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Boundary condition model for the hnewidths of protonium
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%e have calculated the annihilation widths of s- and p-state protonium using a coupled channel model
which incorporates an absorptive boundary condition derived from the &KB approximation. The boundary
condition yields results nearly independent of the point at which the condition is applied. The results are
compared with the black sphere model.

[NUCLEAR REACTIONS protonium pp, calculated level shifts and widths, boundary
L condition model.

I. iNTRODUCTION

Protonium, the bound state of a proton and an
antiproton, is a very large system on the nuclear
scale. Its mean radius in the 1s state is 86.5 fm,
an order of magnitude greater than the range of
the strong interactions. Thus, to a good approxi-
mation, the system is described by hydrogenlike
wave functions. Nonetheless, the hadronic forces
play an important role in the dynamics of the
system since they lead to its destruction through
annihilation into mesons. It is the effect of these
strong interactions on the atomic dynamics which
is the subject of this paper.

The dynamics of the atomic bound state of a
proton and an antiproton, protonium, is most eas-
ily visualized by reference to the effective poten-
tial shown schematically in Fig. 1. The system
exists for most of its lifetime in the broad poten-.
tial well lying between x, and r2 formed by the at-
tractive Coulomb potential and (for I c0) the cen-
trifugal potential. We will refer to this shallow
well as the "atomic well"; for 2P levels the corre-
sponding radii are x, = 30 fm and r, = 200 fm. In
the region with r less than a few fm, the potential
is dominated by strong short range hadronic forces,
the outer parts of which are given by meson ex-
changes. The problem is complicated by the fact
that pion or other isovector meson exchanges mix
nn components into the dominantlyPP wave function.
In a previous' article it was shown that the potential
including the coupling to the nn channel is suffi-
ciently attractive in each of the 2P states to give
additional "inner" classically allowed regions at
separations R & 1-3 fm. For s states there is no
barrier and the entire region from x, to r, is
classically allowed. The potential has not been
sketched in the neighborhood of the origin (r &r,)
because it is both poorly known and complex (ab-
sorptive) in this region. Particles bound in the
atomic well will, in time, leak through the barrier
to be pulled together by the strong attractive
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FIG. 1. Schematic drawing of the effective potential
for protonium. The cross-hatched "absorptive" region
is described by a boundary condition at r, which lies
in the inner classically aQowed region between r, and R.
The region between r& and r2 is the atomic well, and the
region between R and. r&, the barrier region. The depth
of the atomic well is greatly exaggerated. Typical
values are r -0.5 fm, R-1-2 fm, r& 30 fm, and
r2-200 fm forP states.

forces to be later annihilated within the central
region. For s states the lack of a barrier makes
the annihilation rate much higher than for P states.
The combination of attraction and absorption
makes the central region appear nearly "black";
almost all the particles which enter the region of
hadronic forces are eventually absorbed. This
absorption rate is the principal quantity to be
calculated in this article. '

In Ref. 1 we calculated the annihilation widths
using the WKB result: I' =ve "where v =n
x(2s) ' is the radial oscillation frerluency in the
atomic well. I is the usual integral over the bar-
rier I= j,"rr dr, rr = ik, where k = [2m(E - V,«) ]' ',
and r, and R are the turning points shown in Fig.
1. The calculation is based on a global form of
the WKB approximation which requires the validity
of WKB wave functions in each region except in
the annihilation region and which assumes the
ability of the WKB connection formulas to relate
these wave functions. To include absorption, the
WKB wave function in the inner region is assumed
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H. THE MODEf

For completeness we review the equations de-
scribing protonium which were previously given
in Ref. 1.

Protonium is described by the coupled channel
SchrMinger equation

H4 =Et,

0 V, +Vo V~c 0 Prl

pi/2m) ( V~„26m+ Vof

where m =m~/2, .5m =m. , —m~, Vc = n/r; Vo and-
V~„are the diagonal and the off-diagonal parts of
the hadronic potential. The contribution of pion
exchange to V, is given by the conventional form

