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Suppression of the isospin-1/2, three-body photodisintegration of He
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The suppression of the isospin-1/2, three-body photodisintegration of 'He is shown to result from two facts:
(1} For the S = 1/2, I = 1/2 states of three nucleons, the spin-isospin symmetries lead to integral
equations dominated by a single efkctive interaction V+, which is the average of the XX s-wave spin-
singlet and spin-triplet interactions and (2) This V+ supports a bound state due to the nature of the gW
eFective-range parameters. In the approximation that the (1/2, 1/2) states are generated from V+ alone, it
is clear that a fraction of the isospin-1/2 bremsstrahlung-weighted sum rule must come from two-body
photodisintegration with a corresponding reduction of the three-body channel contribution, since the total
isospin-1/2 sum rule is fixed. The substantial reduction of the actual physical isospin-1/2, three-body
photodisintegration is directly related to the strength of V+.

NUCLEAR BEACTIONS Photodisintegration of 3He; exact three-body ca1cu1a-,
tion; isospin sum ru1es.

L

I. INTRODUCTION

Over ten years ago, Barton wrote a provocative
paper asking for a physical explanation of certain
simple features found in the photodisintegration of
'He. ' His query stemmed from the observation.that the bremsstrahlung-weighted sum rules for
the two possible breakup channels,

J~=JqP+ J3N,

or the isospin of the final state

(6)

where 0' g 0'gp + 0'3Np 0 ls the fine- structure con-
stant, and R is the 'He matter radius. The total
E1 sum rule can be decomposed according to
breakup channel

J~=J~/~+ J3/2 . (6)

~2P +g
q

are almost equal'.

Equation (6) follows from the completeness of the
three-nucleon final states. From the assumption
that 'He is spatially symmetric, "we have

1volev tt (E )dg„~ "- =1.34+ 0.05 mb,
0 y

1VO MeV
J'

3N dE sn "- =1.42+ 0.07 mb
0 y

(2)

J]/2 J3/2 ~

Moreover, we know that the two-body breakup
channel is isospin —,', so

Jqp- J~(2,

(7)

(8)

J~ = dE&
* "- = ~3P O.Rttr(&, )
Ey

(4)

l.e, )

JgP =J3N ~

Here E& is the y-ray energy and o, (Ez) is the total
cross section for breakup channel i. "Can the near'

equality of these sum rules be understood?" is one
way of stating Barton's question. It can be re-
phrased slightly if three simplifying assumptions
are made'. The ground state of 'He is spatially
symmetric, corrections to the long-wavelength
limit are small, and 'He photodisintegration is
dominantly E1. The total bremsstrahlung-weighted
E1 sum rule is then '

since three-body breakup leads to a final state
which can have isospin —,

' or —,'. Equations (6)-(8)
imply

ep 1/2 s~ T s ~~ep ~sit)

or

JyP ~ J3'N e (10)

J„p=J~]2 . (8')

Equation (8') implies that the isospin- —,
' three-body

Experiment, Eqs. (1)-(8), implies that the equality
is close to the correct relation in Eq. (10), so that
this is also the case for Eq. (8):
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photodisintegration of 'He is severely suppressed
compared to the isospin- —,

' component. To state
Barton's question in another form, we quote him:"...we believe the observed exhaustion of the I
= —,

' sum rule by the two-body channel to be so re-
markable that a reasonably simple qualitative ex-
planation is required. " The pappose of this paper
is to provide that explanation.

Since Barton's paper, two "exact" three-body
calculations of the E1 photodisintegration of 'He
have been performed. "In both, the isospin--, '
three-body breakup at low energies (0 & E& & 40
MeV} is considerably suppressed compared to the
isospin-&. These calculations demonstrate that Eqs.
(3) or (8') are not exact, but approximate. Additional-
ly, O' Connell and Prats4 have shown by combining the
bremsstrahlung-weighted sum rule with the un-
weighted sum rule that the suppression occurs
mainly at low energies. Moreover, Barton pointed
out that, on the basis of satisfying the sum rules
with varj. ous complete sets for the three-body final
states, any knowledge of the existence of the deu-
teron in the three-body channel must lead to some
reduction in the isospin--, ' three-body breakup con-
tribution. Barbour and Phillips conjectured that
the analytic property in the three-body amphtude
which is most likely responsible for the reduction
is the pole due to the triplet two-body channel. '

Our objective is, to use the spin-isospin symme-
tries of the 'S-isodoublet three-nucleon equations
to simplify them and facilitate a comparison with
the isoquartet equations. The method is to extend
into the low-energy 'S-isodoublet continuum the
Wigner-supermultiplet approximation which leads
to the spatial symmetry of the ground state. This
is accomplished by neglecting the difference be-
tween the s-wave singlet and triplet two-nucleon
interaction compared to their sum in the S-iso-
doublet equations. It is then demonstrated that
such an approximation works reasonably well. '
With this foundation, we can compare the approxi-
mate isodoublet equations with the isoquartet equa-
tions in order to note their distinguishing features
and shed light upon the suppression of the isospin- —,

'
three-body photodisintegration of 'He compared to
that of the isospin- —,'.

We begin in Sec. II with a review of the three-nu-
cleon S =-,' isodoublet and isoquartet equations.
Section II also contains an explanation of the ap-
proximation used in the isodoublet case. In Sec.
III, the photodisintegration amplitudes and cross
sections are derived (this work is related to that
of Gibson and Lehman (GL)') and the approxima-
tion made in the isodoublet equations is emphasized
again. .The approximation is justifi. ed with exact
calculations in Sec. IV. Finally, Sec. V contains
a discussion and Sec. VI, our conclusion.

