucleon. The fits to the elastic
scattering data and polarization are excellent,
however, the underlying optical model theory is
not justified completely. In addition there is an
apparent lack of nucleus recoil in the calculations,
since the Dirac equation is solved in the presence
of the effective one body potential whose param-
eters are then fitted to the data and the momen-
tum transfer to the nucleus is ignored.

The aim of this paper is to construct a scheme
for calculating the nucleon-nucleus scattering
wave via a relativistic reduction of a covariant
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nucleon-nucleus equation. In the course of this
construction in Sec. II the natural choice for the
form of the reduced equation is the Dirac equa-
tion, however, the full effects of nuclear recoil
are maintained. Furthermore, the lower com-
ponents of the covariant nucleon-nucleus wave
function are isolated and a scheme for constructing
them suggested. A further reduction is made to a
nonrelativistic notation. In Sec. III the wave func-

tion is investigated and the Moiler scattering
matrix is displayed.

II. REDUCTION SCHEME

In order to include the effects of recoil and to
start from a relativistic basis, a Bethe-Salpeter
equation is assumed to be valid for a nucleon of
four-momentum O'-I' scattering from a spin zero
nucleus of four-momentum P (see Fig. 1)

&W-P', P'loRIW P, »-=« P', P-'lDIW-P, »

2m ()('-g" —M)(P"'-M ')
(2.1)

Here BR is the invariant nucleon-nucleus scatter-
ing amplitude and D is the irreducible amplitude
for nucleon-nucleus scattering, M is the mass
of the nucleon and M~ the mass of the nucleus. The

Dirac matrix Nt appears in the S matrix for nu-
cleon-nucleus scattering with all particles on
their respective mass shells in the following man-
ner:

(W' —P', S'; P' lSlW —P, S;P) = 5, 5 (P —P)5'(%'- W')
I

—2wi5'(W -W')(M2/E(W —P)E(W- P')4Eg(p)E~(&'))' '

x U, .(W —P ')(W —P', P' lOR l
W —P, P) U, (P) . (2.2)

If the conventions of Bjorken and Drell" are fol-
lowed,

(2.3)on = OR„/(»)'.
In equation (2.2) E(W —P) and E~(P) are the en-
ergies of the on-mass-shell nucleon and nucleus
while U, (W -P) is a positive energy spinor for a
nucleon of momentum W-P and spin s. In the
evaluation of D one has to construct the amplitude
for the scattering of a free nucleon from the
ground state of the nucleus subject to the proviso
that the nucleon-nucleus state never appears as
an intermediate state. Some diagrams included
in D are shown in Fig. 2. Pictured are single
and double scattering contributions and pion pro-
duction contributions. The aim of this work is

/ not to calculate such diagrams involving fully off
mass shell nucleon-nucleon scattering and pionic

tNN

tNN tNN

production amplitudes. Bather it is to isolate
those ingredients of the lower components of
scattering wave functions which can be parame-
trized by using the elastic scattering data from
those requiring models.

To achieve this goal a reduction of Eq. (2.1)

W-P W-P W-P W-P W-P W-P

M p
=

p D, +
p D, M p

FlG. 1. A graphical representation of the Bethe-.
Salpeter equation, the open double lines represent the
nucleus in its ground state and the single line the scat-
tering nucleon.

FIG. 2. Several terms in the decomposition of the
irreducible amplitude D. Solid dots represent nucleon-
nucleon invariant scattering amplitudes. Open circles
represent vertex functions for the emission and absorp-
tion of a nucleon by the nucleus. Dashed lines represent
propagating mesons.
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to three dimensional form is made by placing the
intermediate nucleus on its mass shell. This is
most reasonable since in any virtual process in
which the nucleus receives a momentum transfer,
the large rest mass of the nucleus and the mo-

mentum content of nuclear wave functions will
tend to prevent the momentum squared of the nu-
cleus from deviating far from M„'.

