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Orthogonality in medium energy nuclear reactions
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The kinematic range over which orthogonality appreciably changes single-nucleon ejection amplitudes is

investigated. No simple prescription is found which can be applied to plane wave approximations to achieve

the required modifications.

NUCLEAR REACTIONS Orthogonality in nucleon emission amplitudes.

It has recently been pointed out' that orthogonal-
ity may play a more important role in certain nu-
clear reactions at medium energies than has been
generally realized. In the case of a scalar knock-
out interaction, for example, the amplitude must
vanish at zero momentum transfer from the probe
that induces the excitation as in (y, p), ()),p),
(e, eP), and so on. This feature is usually lost in
the conventional calculational schemes such as
plane or distorted wave impulse approximations
(PWIA or DWIA). In order to study where the ef-
fect is significant and to search for a simple pre-
scription for incorporating it in standard PWIA or
D%'IA, we have examined some exact models and
also realistic numerical cases.

Several exact forms for the transition matrix
element which automatically respect orthogonality
may be obtained from the standard DULIA ampli-
tude

4-(R)=(f I8 Ii&= d'x(t)- (x)8)f)(x),

where 6 is in general a nonscalar operator that
involves the momentum transfer for % and induces
the transition from the state ( of a bound nucleon
to the continuum wave (t)- for momentum P. One
of them is generated by exploiting a commutator
relation

which displays orthogonality, even for approximate
wave functions, for 8=—l. In Eq. (2), E;= —)(' j2m
is the energy of the bound nucleon of mass m, Ef
=F

&
= p'/2m is the final nucleon energy, H is the

nucleon Hamiltonian, and V is its potential. The
commutator [V, 8] may be important for spin, iso-
spin, or velocity-dependent cases but will be ig-
nored here. Then Eq. (2) may be written as

A
p $)= —(1)2+a') ' d'x(t)- (x)

(-)0 ~

x [(0'8)+2 P8).0] )1)(x)

=()T*+~') 'fd'x(t (x)

x[~ P8)-P8) ~]4(x), (2)

where the second version follows upon integrating
by parts. Again, for 8=—l, orthogonality is imme-
diate.

For the case 8 =exp(i R x), we sketch the deriva
tion of an alternative to Eq. (2) which explicitly
vanishes for 0-0 as required by orthogonality. In
momentum space the amplitude takes the form

3
~ p%)= '„'.4p "(p)~(p'-8,

where

3 lf

p-, (p')=(2~)'&(p-p')+(&-, -&-, -f~) '. 2, —.(p'll'I p"&0-, (p").

Substituting Eq. (5) into (4) and taking the limits-(0) =0 yields
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3 Il

((P'-%)= — 2,(E~, -„-E~.,+is) '(ji'-Rlt(Z&. -„)I P"& g(P"). (6)

The matrix element of the scattering amplitude t satisfies

(2~)'6(p -p")& p"If(E;)I p'&=& p"II'I p'&kp (p"),

which has been used to obtain (6). Inserting E(ls. (5) and (6) in (4) for general %,

& p%)= - J" 2 .[(Ep g-Ep-+ie) '&5-&lf(E
p g)l 5"&-(Ep-zp-, r+ie) '& pit(E p)l p" +&&1 4(p"),

which explicitly vanishes at fr=0. We note that using the eikonal form' for the combination Gg in Eq. (8)
the amplitude is given by (p %/p')A~ (k) as in Ref. 1.

If we evaluate E(I. (3) with 8 =exp(k x) and p~ '(x)=exp(i p. x), we find, for k«p,

(8)

A-(R)=2, ((p -%),
p

in contrast to the eikonal result in Ref. 1, and in the previous paragraph, where the factor of 2 is lacking.
In the eikonal case it is removed by the action of the potential in (I~( '. This suggests that the modification
of PWIA and very likely of DWIA is highly model dependent, which, in fact, we find to be the case for the
models we have studied.

We now examine two models w'here exact results can be obtained analytically. The first one is the Cou-
lomb potential where $(x)(x:exp(- »») is the nonrelativistic hydrogenic 1S bound state and Q

' the corre-
sponding continuum state. The exact expression in coordinate space is

A jfe)= fd xexp(-'i p. x)F(-ie, ( ((peep. x)(exp((p. x)exp(-ex),

d [k'-(P+x»)']'"
p@) d» [I Q)2+»2] le in

It is seen thatA~ (fr=0)=0 and the plane wave case is obtained from E(I. (11) with n=0. Then, for k «p,

p k
, -—2-, , e '" . (1+in) =2

n=-Klp n~ 0

to be compared with Eq. (8).
The other exact model we use is a square well potential in the limit of zero range and infinite depth, for

which it can be shown4 that
e

((x)=(»/2w)' 'e /x, P
' (x)=e '(' "+[e''~0'si (npx +6)-0si (npx)]/px, tan60(p)=-p/»,

(12)

(13)

and for which

where I' is the confluent hypergeometric function, adn=n-e'm/P, »=e'm, and we have suppressed all nor-
malizations. Using standard methods' involving an integral representation for I", we arrive at the exact
result

W-, (R)= 4~(»/2~)'~
1 e" (i P'-k'+8-2i»k 1 P'-k +»'-2i»k

(p-k)'+» 4Pk (P-k) +» 4Pk (P+k) +»' (14)

Here again&~(2=0)=0 and

pA (R} 2
'

A~(A(R) k«pP P2yg P (15)

to be compared to E(ls. (8) and (12). We note that
neither exact model has the property of a realistic
nuclear potential, namely finite well depth and
range and a surface thickness.

We therefore turn to an analysis based on the
numerical solution of g, real Woods-Saxon potential

with well depth -40 MeV, range 3 fm, and thick-
ness 0.5 fm. Careful use of standard numerical
procedures is adequate to study the effects of
orthogonality, but these may be brought into sharp-
er focus by methods' tailored to a discrete mesh.
We find for the parameter n(p} defined by

~g, ~ =a(P) +0(k'), (16)

the absolute values 8.6, 2.9, and 1.3 for p=2.0,
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2.8, and 3.5 fm ' or very roughly o.(p)-63 fm '/p'.
Thus, in the medium energy range, n(p) is not
constant as suggested in Eq. (9) or in the eikonal
case. (For different values of the potential para-
meters with or without spin-orbit potential or
imaginary part the situation looks similar. ) The
effects of orthogonality appear to persist out to 1
to 2 fm, although a precise comparison is diffi-
cult because at these momenta the plane wave ap-
proximation is poor. The range for which linear-
ity in k holds for the ratio in Eq. (16) is limited
to -0.15 fm '.

We conclude that the strong model pendence of
the orthogonality effects has prevented us from

finding a simple, general method to incorporate
orthogonality. The difficulty will become still
more acute when an optical potential with an imag-
inary part is used to incorporate absorption in the
continuum state.
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