II. EQUATIONS FOR THE 8 = 1/2, ISODOUBLET AND
ISOQUARTET STATES OF THREE NUCLEONS

When the A. = 3 nuclei are viewed as pure 'Sy/g nu-
clei, their electric-dipole photodisintegration in-
volves transitions from the (S = —,', I= —,'}ground
state to (-,', —,') two-body and (-,', —,') plus (-,', —,') three-
body final states. The objective of this section is
to establish the form of these states and the equa-
tions they satisfy.

where the spatial components are

4'f/2 ~/, (123}= T'g(1, 23),
4',"/, ,/, (1,23) = T"h (1, 23) + T'H(1, 32),
e,'/, „,(1,23) = T'h(1, 23)+ T"H(1, 23),

e;„„/,(123) = T'C(1, 32),
the spin™isospin functions are

(12)

(x'n" —x "n'),

5 '(123) = (y. 'n" + X"n'),
vY

k "(123)=
2

(X'O'-X"9"),

0'(123) =
2

(X'n'+X"n"),

(13)

and N is a normalization constant depending on
whether Cy/2 y/2 represents a bound, plane-wave,
or scattering state. The permutation operators
are defined as

T ' = (23) + (31)+ (12),

T'=-,'v 3 [(31)—(12)j,
T"= —(23) + —,

' [(31}+ (12)],
(14)

and the spatial functions upon which they operate
possess the following symmetry properties:

g(1, 23}=g(l, 32),
h(1, 23) =h(1, 32),
G(1, 23) = —G(l, 32),
H(1, 23) =-H(1, 32) .

The spin- —,
' functions, y'(1, 23) and g'(1, 23), corre-

spond to couplirg the 23-pair to angular momen-
tum 0 and 1, respectively, and then nucleon 1 to

A. (-,',~) States

The general form of the spin-doublet, isodoublet
states in the notation established by Verde' is

s a
1/F 1/2( ) ( 1/2 ' 1/2~ + +1/2, 1/A

@1/2 ~ 1 / 2 ~ 1/! ~ 1/2k
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this combination for total angular momentum ~.
The isospin- —,

' functions, g' and g", are similar.
Note that the overall wave function is completely
antisymmetric as are the spatially symmetric,
antisymmetric, and mixed-symmetric pieces sep-
arately, i.e., 4'$', 4'g', and (0 "$' —4'$"), respec
tively.

To determine the equations which the basic spa-
tial functions satisfy, we substitute Eq. (11) into
Schrodinger's equation and project with the g'.
Following that, the equations for g, h, G, and H
are determined by separating according to per-
mutation symmetry. The system of equations is

& —Ho —V23T'

V- Ts

Tll
23

& —Ho+ V23T"

—@2+3TI

-U;3T'

Tl

—V,+,T'

E- Ho- U23T"

—V23T"

g(1, 23)

0 h(l, 23)

U, ,T' H(1, 23)

& —H, + U,+,T' G(1, 23)

(16)

V23 2 ( V23+ V23)

U23-2(V23+ V23) ~

(17)

with V,.~ representing the two-nucleon potential
operator in the spin-s, isospin-t state of the pair
i-j. We assume s-wave two-nucleon interactions
so V 3 = V 3 0 and both G and H satisfy

(Z-H, )6:=0 . (18)

For the ground state and N-d scattering states,
G and II are identically zero. Thus, g and h satisfy

where E is the energy of the three-nucleon system,
H, is the free, three-particle Hamiltonian, and
the potentials are

respectively. As we shall illustrate below, when
JI and G are nonzero they generate inhomogeneous
terms in the equations for g and h. Therefore, in
effect, Eqs. (19) apply for all cases apart from
boundary conditions, i.e., inhomogeneous terms.
Moreover, due to the relative weakness of V,,
compared to V2'„Eqs. (19) are themselves almost
uncoupled. This accounts for the dominance of
the spatially symmetric component 4"= T'g(1, 23)
in the three-nucleon ground state. '

Instead of the functions g, Q, II and G which
emphasize the symmetries, it is also convenient
to use the functions which correspond to the pair
interactions":

E —Qo —V.23T

V- Ts

-V;, " g(1, 23)

E —H3+ V,+,T" h(1, 23)

When 3N scattering states are of interest, G and
II are not in general zero. Then, for s-wave in-
teractions, Eqs. (16) apply with U,', = U,, =0. H
and G are obtained from E|l. (18) and couple to
the g and h equations through V,,T' and -V23T',

v = (g+ h)/2,

u=(g-h)/2,

q = (G+H)/2,

r=(G-H)/2.

(20)

The system of equations which they satisfy can be
obtained directly from Eqs. (16):

[z-H, —v,",(1+-,'z)]
——'V P
-2 V,3T'

+1 VllT~
2 23

-4 V23P

[s-H, —v,",(1+-,'z)]
VooT2 23

& VllTI

-2 V23T'

& V01T/2 23

[E-H, —v„(1--,'s)]
4 V23P

& VloTt2 23
r
v(1, 23)

--,' V,"3T' u{1,23)

—,
' V,",Jq(1,23)

[E-H, —V,",(1- -,'a)] r(1, 23)

(21)
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where P = (31)+ (12). Equations (21) reduce to the
equivalent of Eqs. (18) and (19) by setting V»

yl J. 0.23=

E- H —V', (1+ 'P)—

-~ ~23&

-~ V2~P

E-H, —V,",(1+-,'P)

The inhomogeneous terms are constructed from
solutions of

(22)

where both q and r satisfy Eq. (18) and generate
an inhomogeneous term in Eq. (22) for the 3N
scattering case. Determination of the (-,', —,') eigen-
states by means of Eqs. (16) or (21) [(19) or (22)]
is equivalent. Usually, Eqs. (19) (h-=0) are used
in the calculation of the ground state in order to
take advantage of the weak coupling V,, ' %hen
the coupling term is neglected a 100% spatially
symmetric ground state is obtained, a good first
approximation to the physical situation.