V, = ——', f~[5, Pi+ F(x)S„]e"/r,
F(x) =1+3/x+3/x', x=m, r, f'=0.0V9,

(2)

where S» is the tensor operator. The off-diagonal
contribution of w exchange to the potential is V~„

to consist of purely inward moving waves. ' The
model gives absolute predictions for linewidths of
the 2p states of protonium once a form for the
meson exchange potential is assumed. The poten-
tial is used only in regions in which it is well
known: in the atomic well to calculate v and in -the

barrier to calculate I.
In order to do better we can numerically solve

the Schrodinger equation for the coupled PP-nn
system. The principal problem is to properly in-
clude the central absorptive region. The tradi-
tional methods of treating absorption are to employ
either an absorptive boundary condition" or to
use a complex potential' to describe the coupling
to annihilation channels. More complete refer-
ences can be found in a recent review of nucleon-
antinucleon systems. ' In this article we formulate
a boundary condition model which has the following
features: (a} the absorption is maximal in a WKB
sense, (b) both Pp and nn channels are included ex-
plicitly, and (c) the absorption is only weakly de-
pendent on the radius at which the boundary condi-
tion is applied. Because of (c) the present formu-
lation is nearly parameter-free in the spirit of the
black sphere model, ' provided the hadronic poten-
tial is known in outer regions (r & r,).

In the next section we review the form of the
Schr'odinger equation for protonium and formulate
the absorptive boundary condition. Results and a
brief discussion are given in the final section.

y, (r)=W, W„„(~r), x=Zm~/X,

ii =i+-' x =(-BmE)'~'

where W'„„ is %hittaker's function' ax.d

y„(r)=A„rh" '(iPr),

P = [2m(2V —E)]"',

(4)

where h',"is the spherical Hankel function. '
Given a trial value of the energy E =(Ea+iE,)

and the relative normalization A = A„/A~ we now
use Eqs, (4) and (5) to start the numerical inte-
gration of the coupled Schr'odinger equation (1).
We have used 14 fm as a starting point; this is
substantially outside the range of the strong inter-
actions. ' The integration carries. our solution into
the inner classically allowed region in which the
hadronic attraction overcomes the centrifugal bar-
rier (See Fig. 1). As we have shown in Ref. 1 this
inner regiori begins at a value of R between 1-3
fm for 3p states; this is outside the absorptive re-
gion ~

The existence of this inner classically allowed
interval C -=[r„R]in which V is nearly real al-
lows us to formulate incoming w'ave boundary con-
ditions within the framework of the %KB approxi-
mation. At some point x, within C we now impose.
a boundary condition which approximates pure ab-
sorption. The most common %KB prescription,
the "continuum model, "'0 assumes that $- exp
x(-iXr} (or in terms of the logarithmic deriva
tive g'/g = iK) in the-neighborhood of r, . The
constant may be taken as a parameter adjusted to
maximize absorption~ or as a local momentum. '
Reference 5 also uses a form of the %KB approxi-
mation which incorporates the centrifugal barrier.
We use a variant of this condition which also fol-
lows from the %KB approximation, but which in-
cludes the channel coupling and hadronic forces.

As a preliminagy, we study the eigenvectors and
eigenvalues of the potential matrix V,'" with corn-

=-2V,. In addition to w exchange we have included
the isoscalar op and o', exchanges with a common
mass m„; thus

V, =V, (4')-'G,'e "~/r, G,'=G '+G '
This simple form for ~, o, exchange is the same
as was used in Ref. 1 and is justified on the basis
of the insensitivity of the results to Go within
reasonable limits (G,'/4m=20-40). The vector
meson exchanges are relatively unimportant for
the atomic (vs quasinuclear) states calculated
here.

Since the Pp and Kn channels are coupled only
through short range strong interactions, we can
write immediately the reduced wave functions
(i.e., the wave function times r) for large r:
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ponents

V V
Vp= V, + Vo, V„—= 25m+ Vo .

— —+v, -E,=O,

where

0, = 0,'4&+ 4." 4. ~ (12)
The eigenvalues of the potential matrix are

t'V +V
(7)

[U(r),P'/2m] = 0. (10)

The validity of this assumption follows from the
near constancy of U(r} in the region of strong in-
teractions, U(r) being a function solely of R„
which we have seen is nearly constant in this re-
gion. Even at larger separation we expect the ap-
proximation to be reasonable since the potentiaIs
are smoothly varying.

With this assumption, U is used to diagonalize
Eq. (1) yielding the separated equations

The corresponding eigenvectors g" = (p~, g„')
satisfy

y„'=[(~'- V,)/V .l 0;=-R,y,'.
Since the eigenvectors are orthogonal and may be
normalized, we can define

y,'=(1+R,')-'";
y„' =R,(1+R,')-"'

~

An overall phase function of r which is common to
P~ and P„can be absorbed into the expansion co-
efficients. Equations (9) establish the relative
amounts of pp and nn in the composite wave func-
tion as a function of r. At large separations v~„
is negligible and we see that v, corresponds to the
nn potential while v corresponds to the pp poten-
tial. ' In the region of strong interactions V~-"V„
holds because the Coulomb force and the n-p mass
difference are relatively small compared to the
hadronic potentials. This near equality, when
combined with Eqs. (7}and (8}, leads to the result
that R, and R are nearly constant and equal to +1
in this region. This is merely 3: statement of the
fact that in the absence of isospin breaking forces,
the Schrodinger equation can be diagonalized in
an isospin basis. Summarizing, at large separa-
tions the eigenvectors of the potential matrix
correspond to a charge basis set, while at small
separations they correspond to an isospin basis
set.

