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Comparison of two-dimensional boson and variable-moment-of-inertia models
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% e discuss a simple two-dimensional model containing interacting s and d bosons. This model reproduces
the general features of actual collective nuclear spectra, e.g., the transition between vibrational and
rotational spectra, and it also gives results close to those of the variable moment of inertia model.

NUCLEAR STRUCTURE Interacting boson model, variable moment of inertia
~

model.

I. INTRODUCTION

In the last few years, some features of collec-
tive excitation spectra in nuclei-have been account-
ed for by means of the interacting boson model
(IBA). A rather different description, the
variable-moment-of-inertia (VMI) model has also
been quite successful, indeed, perhaps even slight-
ly more so than the boson model. The point of this
paper is to investigate the boson model in some-
what more detail, to study, for example, the de-
pendence of the spectrum on the number of bosons.
Also, we wish to see what, if any, kind of under-
lying connection can be established between the
IBA and VMI models.

For this purpose we find it useful to work with a
two-dimensional version of these models. We be-
lieve that while this does not fit the experimental
data correctly, i.e. , L(L + 1) is replaced by L2,
whatever connection there is between the two mod-
els is easier uncovered in two dimensions than in
three, nevertheless we believe that the physics is
very similar in the two cases [except for replacing
I by (L(L+ I}}'~ etc.]. Thus, we hope that the
conclusions drawn from the two-dimensional mod-
els are also at least approximately valid in threp
dimensions.

Section II deals with the transition between vi-
brational and rotational spectra in a very simple
way. In Sec. III we compare the results of boson
(IBA) and variable-moment-of-inertia (VMI) mod-
els. In Sec. IV we show that a more generalized
version of the boson model can reproduce the VMI
results, at least in the weak coupling limit.

sion of a model considered by Arima and Iachello. '

(See also Refs. 2 and 3.) We assume a quadrupole
coupling strength g between the bosons (which also
implies a, single boson energy)

j.g — —g (lb)

in addition to the assumed splitting e between s and
d boson energies. The two-particle energy matrix
is shown in Table I.

In the weak coupling limit, expansion of the N
boson ground state energy in powers of g gives

N(N —1) 8g =-Ne-Ng—
2

~ ~ ~ (2)

It is convenient to express these results in terms
of the dimensionless coupling parameter

X = 2Ng/F. .
Then

(3)

X X
5 =-Ne I-—.— 1 ————~ ~ ~

2lV N 8N' (4)

The excitation energy of the first excited I = 2

state is

Z, X 3 1 x' 5 4—' =1——1 ————1-—+—r . (5)

In the limit N ~ this is consistent with the result

E2/e =(1—X)'i'

II, DESCRIPTION OF COLLECTIVE SPECTRA IN TERMS OF
QUADRUPOLE BOSON-BOSON INTERACTIONS

In this section we study the collective spectra by
introducing boson-boson interactions. This is an-
alogous to the introduction of the Elliott model.
The model used here is the two-dimensional ver-

obtained by applying the random-phase approxima-
tion (RPA}. The lowest I =4 state is at twice the
energy of the 2' state in the vibrational limit X=0.
Moving away from that limit, we find

ZgR = 2 (1 + —X + —X ),
2392 1979 The American Physical Society



19 COMPARISON OF T%0-DIMEN SION AL BOSON AND. . . 2393

TABLE I. Energy matrix of the two boson system in
the intermediate coupling model discussed in Sec. II.

TABLE II. Energy ratios E4/E2 and Eo /E2 versus X,
the dimensionless coupling strengths for N=8 and 16,
according to the model discussed in Sec. II.

ss
N=8

0+
N=16

0+

ss
dd

sd

-2& —2g
-~2g

0
0.4
0.8
1.2
1.6
2.0
3.2
6.4

2.000
2.070
2.207
2.464
2.849
3.373
3.842
3.989
4.000

2.00
2.083
2.293
2.812
3,927
6.476

12.19
20.54
30.00

2.000
2.038
2.144
2.499- '

3.272
3.855
3.970
3.996
4.000

2.00
2.047
2.219
3.055
6.676

15.69
28.60
43.75
62.00

dd

1 N 1~
8 2(mr -1)X (10)

and similarly for the first excited 0 state, denoted
here by 0',

E /8022(l+ x~+ x~''' I.
i

(8)

In the limit X—~, the states form exact rotational
bands. The rotational energies are

In the limitlV -~ both states are at exactly twice
the energy of the 2' state even if X is appreciable-
as long as X&1.