On the other hand, the determination of the N-d
and 3N continuum states is normally done with
Eqs. (21). The reason is that Eqs. (21) lead im-
mediately to integral equations according to the
pair interactions of the Faddeev type"; for ex-
ample, from Eqs. (21) for s-wave interactions.

v=v"'+(E-H, —V,",) 'V",,(,'Pv+ ,'Pu+ -,'T'q--,'T'r-), -
u=u' '+(E —H, —V,t} 'V,",( Pv+ 'Pu — T'q+-,'T—'r)—, —

(23)
q =q"',

U= U' '+(E-Ho V,)-'V, o(gPV+oPU) ~

The bound, N-d, and 3N states are obtained by
solving Eqs. (30) under the following conditions:

(a) bound state

v= V, q=x=-0,

u = U V~'~ = U~'~=-0.
7

(b) N-d state

v=- V, q=t'=—0,
u= U, V&'&=y&'&(1)y, (23), U&'&=O;

(c) 3% states [according to (st) ]
(i) (10)

v=y&'&(1)y&'&(23}+ V, q=r=O

N=U,
v"' =-'(T;, —T,".) 0 -,"'(1)[4~/(23) —4~"(23)],
U(o) &(T«+ T«)y(0&(1)[yo&(23} y&0){23}].2 PP ~P p k k

(31)

(32)

r(o) y(o&(1)y&o&(23) v&o& u&o& &o& 0 (29)

where (t) &'&(l)p'-„'(23) is a scattering-wave-function
solution of the operator E- II, —V, and
(&() &'&(1)P&'(23) is a solution to Eq. (18). The rela-
tive momentum of particles 2 and 3 is k.

In closing this subsection on the (—,', 0) states,
it should be emphasized that the basic structure of
the Faddeev-type equations for the bound, N-d,
and 3N states is the same; it is the inhomogeneous
terms which distinguish the different states. In
terms of the v, I, q, and r functions, there are
two coupled equations:

(E-H, —V', gv&'& =O,

(E-H, —V,'Qu") =0,
(E-H,)q&'&=o,

(E-H,)r&'&=O.

Equations (23) were first used by Sitenko and
Kharchenko to calculate the doublet N-d scattering
length. " For that case,

v"' = p-"'(1)0»(23) (26)
=. -0

defines the two-body N-d channel, where p~& '(1)
represents the Nmoving freely with c.m. momentum
p and &&)&s(23) is the deuteron wave function. For
3N states, there are four possibilities defined by
the following choices of inhomogeneous terms:

(ii) (01)
I

v= V, q=x=-0,

u = y &'&(l)y &'&(23) + U,
V"'= '(T' + T")P"'(1-)[P"(23)—y-"&(23}],

U"' =-.'(T,', —T")0-"&(1)[0 '-„'(») —4g'(23)1;
(iii) (00).= v, q=y&"(1)yf&(23),

u= U, x=-0,
V(o) LT( ~(0)(1)[~&0(23) ~&0&(23)]

PQ «p k g j
UN' = —'T' ~&o)(1)[~0&(23) (()) &0)(23)].2 PQ ~p

(iv) (11)
v= V, q=-0

(34)

(36)

v(0) y(0)(1)ylo(23)
p

u"'= e"'(l)e"(»)
p k

q
(0) —

&&) &0)(1)&b (0)(23)
P k

u"'=q "&=r&'&=O, (26)
v(0)

q
(0) r(01 0 (27)

v" u&&r&"' =0, (28)

u= U r=y"'(1)y"'(23)
v" & = --,'T,',y &'&(1)

[&t p(») —
&t p'(»)],

U '& =-'T„y &'&(1)[y"(23) —y"'(23)]
P

(36}
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The various 3N inhomogeneous terms are obtained
from Eqs. (23) by substituting the appropriate in-
homogeneous term from the set Eqs. (26)-(29).

For example, Eqs. (23) and (29) yield Eqs. (30)
and (36) through the following types of manipula-
tions:

=--,'Z, [inc,",(E) V,",(.",(E)y ' (1)yf'(23)]
P

=+-'Tt {i~[G"(&)—Go(&) l4-"'(1)eg" (230
= —-'T,',0 -")(1)[4P(23)—0 ~('(23)j,

where E=E+ie =—k'/M+ 3p'/4M+i' is invariant
under particle permutations and T~~ permutes the
external-momentum quantum numbers in contrast
to T' which permutes the internal coordinates.

8. {-',-) States

(3V)1/2g 3/2( } N(41/2, 3/2X 41/2, 3/2X

where )l'(123) is an isospin-2 function for three
nucleons. The spatial functions are defined as

g,'/2 3/2(1, 23) = T'30(1, 23) + T"s(1,23),

g,"/2 3/, (1,23) = T" 2(()1, 23) +T's(1, 32),
(38)

The spin doublet, isoquartet states have the gen-
eral form"

~ (0) y (0)(])F01(23) s (0) 0 (43)

or

(44)

(45)

The two possible 3N states are generated as fol-
lows:

(3) (o1)

20(0) —0 s(0) —
(() (0)(])y (0)(23)

p

When Eqs. (43) and (44} are respectively substi-
tuted into Eq. (41), it becomes apparent that only
one basic Faddeev-type equation is required for
the (-,', —,') case with the different 3N states dis-
tinguished by the inhomogeneous term involved.
That equation is

with

20 (1, 23) = 2() (1,32),

s(1, 23) =-s(1, 32) .
(39)

The basic functions gg and s satisfy the equations

~ = y"'(1)y&' (23)+ W,
P

s -=0,
W(0) = —T" P (l)[$0'(23) —(P

' '(23)).
p

(ii) (11)

(46)

V"V"
23

so =0,
& —Ho+ V23T" s

(40)

for s-wave interactions, where

(z-e, —v, j~(') =0,
(E-a,)s(') =0.