The particular form of the reduction used here
is to replace the Green's function G as follows:

i5'(P -P')
(W -p, p ~G~W p, p-& =

5 (P' -M„')6'(P P') -0) ),

'( ) ( '- .( )) '( — ')
B(P.)B((W P). ) B(W. P.)(g-g -M)

= (W -P', P ~G„~W -P, P) . (2.4)

Here

~(P) -=I/[2Z„(P)]". (2 6)

In the usual way if a new kernel K is defined via

Z=D+D(G -C, )SC, (2.6)

then SK may be expressed exactly in terms of K
and G~ as

If in (2.V) all states of the nucleus are taken on
their mass shell then the following closed linear
equation is obtained:

(w p, J [m[w-p, p&

=(W-P', P'jrt ~W P,p&-

mentum k" and W~ =(vs, O) with s the square of
the total four momentum of the nucleon-nucleus
system. Constraint (2.11) becomes in this frame

(s —V ') /4s & k" ' (2.13)

P'- f—M*(W —P)]U,*(W —P) = 0, (2.14)

and is the tighter of the restrictions (2.11), (2.12)
for all s&0, for example, at threshold A" &I„.
The restriction that the mass squared of the in-
termediate nucleon be greater than zero, besides
shuttling all the tachyonlike dependence into Eq.
(2.6), allows one to define off mass shell spin-
ors'" U,*(W P), V,*(W—-P), which obey the
equations

(2.8)

+ d'P" tV -P', P' K 8'-P",P" G 8 -P"
x(w —P",P" (6tt, (W-P, P&.

[lP'- P+ M +(W —P)]V,*(W —P) = 0,
where

M *(W —P) —= [(W —P)2] '~2 .

(2.16)

(2.16)
Here, for example

(w -p', p')6i~(w -p, p&

=R(P}R(P')(W —P', P' ~BR ~w —P, P& 0 p,
&'O=&W8 ')

(2 8)

and

The U* and V~ spinors are constructed as ordinary
Dirac spinors except E(W -P) is replaced by W'
-P' and M by M*(W -P). For a given value of
W Psubject to (2-.11) and (2.12),

U,*(W-P)UP(W -P) = V,*(W -P)VP(W -P) =6... ,

(2.17)

G(w -P")= I/(IP'-P" —M) . (2.10) U,*(W —P)VP(W —P) = 0, (2.18)

(W —P")'& 0 (2.11)

Equation (2.8) is covariant if multiplied by
[B(p)R(P')] '. The integration in (2.8) over P"
is such that

and they are complete in the sense that

Q U,*(W P)U,*(w -P) —V-,*(W -P)V,*(w —P) = 1

(2.19)

gjo Poli )0 (2.12)

In the center of momentum the nucleon has mo-

or

A&'~(w P)+A*i i(w -P) =1—. (2.20)

Equations (2.14} to (2.20) allow G to be written
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TP'- f+M
P)=M*(W P) -M"

where

U" =K"+K' G (1 —K G ) 'K

and 9g ' is given as

(2.28)

or

U,~ 8'-P U, 8'-P
M+(W -P) -M

~ y+(w - p) v +(w -p)
M*(W P)+-M

I

G(W P) =G&'&(W P)A~&'&(W -P)
+O&-&A*&-&(W P), (2.21)

where

G '&(W -P) =1/[aM*(W P) -M-] . (2.22)

x A*&+&(W-P) (2.23)

The following definitions will be useful below,
for example,

(W -P', P'~OR '-(W -P, P)

=A*&"&(W-P )(W P, P ~OR-~W P,P)-
x i /"- &(W&P), -

(W -P, P )OR")W P, P)
—:A*&'& (W —P')(W P', P' (OR )W——P, P)

OR '=(1 —K G ) 'K '(1+G OR"). (2.29)

The method of calculating the lower components
of nuclear wave functions is now suggested. In
(2.29) the factor (1+O'OR "') will be shown below
to be associated with a nucleon-nucleus distorted
wave. The factor (1 —K G )

' can be approxi-
mated by 1 since E is an optical potential for
antinucleon-nucleus scattering. Although this po-
tential may have the strength of the nucleon-nu-
cleus optical potential, it is weighted by G- 1/(2V). Thus a reasonable approximation to
BR is

OR-' =K '(1+O'OR'") . (2.30)

G'=
M+(W -P") -M

RelationshiP of OR" to the LtPpmann Schu-&ingey
Equation. Equation (2.27) may be cast into an
equivalent Lippmann-Schwinger equation by first
noting that in the c.m.

and

(W-P, s;P ~OR'-~W-P, s;P)
—=—U+(W —P')(W —P', P' ~OR ~w —P, P)

x V,"(W P), -
(W -P, s';P'~oR" ~W -P, s;P}

=-UP(W -P )(W-P, P ~OR ~W-P, P)

M*(W —P"}+M W+ W"

W —E„(k")+ E,(k")

where
W —

(k 2+ M 2)1/2+ (k 2 ~M2)1/2

E„(k2,) + Es(k—2, ) 1

We —(kzt2+ 1&f 2)I/2+ (kls2+M2)1/2

= E„(k")+E,(k") .