The matrix U, whose rows are Q' and $, is a
unitary matrix which diagonalizes V. Now let us
assume that in the neighborhood of the boundary
radius r, the function U(r) is smooth enough that
the commutator of U(r) with the kinetic energy
nearly vanishes:

The eigenpotential V becomes the pp potential at
large separation and is always more attractive
than V, (note that V„&V~ for large r) Th. is sug-
gests that we impose boundary conditions at r, :

(a} g. vanishes at r, ,

(b) |It corresponds to incoming waves at r, .
Condition (a) may be written as

PtPq+ P„'$„=0 (at r,},
or, using the orthogonality of P' and P, as

(a'): y„/y, =y„-/0; =R. -
Within the framework of the %KB approximation,
conditon (b) can be expressed as

k "'exp( if k dk)-,

A. =[2m(Z-v )]"'.
Differentiating, we get

(13)

0( ) =&&"'I '"2'((),
where

(14)

dv
(b'): P'/g =-ik +(m/2k') —-.

dt'
W

This condition may be expressed in terms of

g~, g„by use of Eqs. (9) and (12): P =(P~+R P„)
x(l+R ') '~' in the neighborhood of r, . Equations
(a'} and (b') are the absorptive boundary condi-
tions. They are valid provided the potential is
sufficiently smooth in the neighborhood of the
point of application. The right-hand side of (b )
involves an imaginary term which is the form
used in the continuum model with the parameter
k given by the local momentum corresponding to
the eigenpotential v . The second term, which is
essential, provides a real part which depends on
both centrifugal and hadronic potentials.

With the exception of the 'I', state, the turning
points for p states are relatively close to the
annihilation radii. Because of this, the standard
WEB formula, Eq. (13), and the corresponding
boundary condition (b'} will be inaccurate for these
states. To improve the situation we have used a
generalized form of the VfKB wave function which
is also accurate near the turning point. As is
shown in standard texts,"an approximate solution
to the SchrMinger equation which is accurate in
the classically allowed region up to a linear turn-
ing point is
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and where R is the turning point. The function S
is a linear combination of Bessel functions of or-
der —,:1

CJ', g,(])+ DF,g (f) .
Far from the turning point in the classically al-
lowed region Eq. (14) reduces to the standard
WKB result (13) for suitable C and D. The correct
choice of constants to give ingoing waves yields

E
0)

C)

0.4—

0.3—

0.2—

0.1—

3p , d

b

(15)~(5) =~ g,(h) —&1' I ($) =&'(-' (h) ~

Combining (14) and (15) gives the improved form
for the ingoing wave boundary condition:

(b)-: C /q =~le,",';(~)/ff,",', (~))

--,'[(~ /~) -(~/&)).

This boundary condition is found to give a signifi-
cantly improved stability for the eigenvalues as
will be shown in the next section.

The coupled Schri5dinger equation (1) was inte-
grated inward repeatedly with (4) and (5) providing
the starting values. The complex parameters A
and E were varied (using a form of Newton's
method) until the boundary conditions were satis-
fied. Finally, the point of application of the
boundary condition, ~„was varied to determine
the sensitivity of E and A. to this parameter.

It should be emphasized that the smoothness
assumptions were applied only in the neighbor-
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PIG. 2. AnnA. ilation width and energy shift vs bound-
ary condition radius r for the Po state. 'The classical
turning point is at approximately 2.5 fm. The impor-
tance of the dv /dr term in Eq. (6) is Qlustrated. Curves
{a) and (b) use the full boundary conditions and curves
(c) and (d) omit the derivative terin. 'The dashed lines
give the negative of the imaginary part of 8, while the
solid lines give the negative of the level shift.

hood of ~, in order to infer the boundary condi-
tions. The full coupled equations were solved
numerically from the starting radius to x,. This
frees the calculation from the use of KB connec-
tion formulas implicit in Ref. 1.