(42)

The only states of interest are of the 3N type and
there are two possibilities:

which can be transformed into the Faddeev-type
equations

2() =2()' ' —(E —H V g 'V '( 'P20 —T'S)—
. 0 2 . 1 (41)

s =s"'

zo =8',

s = (t) ")(1)(p~"(23), (47)
P

lV(0) Tl y(0)(])[F01(23) y(0)(23)j
P

The equations for the isoquartet states are given
here to complete the review of the equations that
determine the eigenstates relevant to the trinu-
cleon photodisintegration amplitudes, for an im-
portant later comparison with the isodoublet equa-
tions. Moreover, we emphasize that the-isodoub-
let and isoquartet states belong to orthogonal sub-
spaces of the Hilbert space of three-nucleon eigen-
states. This is the reason for different equations
determining their spatial components, Eqs. (30}
and (45), respectively. Thus, for s-wave two-nu-
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cleon interactions, the isodoublet equations depend
on both V and V", whereas the isoquartet equa-
tion depends only on V '.

B=H"&

a=a~'&,

where

(Z- H, —V,'gg('& =0,
(Z-Ho- V,gh( '=0,
(z- H, )K('& = 0,
(z - H,)G (o) = 0 .

(48)

(49)

Whether it be bound, N-d, or 3N states under con-
sideration, there is only a pair of Faddeev-type
equations to be solved:

x=x('& —(z-H, —v,',)-'(v;,T's+ '. v,',px), -
where 9"' and 3C"' determine the state under con-
sideration. To illustrate, consider N-d states.
Then there are two cases:

C. Approximation for (~,~ ) States

It was pointed out in part A of this section that
in dealing with isodoublet states either Eqs. (16)
or (21}can be used. Also, it was emphasized that
while Eqs. (16}are usually used for the ground
state, Eqs. (21) were most convenient for the con-
tinuum states since the inhomogeneous terms iden-
tify the interaction channel. In contrast, consider
the integral-equation equivalent of Eqs. (16) for
s-wave interactions:

g.=g"'+(z-H, —V,',) '(V,',Pg+ V,,T"h- V,ST'K),

h =h' &+(Z-K —V, )
'

x (- V,,T'g —,' V,',Ph+ —V,',T'H),

sons between the isodoublet and isoquartet three-
body photodisintegration of 'He. The source of
the strong suppression in the isodoublet channel
then will be evident. The key to this comparison
is Eqs. (50) with V,,=O, (45), (3V), and (11). Equa-
tions (50) become uncoupled:

S =S"&+(Z-K,—V,'g-'V,',PS,
x=x"' - -,'(z -H, —v,'g-' v,',px,

(50')

III. PHOTODISINTEGRATION AMPLITUDES

In this section, we derive the He photodisinte-
gration amplitudes using the form of the states
as given in Sec. II. Our emphasis wiQ be placed
on the form of the amplitudes, their relationship
to the work of GL,' and the manner in which the
approximation of Sec. II C is implemented.

As is clear from the Introduction, we are in-
terested only in the Ej.photodisintegration of 'He.
Our interest lies with the final states, so the
ground state is taken to Ue the dominant spatially
symmetric part. The E 1 operator,

that is, the symmetry classes have decoupled. The
spatially symmetric component of Cy/2 y/2 is gen-
erated from a single equation for 9 and the mixed-
symmetric component is generated from a single
equation for 3.'. Note that the equation for X is
now formally identical with the isoquaitet equa-
tion for W, except V,', replaces V,",. Their iden-
tity, apart from the potential, occurs because
both X and W generate mixed-symmetric functions.
As we shall see, this comparison of the SC equa-
tion in Eq. (50') and the W equation, Eq. (45), will
be crucial to our discussion of the isodoublet
three-body photobreakup suppression.

With the above background, we are now ready
to look at the photodisintegration amplitudes.

and

S(0& —y(0)(])y+(33) X(o) —0
P

(51)

then operates on

(53)

S"'=0, X"&=y('&(1)@,'(23) (52)

with g=S, h=X, and H=G-=0. (Ps(33) canbe called
the "Majorana deuteron" since it is obtained from
V,', which is the average of the central potentials
in the triplet-even and singlet-even states of the
two-body system.

It has already been emphasized that it is a good
approximation to neglect V,, when solving Eqs.
(50) for three-nucleon bound states. We propose
to test this approximation for the low-energy
three-nucleon continuum states in trinucleon
photodisintegration. If it is a good approximation,
then we shaQ be able to make clear-cut compari-

1
ly, &

= y.' ~2
(X'n" —X"n')

to yield
W

K'~y~&= ~ e. ~ pt'-r4"
~1

~PX rX I)7 4o ~«3

(54}

(55)

where the notation is that of Ref. 6. The (-,', —,') and

(—'„—',) amplitudes are easily obtained from Eq. (55}
by use of Eqs. (11}and (3V}, respectively. Spe-
cifically for (-,', —,'),
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&I (1,»)I== Pleo&

+ (e(1,23)le rig,'&2 2

(v(1, 23) - u(1, 23)IE ply', &

+
2 (q(l, 23) —r(1, 23) I ~ 'r

I fo&2 2

(56)

(57)

where N = —(3)'/' for continuum states. Similarly,
the (—,', —,') amplitude is

generated from Eqs. (33)-(36), where the classifi-
cation is according to the spin-isospin state of
particles 2 and 3. Each amplitude has the general
form of Kq. (57)~ As an example, consider the
st =10 amplitude. Vfe obtain

&+,'/, I'Jiff'lg, &
=- (pZ'(l}0

&
'(23) I&'ply&

( v(1, 23}—U(1, 23}IC'pl+&,

(64)

&~i/2 ~
3/2III'lies& = &~(1, 23)l~ ply'&

——(s(l, 23)l~ ~ rig', &,

where N= -(—',)'/'.