(2.31)

(2.32)

(2.33)

x U,*(W-P) . (2.24)

It is to be noted that quantities such as those
appearing in Eq. (2.24) are invariant amplitudes
with respect to the nucleon and, if the A factors
are removed the entire function is invariant under
Lorentz transformations.

Returning to Eq. (2.8) and utilizing (2.23), four
equations can be developed for 5R "gg '~' and
0R . The two which relate directly to the lower
components of the nucleon-nucleus scattering
states are

Now since

W2 Wit 2 —4(k 2 ktt2)/[1 (M 2 M2)2/(W2Wtf2)]

(2.34)
and

E~ (k~) + E~(k") = (W+ W")[1+ (M~ —M )/(WW")]/2,

(2.3 5)

W —E„(k")+ E„(k")= W [1 —(M„' —M2)/(Ww")]

= Eg(k") + E„(k"), (2.36)

OR'' =K"+K"O'OR" +K' G OR ', (2.25)

OR =K '+K 'O'OR" +K--G-OR-+. (2 26)

one finds that

M*(W P")+M 2&1(k",-k~)
E„*(k")+ Es(k„) (k~2 —k"') ' (2.37)

f-'&y eliminating OR
' from (2.26) in (2.25) OR"

satisfies the equation

(2.27)

where

2&1(k", k ) = [Ef(k„)+E (k")][E (k )+E (k"))/(2W)

(2.38)
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(k, s'lv(w)l k, s)

=Ã(W, k )&W-P, s'P lV"'lw P, s'P&

Xg(w k) (2.41)

the ordinary Lippmann-Schwinger equation may
be developed,

7'(W) = V(W)+ V(W), 2T(W) .
OP

(2.42)

Summarizing this section, Eqs. (2.25) and (2.26)
are a set of covariant integral equations for the
scattering amplitude. The formal solution to
(2.27) represents the covariant optical model pre-
diction for the elastic scattering amplitude and
(2.29) yields the remaining required information
needed for various direct reaction inelastic pro-
cesses. Equation (2.42) contains the same infor-
mation as (2.27) reinterpreted in a Lippmann-

Thus with

g'(W, k") = [M *(W P-") + M]

x[2p(k", k,)]/[Zg(k")+ Z„(k,)], (2 39)

and defining in the c.m.

&k, s lr(W)l k, s)

=F7(w, k )(w P', s'; P'lan" lw -P, s, P)g(w, k)

(2.4o)

k" -=[(W ~ P)(W -P)" -W ~ (W -P)P"]/W', (2.43)

k v - [(W.P )(W P )u W (W Pr)P»]/W

(2.44)

then the magnitudes of the relative three-mo-
menta in the c.m. are

lk l'= —k„k&,

lk'l'= —k„'k'",

and the c.m. scattering angle is given as

cos8, m
= —(kq k'")/(k„k" k„' k'") '~'

(2.45)

(2.46)

Schwinger equation. One must note, however, that
it is not quite the same since in intermediate in-
tegrations the restrictions (2.11) and (2.12) must
be used. These restrictions should have only
moderate consequences in determining the scat-
tering wave functions since optical potentials can
only support limited momentum transfers. It
should be noted in addition that by using this re-
duction scheme a, covariant transition amplitude
having two nucleons off their mass shells is as-
sociated with a fully off energy shell T matrix.