HI. RESULTS AND DISCUSSION

Figure 2 shows the calculated energy eigenvalue
for the 'I'0 state of protonium as a function of the
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FIG. 3. Annihilatiop
width and energy shift vs
boundaxy condition radius

for the Po state. The
boundary condition b" is
used in this and all subse-
quent figures. The dashed
curves give the negative of
the imaginary part of E.
The solid lines give the
real parts, with the appro-
priate sign indicated by
the curve.
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FIG. 4. Same as Fig. 3

for 3P2, 3P&, and ~P& states. '
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boundary 'radius x, . The corresponding turning
point is at approximately 2.5 fm. Note the con-
stancy of both real and imaginary parts of E ex-
cept as r, approaches the turning point, where the
%KB wave function used in the formulation of the
boundary condition becomes invalid. In this state
there is enough distance between the turning point
and the annihilation radius (r, 0.5 -fm) for E(r,)
to stabilize.

We should note here that the term proportional
to dv /dr in the boundary condition is essential for
this independence. The term provides a real part
which is not negligible compared to -ik . A cal-
culation without the derivative term is also in-
cluded in Fig. 2 for comparison.

Were the W'KB wave functions exact, the energy
:and normalization constants would be rigorously
independent of x,. The observed near constancy of
these quantities in an ex Post facto verification of
the adequacy of the approximation in this region.
The result for the 'I', state using the improved

boundary condition is shown in Fig. 3, while re-
sults for the other P states are shown in Fig. 4.
Note that the imaginary parts of E are constant to
a high degree of accuracy and hence the corre-
sponding level widths I'(=-2E,) are well deter-
mined. The level shifts a (=ate(E) —Ee,~) are not
quite so well determined, although except for the
'I', state they too are at least approximately con-
stant. In Fig. 5 the superiority of the improved
boundary condition is made evident.

The linewidths and energy shifts are collected
in Table I along with the widths predicted by the
black sphere model of H, ef. 1. The latter model
is seen to give results in qualitative agreement
with the present values, overestimating them
somewhat. We note here that the f wave compon-
ent of the 'P, state was not included in the pre-
sent calculation.

Figure 6 presents the annihilation of the 'S,
state using the same technique. We have chosen
the 'S, rather than the coupled triplet ('S, —'D, )
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FIG. 5. Comparfson of
Ei for the P2, P&, and
~P& state using boundary
condition b (curved lines)
and b". The latter bound-
ary condition is valid up to
the turning point and hence
gives very stable results.
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TABLE I. Comparison of black sphere model (Ref. 1) and the present calculation. The
parameters used are f = 0.079, 6 t = 30, M~ = 783 Me V, m = 938/2 Me V, dm = 1.294 Me V,
m„=137MeV, 8( ) and I( ) are taken from Ref.. 1 and F( & and & ) from the present model. .
E&&& vanishes in the black sphere model. The results of the P2 calculations cannot be
directly compared since the present calculation does not include the coupling to f waves.

State

PQ

3p

('&2)

ip

B('& fm

g.39

1.30

1.50

1.20

I'"~ (e~)

0.194

0.030

0.043

0.026

0.118

0.016

(0.010)

0.014

g(2) (ey)

-0.069

+ 0.035

(small)

-0;028

because of its simplicity, but expect similar re-
sults for the two statei. In the absence of the off-
diagonel parts of the tensor force, the two states
give identical results with the potential used. Un-
for'tunately the independence of e and F on r fails
drastically at small separations (r, s 0.6 fm).
This failure may be a numerical artifact or may
simply indicate a breakdown of the %KB approxi-
mation at small separations. In any case the
meson exchange potential used is not to be trusted
at separations smaller than 0.6 fm. The imaginary
part of the energy eigenvalue is sufficiently stable
that we can estimate E, to be 0.25 & 10 ' fm ' to
about 10/0. The level shift, while varying consid-
erably over the same interval, is approximately
of the same magnitude. %hen converted into en-

ergy and time units the results are I'('S,) = 0.9 keV
= 1.5 & 10"s ' and e('So) = 0.45 keV. The positive
sign of the shift indicates that the state is less
strongly bound than in the absence of the strong
interactions. The result is in reasonable accord
with previous estimates. '"

In conclusion, we have formulated a boundary
condition model for protonium. The coupling of
the nn to the PP channel is incorporated as is the
strong absorption. A novel feature of the model
is the approximate independence of the annihila-
tion widths, energy shifts, and relative normali-
zation parameter on the point at which the bounda-
ry condition is applied. The method might prove
useful in other problems which involve strong ab-
sorption.
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FIG. 6. Same as Fig. 3
for the ~SQ state.
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Work is in progress applying this model to the

Pp scattering problem. This, the effects of the
inclusion of the off-diagonal portion of the tensor
force, arid alternatives to boundary condition (a)
will be discussed in a subsequent article.
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