(58)

where the first term is Cyo and the second term
is y",,'+ $,',' in the notation of GL2. ' Zxo' is ex
plicitly obtained by replacing V and Uby V"' and
U"', respectively. " In the same manner, all

be generated. In fact, the GL M-amplitudes are

A. Two-body breakup
M',/,',1„=(4,/,",'/, IH'~g &, (65)

Two-body photodisintegration of He leads to
only an I= ', final sta—te. Therefore, Eq. (57) ap-
plies in conjunction with Eq. (32) or Eq. (56) with
Eqs. (51) and (52):

&e,'/", ,„,le'ly, &
=- (I (1,23)I4 ply', &

6

(o(l, aa) —u{l, aa)l~ ply, & .
6

(59)

(60)

In Born approximation, i.e., v= V"' and u= U"',
we recognize Eq. (60) as

E,(z, p} =-
6

&y-"'(1)4s(23)l~ pl+&,

3p'
z y

(61)

of GL1, and"

~.'(, p) =&+,"'.„,.IIf'ly, ) . (62)

B. Three-body breakup

Three-body photodisintegration of 'He has two
possible isospin final states: —,

' or —,'.
There are four possible isospin- —,

' amplitudes

The two-body differential cross section is obtained
in the standard way:

do= Ez K,'I~ —y, p sin ep/, (63)
Ac

whe~e ~,'(z, p) =0 pÃ,'(z,p}, Ez is the photon en-
ergy, 0 is the center-of-mass angle of the outgoing
nucleon with respect to the incident photon direc-
tion, and p& is the density of final states.

where S»=s and I„=t.
Likewise, we can write down the two isospin--,

amplitudes from Eq. (58) with Eqs. (46) and (47):

~;/;„,=(e,'P;~), ~e'I y, & .
As an example, consider st =01:

(66)

~ /, '=, (yg'(l)e,"'(»)14 pig &

+ &w(1, 23)l~ ply', &
3

g3/2 y (F3/2 / $3/2)

(67)

(68}

The three-body differential cross section is ob-
tained from

C. The model for (2,& ) amplitudes

In Sec. II C, an important approximation for the
(—,', —,') states is discussed. In this section, we point
out how this approximation is implemented and
tested. Hereafter, we shall refer to this approxi-
mation as the nzode/. Vfe emphasize that this ap-
proximation applies to the (—'„—', ) states only, as
can be seen from the dynamical equations Secs.
IIA and IIB.

S23 =0

where E is the photon energy and p& is the density
of final states. The form of 3g',23 depends on which
nucleon is designated particle 1. For example, if
the neutron ig particle 1, then

stlsQ3 (2)1/2~1/2 + (
1)1/2~3/2, (70}

or if the neutron is particle 2

Slip~3 'f ~1/2 ~ (l)1/2~1/2 + (2)1/2~3/2 j (71)
1
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~ .

The approximation is to neglect V,, compared
to V23

'
As is well known, ' this is a good approxi-

mation for the three-nucleon ground states and it
explains why they are predominantly spatially
symmetric. Our purpose is to determine whether
it remains a fairly good approximation for the low-
gnergy three-nucleon continuum states. If it does,
we can then compare the model (-,', —,') amplitudes
and equations with their (~, ~) counterparts to
reach an understanding of the isospin- —,', three-
body, 'He photodisintegration suppression.

In order to check the validity of the model, we
calculate two- and three-body photodisintegration
of 'He by /he methods of GL.' The s-wave sepa-
rable potentials chosen are those of Tabakin, "
since the singlet and triple interactions differ only
in the strength parameter and still give a fair
representation of the respective scattering length
and effective ranges. The V,', is obtained by a
simple average of the singlet and triplet strength
parameters as shown jn Table I. V,', supports a
two-body bound state with binding energy 0.43
MeV. This number is essentially model indepen-
dent and simply reflects the average of the re-
ciprocal singlet and triplet s-wave n-p scattering
lengths,

V&0 Vol
23 23 (72)

10V23= V:3
01 +V23= V.3 ~

2 a, a, & 2 5.397 (-23.715)&

-11
13.97

which in zero-range approximation implies a two-
body bound state of 0.21 MeV. Thus, V,', will have
a bound state no matter how sophisticated the two-
nucleon potentials which generate it, provided they
give a reasonable fit to the scattering lengths and
effective ranges. This is a basic property of the
two-nucleon system.

How are the cross sections calculated for the
model? Neglecting V,, or setting V,, =0 is equiv-
alent to forcing

where V,', is the average of the singlet and triplet
s-wave potentials. Since V,', always supports a
bound state; there are now two two-body breakup
channels, one corresponding to the triplet as usual,
but also one due to the singlet since V23 V 3 Ex-
cept for their spin-isospin properties, they are in-
distinguishable since they are both derived from
V,',. Therefore, the two-body cross section for
the model is obtained from Eq. (63) by adding in-
coherently the singlet amplitude 3g;. Clearly %f2
=3&,' for the model, so Eq. (63) can be used as it
stands multiplied by 2 if SR,' is. calculated in the
usual manner, but with V" and V" replaced by
V' throughout. The (-,', —,') three-body cross sec-
tions are calculated as usual, except V" and V"
are replaced by V .