To complete this section the relationship be-
tween the c.m. relative momenta and scattering
angle are given in terms of the four-momenta in-
volved in the elastic scattering. I.et P, P' and
W -P, 8' -P' be the initial and final momenta
of the nucleus and nucleon and define

III. %(AVE FUNCTIONS

lim U, (W —P')(1P'-P' -M)
wo-s" o &gw -~')

If the S-matrix for elastic scattering is developed in the Heisenberg picture one finds

(w P, s;P lslw P, s;P) =53(p —p)5S(vTr-w')5. ..
-i(2m)

l
I 5 (W —W')/(2w)'~'iz„(w-z )

x&P ly(O) lW&'& -P, s; P) .

By comparing (3.1) with (2.2) the following identity holds:

1
&. (+- &)(K-4'-M)&P'le(o)lw-P, s'» =(2~) '" (kf/E (- &))'"1{2' p, l

g -P' ~E~(g -P')

(3.1)

U, , (w- P )(w -P', P'lstt lw -P, P)U, (g P) .
(3.2)

Here all particles are on their respective mass shells. In order to construct a wave function which makes
contact with the transition amplitudes defined in the previous section, it is necessary to make an off shell
prescription. The most natural one is the identification

(tp'-g'-M)( 'ly(o)l "w-P, s;P)=(2~)-' 'l

x (W —P', P'lsR lW —P, P) U, (W P) . — (3.3)
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Equation (3.3) is to hold for the final nucleon off shell. The definition of a wave function

(W —P P I+ ., &
=- (2v)'"(P'Ie(0)

I
"W-P, s P&I, (3.4)

and Equation (2.9) allow (3.3) to be rewritten as

(lP'- P' —M)(W —P', P'I 4,. & =(W —P', P'IOR iW —P, P) U (W —P) .

Expanding the wave function in the following manner

(W —P', P'I 4' „)=Z (W P', s', —P'I4', . ) UP (W -P')
S

(3.5)

W-P', s', P' 4 ~ p. , y+ g P'
S (3.6)

and inserting (3.6) into (3.5) yields the following half off energy shell (one nucleon off mass shell) equa-
tions

(M*(W -P') -M)(W -P', s';P' Ie', . &=)(W -P', s'; P'Immit" IW -P, s; P),
—(M*(W P')+M)—(W —P', s';P'i@,.z&=(W P', s';P—'IOR 'IW —P, s;P) .

(3.7a)

(3.7b)

In order to invert these equations the inhomogeneous
free wave 4', is defined as

(W —P', s'; P'I e;, „,,)= 5'(p - I )5...,

(3.8a)

If 4 is eliminated above or equations (3.7a),
(3.8a), and (2.27) are used, the part of the wave
function involved in the elastic scattering ampli-
tude 4 ' obeys the equation

(W -P', s; P' I4', ~ ~,. ~&=0. (3.8b)
I+'& = I+.'&+ G'U" I+'&, (3.11)

The inversion of equations (3.7) in abbreviated
form is

where U" is the effective operator defined in
(2.28). In turn the nonrelativistic version of
(3.11) is obtained by defining in the c.m. ,

~;V E, 0 G-sit--i (I~;&i

(3.9)

siP I ~Nn w ps J'&-
= [A(W, k')] '(W -P', s'; P' rP „,. )

resulting in the solved form for the wave func-
tion. By substituting (2.25) and (2.26) and using
(3.7) the integral equation obeyed by the wave
function is

x A(W,. k„)

and using Eq. (2.41) so that

(3.12)

(I~ &i k«&i i' G i&~
' & 1(I~ &i

(3.10)

(3.13)I~,&
—I~.&+„,I«.~

i~»&.
IV OP

Finally, the covariant (except for factors of 2E&)
wave function in (3.4) may be written as

P, P Iy . ) =5 (P P')U, (P)+ g((M+(W-P') M] '(W -P', -s';P-'Igg" IW -P, s;P&UP(W P')-
S

+ [M *(W —P') + M) -'(W —P, s', P' im
-'

i
W —P, s; P) VP (W —P' ))

-=(W P', P'In—'IW P, P&U, (P) . — (3.1 4)

It is the Q' operator defined in (3.14) which may be inserted into reduced Feynman graphs such as the

one shown in Fig. 3 and is equivalent to the use of a distorted wave. The operator 0' may be decomposed

0+ =0''+0 (3.15)

where

0 ' = A~+ (W —P')Q 'A+ (W —P) . (3.16)



l9 ROLE OF THE SMALL COMPONENTS OF THE. . . 45$

W-e'

W-P-~..P'
n'

W-P. s

FIG. 3. The DWBA in graphical form for proton in-
duced pion production in the single nucleon model.