How do the model (-,', —,') equations for three-body
breakup compare with the (-,', $ equations? Firstly,
the equations which determine the key functions,
X for (-,', —', ) and W for (—'„—',), are identical as can
be seen by comparing Eqs. (50') and (45), except
V23 is present in the X equation and V" in the 5'
equation. Secondly, the (-,', —,') amplitudes are a
factor of ~2 smaller than the (-,', —,') [compare Eq.
(56) with Eq. (58)], but according to Eq. (70) this
factor is removed when they are combined. It is
known that the isospin amplitudes combine inco-
herently in the total cross section, so the isospin-
~ and isospin--, ' three-body-brea/up total cross
sections can be calculated separately and com-
pared. Therefore, if the model is a fairly good
approximation to the calculation with V230,
we can begin to understand differences between
isospin- —,

' and isospin- —,
' results. Differences can

be attributed to the difference between V,", and
V», the latter being the effective potential in the
isospin--, ' case. Our next step then is to check
the validity of the model,

IV. TEST OF THE MODEL

The model is checked in two ways. Firstly, the
photodisintegration cross sections are calculated
as a function of E& with the Tabakin interactions
when V,, is not neglected (hereafter referred to
as Tabakin) and for the model. The Tabakin and
model. results are then compared. Secondly, the
bremsstrahlung-weighted sum rules are evaluated,

TABLE I. Potential parameters.

Potential

pro
~0$
V"

Strength
A, (fm"3)

0.220
0.148
0.184

Inverse range
P gm-'~

1.15
1.15
1.15

Scattering length
a {fm)

5.68
-21.25

11.20

Effective range
ro (fm)

2.09
2.74
2.34



D. R. LKHMAN, F. PRATS, AND B. F. GIBSON 19

l20

100-

80-
0

b c,'
U W

40—

MODEL———MODEL BORN

E 05—
b

I

He (y, n) 2p

MODEL——TABAKIN

20—

0 I I

IO
I

20
E~(MeV)

30 40

0
IO

I

p.o
E~ (Mev)

I

50

FIG. 1. Comparison of the model and Tabakin re-
sults for the two-body breakup 90 differential cross
section.

FIG. 3. Isospin contributions to the total cross section
for three-body photodisintegration of 3He. The un-
labeled, ———,curve is the isospin-2 cross section.
The two labeled curves are the Tabakin and model iso-
spin-2 cross section predictions. 4

checked for consistency, and the Ta)&akin and
model results are compared.

The ground-state wave function used in aQ of
our calculations is spatially symmetric and de-
rived from the average potential V23 0;enerated
with Tabakin's parameters (see Table I). The pre-
dicted three-nucleon binding energy is 9.33 MeV
and the matter radius is calculated to be 1.55 fm.
Since the same ground-state wave function is used
throughout, all differences discussed below are
attributable to the final states.

Figures 1 and 2 display the two-body breakup
curves. Figure 1 contrasts Tabakin and model
curves for both the Born amplitudes and the com-
plete calculations. There is a large: difference be-
tween the two Born curves, but this is not sur-
prising. The approximation leading to the model
is not made in Born approximation, but is made in
the full dynamical equations. That is why the Ta-
bakin and model curves for the complete calcula-

IOO

tion are in much better agreement. The model
curve rises more rapidly, peaks at a lower value,
and then remains below the Tabakin curve. There
is approximatly a 20%%uo difference between the two
curves for a given E&. One might expect this after
comparing the difference to the sum of the Taba-
kin triplet and singlet interaction strengths (see
Table I):

~10 ~ Ol

Figure 2 compaxes the two curves with the exper-
imental data. The 90 differential cross sections
are used to ensure no E2 contribution.

The three-body-breakup curves are displayed
in Figs. 3 and 4. In Fig. 3, the unlabeled curve
corresponds to the isospin- —,

' three-body breakup.
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FIG. 2. Comparison of the model and Tabakin pre-
dictions with experiment for the two-body breakup 90'
differential cross section. The data points are as
follows: (O.) Ticcioni et al. , Ref. 15, (I) Berman et al. ,
Ref. 16, and (+) Stewart et al. , Ref. 17.

FIG. 4. Comparison of the model and Tabakin three-
body photodisintegration cross sections with experiment.
The two curves are obtained by adding the isospin-~
curve to the two isospin-2 curves of $'ig. 3. The data
are from A. N. Gorbunov, Ref. 1.
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There is no model curve for isospin--,', because
the model applies only to the (—,', —,') states. The
two labeled curves are the Tabakin and model iso-
spin--, curves. Their differences are similar to
the two-body breakup. Note that the isospin- —,

'
three-body breakup, Tabakin or model, is con-
siderably suppressed compared to the isospin-2.
Moreover, the fact that the model isospin--, ' cross
section is somewhat larger than the Tabakin curve
is consistent with the fact that the model two-body
cross section is somewhat lower than the Tabakin.
This is expected on the basis of the sum rules
[see Eqs. (4), (6), and (7)]:

2 2 ~2J (1/2) (tpta]) ~ (1/2) (Nd) ~ (1/2) (3N) 3~

Since J (1/2) (t tg) is fi:xed by the matter radius of
the ground state, an increase of J(1/2)(3p) implies
that J(»»(„„)must decrease and vice versa. Fi-
nally, in Fig. 4, we compare the calculated three-
body cross sections with experimental data. The
two curves are obtained by adding the isospin- —,

'
curves in Fig. 3.

The contributions to the bremsstrahlung-weighted
sum rule

for the various final channels are evaluated for the
cross sections displayed in the figures. The re-
sults are summarized in Table II. When the three-
body ground state is spatially symmetric the iso-
doublet and isoquartet contributions to the sum
rule should be equal, Eq. (7); i.e. , the values in
the third and fourth columns should be equal. This
is the case within the errors of the calculations. "
Furthermore, the Tabakin and model isodoublet
contribution should be equal, since they arise from
two different bases of the same subspace of the
three-nucleon Hilbert space. They are equal with-
in errors. Moreover, the total sum rule should
be equal to s~s nA' with R = 1.55 fm (the Tabakin
matter radius) which yields 2.31 mb, again in good
agreement with the figures in the last column of
Table Q. We note that in the Tabakin calculation
V5% of the isodoublet contribution goes into the
two-body channel, compared to 70% for the model
calculation. The difference is due to the super-

multiplet approximation' (V,, = 0) used in the mod-
el.