FIG. 4. The same as 3 without the final state distortion
and with momentum labels appropriate to Eq. (3.17).

It is g" which is the Moiler operator corresponding to the nonrelativistic wave. function in (3.12). Con-
sider Fig. 4 which is part of DBQ for the (p, m) reaction in the model where pion emission is from one
nucleon. The distortion of the outgoing pion wave is omitted here. It is certainly of great importance but
has been discussed in other works and the methods of handling this distortion have been developed. '"
If the S matrix for this graph is evaluated by placing the intermediate nucleus on its mass shell it yields

S 2v 5 (W W )
[ ( ]

x d3P'8'-z, ~4 0 P' ', ~ P, W-P'-z z W-P' W-P', P'O' W-P, P U, %—P . (3.17)

In (3.17) (W -~, n~4(0) ~P& is the wave function of the nucleon absorbed by the nucleus whose internal quan-
tum state is labeled o, V is the pion nucleon vertex function. By using (3.15) and the approximation
(2.30) equation (3.17) may be rewritten

M

(2W)'i2(k) (W —P) )

x d'P'O'P" 5'-~, z + 0 P',*' ~ V,'" 8'-P'-~ ~ R'-P" W-P", P" 0"W-P, P U, &-P,
(3.18)

where

V,' (W —P' —K~K~W -P")= V„(W P' -K(K~-W -P')5'(P —P")

+ dp"'V 8 P' —~ ~ W P'" G-S"-P'" W-P'" P"' Z-+ S' P" P" 319

Thus a spin renormalizatiori to the pion nucleon vertex results ii it is desired to use nonrelativistic nucleon
nucleus distorted waves as in (3.18). Because of the off diagonal spinorial nature of the pion nucleon ver-
tex, if y, theory is used, the effects of the second term in (3.19) may be important. The size of these ef-
fects depends crucially upon the model dependent evaluation of the operator K '. This question is under
current investigation.

IV. FURTHER OBSERVATIONS

The facts that the amplitudes K"', K ',QR", etc. are covariarit and that the scattering of a spin —,
' parti-

cal from a spin zero partical is being described allows one to write, for example,

(W-P', s'; P'iK" iW P, s;P& =R(P')R-(P)Up(W -P') 0"(W', (P -P')', M*'(W P'), M*'(W --P))

+~"(W', ( -P)', M*'(W-P),
i

xM*'(W -P)) U+(W-P) .
2M~

(4.1)

Here k" and h" are invariant functions of their arguments. The advantage of having invariant quanti-
ties to calculate is that kinematic ambiguities are dispensed with and this has proven of great utility in
the pion nucleus scattering problem. '"

On shell in the c.m. the elastic scattering amplitude,

(W —P', s'; P' l~" IW —P, s; P& = ( k„', s'
I T(W) I

k ~, s& . (4.2)
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If I' is expanded in partial waves,

~ IT(ii')lkg s) = Q X. ' &)=~, g, (k.„')Y;™~t,„g, (k~) X,(k~~y(~~) [y~)
Jm

(4.3)

then

If a separable model is used to fit the phase shifts
and inelasticity parameters 6 and p similar to that
constructed by Londergan, McVoy, and Moniz"
for the pion nucleon problem, then the half off
shell T matrix may be generated and with the half
off shell version of (2.40) OR" may be extended
to the region where one nucleon is off its mass
shell. Alternatively ~" may be devel'oped us ng
Glauber theory for the higher beam momenta. In
estimating the corrections implied by the use of
(3.19) in (3.18) the remaining uncertainty is in the
calculation of K

V. SUMMARY

A covariant reduction scheme appropriate for
the nucleon-nucleus problem at intermediate en-
ergies has been outlined. The central result of
this work is that for the (P, m) reaction when cal-
culated in the single nucleon emission model, the
pion nucleon vertex is to be corrected by a factor
dependent upon the lower' component of the nucleon-
nucleus scattering wave function. In addition am-
biguities associated with using a Dirac equation
ignoring nuclear recoil are clarified.
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