Clearly, the above results demonstrate that the
model is a good approximation for the purposes of
making the comparison of interest and understand-
ing the suppression of the isospin- —,

' three-body
photodisintegration of 'He. Beyond that, the re-
sults demonstrate that the approximate symmetry
which. leads to the ground states of the trinucleons
being -90% spatially symmetric carries over into
the low-energy continuum, for states with the
same spin-isospin quantum numbers as the ground
state, to within 20%. Thus, the approximation of
neglecting V,, compar'ed to V,'„ i.e., the Wigner
SU, (supermultiplet) approximation, carries .into
the low-energy (—,', —,') continuum states. It appears
to be another example to add to those of Dyson"
where an approximate symmetry works much bet-
ter than expected.

V. I= 2, THREE-BODY SUPPRESSION

The demonstration that the model is a reasonable
approximation to the (-,', —,') continuum states per-
mits us to use it in explaining the suppression of
the isospin--, ' three-body photodisintegration com-
pared to the isospin--,'. The key is to compare the
model equations with the isospin--, equations. To
emphasize it again (see Sec. III C), we first note
that the isospin amplitudes enter incoherently into
the calculation of the total cross section, but the
isospin- —,

' amplitude is multiplied by -(3)'~' and
the isospin--, 'by (-', )' ' [see Eq. (VO))." These fac-
tors are compensated by the fact that the isospin- —,

'
amplitude is smaller by a factor of ~2 compared
to the isospin- —,

' [compare Eqs. (56) and (58)]. Fi-
nally, the dynamical equations which generate the
key functions; X(1,23). for isospin- —,

' and W(1, 23)
for isospin- —„are identical excePt for the interac-
tions [compare Eqs. (45) and (50')]. "Therefore,
the only difference is that the isospin- —,

' results are
generated from V", whereas the isospin--', results
are generated from V in the model. The suppres-
sion of the isospin- —,

' three-body photodisintegra-
tion of 'He compared to the isospin- —,

' is therefore
due to a difference in the properties af V' com-
pared to V".

The difference between V" and V+ has already

TABLE II. Isospin and total bremsstrahlung-weighted sum rules (mb).

Case two-body
isos pin- $

three-body total
isospin- $

three-body total

Taba kin
Model

0.89 + 0.02
0.79 + 0.02

0.29+ 0.01
0.34+ 0.01

1.18 + 0.03
1.13+ 0.03 1.08 + 0.02

2.26 + 0.05
2.21+ 0.05
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been pointed out in. See. III C. V" is the s-wave,
spin-singlet two-nucleon interaction which does
not possess a bound state. On the other hand, V
is the average of the s-wave spin-singlet and
triplet two-nucleon interactions, which, due to the
nature of the effective-range parameters of the
two-'nucleon system, does possess a bound state,
i.e. , it is a stronger interaction than V". If the
strength of V" were arbitrarily increased in our
calculations to values which lead to a two-body
bound state, the isospin- —,

' three-body breakup
cross section would decrease as the contribution
to an isospin--, ' two-body cross section increased.
The isospin- —,

' three-body breakup is suppressed
because the effective, or dominant, interaction in
this channel is V' which possesses a bound state.
If V' were weaker such that V' did not support
a bound state, the two-body photodisintegration of
'He would be much suppressed and three-body
photodisintgeration greatly enhanced compared to
the actual physical situation. The bremsstrahlung-
weighted sum rule requires that any enhancement
of the two-body-breakup channel contribution
necessarily leads to a decrease in the three-body
breakup channel contribution since their sum re-
mains constant:

=22 2
(1/2) (gpgg)) (1/2) (Nd) (1/2) (3N)

In exact three-body calculations, the three-body
channel "knows" about the two-body channel
through the dynamics, i.e., the kernel of the model
equation has a pole corresponding to the existence
of the bound state of V', whereas the isospin-~
equation has no such pole. The amount of suppres-
sion is related to the strength of V'

~

The above comparison was made possible by in-
voking the inherent symmetries possessed by the
(-,', —,') states of the three-nucleon system. What
had previously been established as an important
symmetry of the three-nucleon ground states was
extended into the low-energy continuum of the
(-,', —,') states Then, .by comparing the isospin--, '
model equations with the isospin--,' equations, and
noting that only the spatial functions which gener-
ate mixed-symmetry components of the (—,', —,')
states enter the isospin- —,

' amplitudes, it is appar-
ent that the only difference is V' in place of V".
Therefore, it is not the deuteron pole or triplet
interaction alone which is responsible for the sup-
pression, It is instead the symmetries of the (~, —,')
states which make V' the dominant interaction
and the fact that the two-nucleon s-wave effective-
range parameters are such that V' supports a

bound state which combine to suppress the isospin-
—,
' three-body photodisintegration.

VI. CONCLUSION

In summary, the suppression of the isospin--,',
three-body photodisintegration of 'He stems from
two points: (1) The symmetries of the (-,', —,') states
lead to V' = —,'(V" + V") being the effective (domi-
nant) interaction for isospin--,'. (2) V' supports
a bound state due to the nature of the low-energy
two-nucleon parameters. The first point is a
statement of the approximate validity of the sig-
ner supermultiplet theory for the continuum. The
second point states the physics of the s-wave NN
interaction: V' is more "bound" than V ' is "un-
bound" such that the average V' is itself "bound. "
Therefore, in the approximation where the (~, —,')
states are generated from V' alone, a portion
of the isospin- —,

' bremsstrahlung-weighted sum
rule must come from two-body breakup with a
corresponding reduction in the three-body break-
up, since the total isospin--, ' sum rule is a con-
stant. The fact that the reduction of the three-
body-breakup contribution is substantial is related
to-the strength of V'.

If V supported no bound state, the model would
show explicitly that most of the isospin-~ photo-
disintegration cross section would lie in the three-
body channel. The fact that V'.does possess a
bound state (because V" is more "bound" than V"
is "unbound") is the underlying cause of the trans-
fer of cross section from the isospin- —,

' three-body
channel to the two-body channel through the off-
shell singlet amplitude as was discussed in GI 1.

In closing, it appears that whether a given reac-
tion. is dominated by the particular channel having
the lowest threshold, "as is the case here-where
the isospin- —,

' two-body channel robs the isospin- —,
'

three-body channel, depends upon whether the
dominant effective interactions support the bound
system corresponding to that lowest threshold.

ACKNOW LEDGMENTS

The authors thank J. S. O' Connell for many val-
uable conversations concerning this work. Part
of the computer time was provided by the George
Washington University computer center. D. R. L.
and F. P. thank the George Washington University
Committee on Research for summer grants. The
work of B. F. G. was performed under the auspices
of the U.S. Department of Energy.



19 S Ij PPRESSION OF THE ISOSPIN-1/2, "f HRKE BODY ... .

~G. Barton, Nucl. Phys. A104, 289 (1967); Barton's
work was preceded by the work of Gerasimov and fol-
lowed by that of Scheck and Schule. Their purpose
was to test the Cabibbo-Radicati sum rule in the nuclear
domain. They both come to the same conclus'ion as
Barton with respect to 3He photodisintegration; it is
their emphasis which differs. See S. B. Gerasimov,
Zh. Eksp. Teor. Fiz. Pis'ma 5, 412 (1967) [JKTP Lett.
5, 337 (1967)1 and F. Scheck and L. Schulke, Phys.
Lett. 25@, 526 (1967). Also, see the comprehensive
review article by A. N. .Gorbunov, in Photonuclear and
Photomesic I'rocesses, Proceedings of 'the P. ¹ Lebe-
dev Physics Institute, 1974, Nauka, Moscow, Vol. 71,
p.l [Photoimclear and Photomesic Processes, Trudy,
edited by D. V. Skobel'tsyn (Consultants Bureau, New
York, 1976), Vol. 71, p. 1].

2V. N. Fetisov, A. N. Gorbunov, and A. T. Varfolomeev,
Nucl. Ihys. 71, 305 (1965).

3The most sophisticated three-nucleon, bound-state cal-
culations--all agree that the spatially symmetric S-state
component of the triton occurs with 90% probability.
See Y. E. Kim and A. Tubis, Ann. Rev. Nucl. Sci. 24,
69 (1974). Furthermore, the main contribution to .the
sum-rule integrals comes from low and medium ener-
gies where electric-dipole transitions dominate and the
long-wavelenggth approximation is valid. The E2 contri-
bution to the sum rule is estimated to be 10-20%. See
Ref. 2 and L.M. Delves and A. C. Phillips, Rev. Mod.
Phys. 41, 497 (1969).

4J. S. O' Connell and F. Prats, Phys. Rev. 184, 1007
(1969).

~I. M. Barbour and A. C. Phillips, Phys. Rev. Lett. 19,
1388 (1967); Phys. Bev. C 1, 165 (1970). Exact T=~2
calculations have also been performed by Levinger and
collaborators; see, for example, M. Fabre de la Rip-
elle and J.S. Levinger, Lett. Nuovo Cimento 16, 413
(1976).

B. F. Gibson and D. R. Lehamn, Phys. Rev. C 11, 29
(1975); 13, 477 (1976). Hereafter referred to as GL or
GL1 and GL2.

7These ideas are not new, but we now substantiate them
with exact calculations. See F. Prats, D. R. Lehman,

and J.S.,
O' Connell, Bull. Am. Phys. Soc. 13, 140

(1968).
~M. Verde, Handbuch der Physik (Springer Berlin, 1957),

Vol. 39.
When V23 =—0 in Eqs. (19) and bound-state solutions are
sought, it is possible to show that the h equation has
only the trivial solution, i.e., h=—0. This follows from
Mercer's theorem. See F. Smithies, Integra/ Equations
(Cambridge Univ. Press, Cambridge, England, 1958),
p, 127,
A. G. Sitenko and V. F.Eharchenko, Nuel. Phys. 49, 15
(1963).

~ L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960)
[Sov. Phys. —JETP 12, 1014 {1961)].

i2Tbe equations for Mg in GL1 can be derived from Eq.
(44) of this paper by using the integral equations for V
and U, i.e., Eqs. (30). The main point is to establish
the definition of the X amplitudes of GL1 in terms of V
and U. We do hot pursue the derivation here since it is
not essential to our discussion.

~3As mentioned in Ref. 12 for the two-body amplitudes,
the algebra can be extended to express the three-body
amplitudes in terms of the Xoperators of GL.

~4F. Tabakin, Phys. Rev. 1.37, 375 (1965).
~SG. Ticcioni, S. N. Gardiner, J. L. Matthews, and B.O.

Owens, Phys. Lett. 46B, 369 (1973).
B.L. Berman, L. J. Koester, and J. H. Smith, Phys.
3,ev, 133, B117 (1964).

~~J. R. Stewart, R. C. Morrison, and J.S.O' Connell,
Phys. Rev. 138, B372 (1965).

~~The integration was carried out to E~=125 MeV and
was done with a planimeter. The stated errors arise
from this procedure. Another percent or so should be
included to account for the uncertainty involved in o~r
extrapolation of the cross sections from 100 to 125
MeV.

~SF. J.Dyson, Symmetry GrouPs in Nuclear and Particle
Physics (Benjamin, New York, 1966).

20The comparison can be accomplished with, Eq. (71)
also, but it is more tedious.

~~A. C. Phillips and F. Roig, Nucl. -Phys. A234, 378
(1974).