Finally, let us consider the rotational (strong
coupling limit X» 1}. Here the ground state energy
is given by

N(N +1} 2N3 1
@o=—g- + —— 0 ~ ~

2 PjV —1X

The rotational spacing increases as X becomes
smaller. We also find that there is a further cor-
rection term proportional to L in the energy. This
leads to a breakdown in the rotational spacing.
Thus, we find

E 3 + ~ ~ ~
~

E2 NX

If N or X—, this correction disappears.
Finally, we show some specific results of our

calculations. Figure 1 shows the excitation ener-
gies of the vibrational and rotational levels as a
function of X for the case N =8. The rather sud-
den change from vibrational to rotational spectra
as we vary X is apparent. Table II shows the en-

ergy ratios EQE2 and Ep,/E2 versus X, for N =8
and 16. Again, for the 4' state we note the trans-
ition from vibrational to rotational energies as X
exceeds 1, as expected. The transition becomes
more sudden with increasing N. Also'shown is the
energy of the 0' state. In the limit X —, the en-
ergy ratio is

(12)

o
W
LLI

Our results seem to agree quite well with those of
the variable-moment-of-inertia model, which is
based on rather different assumptions. This point
is discussed below.

0 o
0 0.2 0.4 0,6 0.8 1,0 0,8 0,6 04 0,2 0

X 1/X

FIG. 1. Excitation energies of collective states vs di-
mensionless coupling strength fEq. (3)] in the (s, d) bos-
on model with quadrupole-quadrupole interactions for
case N= 8.

III. COMPARISON OF THE BOSON AND VARIABLE-
MOMENT-OF-INERTIA tVMI) MODEL

The two-dimensional VMI model is the same as
the three-dimensional one except that [Z(J+1}j'~2

is replaced by L. The relation between E and I is
obtained as follows.

The moment of inertia is a quadratic function of
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fr equency:

cC =So(1+(cd/cd, )') .
The VMI model gives

pvMz =2 ~ (28)

Then

L =cicd =docd —+ (cd/cdo)
(d 3

(Op

Eg = cd dL =Spcdo (z (cd/cdo) + —,(cd/cdo) ).

(14)

(15)

If L «8 Ido, we get a harmonic spectrum, i.e.,

R4 —2.

In the corresponding three-dimensional case,

ft =(~)"=1.82.

L4

2' 48p ~p
(16)

the same kind of correction as in the rotation-vi-
bration model. Qn the other hand, if. ~ »~p we
obtain

Eliminating ar we obtain a parametric relation be-
tween E and L. In the limit co «up, we find for the
energies of the yrast states

In fact, the three-dimensional VMI never gives an
exact vibrational spectrum, though it comes close
to it for the proper choice of the parameters. By
comparison, the boson model with quadrupole
forces gives (in the weak coupling limit X-0)

2

EI.—~eL+4 gL ——;-I1 1 2 g
16e

Eg ——4ccpcdp (L/Socdo} (17) which is of the form (27) with

which implies for the energy ratio of the lowest
two excited states

1
PrsA =& ~ (32)

R4 E4/E2 —2 —3 =2.52 .
The corresponding R4 in 3 dimensions is

(~l)2/3 2

(18}

=S'(-1+ (cd/cdo)'), (21)

L =g (Op ——+ 40 (dp
GOp

EI, =cf cdo ( 2 (cd/cdo) + 4 (cd/cdo) ), (23)

In the limit e»~p, we again get

R, =24/3 . (24)

But in the opposite limit, which is now u-(op, we
find by a simple calculation

We can get even lower values of R4 by allowing yp

to be negative, writing

(20)

Thus the two models give different results, if ex-
panded to order L'. In general, if the parameters
of the two models are chosen so as to give the
same E2 and E4, i.e. , R4, the boson model with
quadrupole interactions gives slightly larger RB
than the VMI model.

Table III shows a comparison of the two models
all the way from the vibrational to the rotational
limits. Specifically we tabulate VR& as a function
of B~. We chose this particular quantity since it
happens to be identical to R4 in both extreme limits
and never deviates very much in the intermediate
coupling regions.

The results are quoted for the case of 8 bosons.
For 16 bosons the results are almost identical
(within 0.01).

TABLE III. Energy ratio vR~ as a function of R4 for
various values of R4 obtained with the three-dimensional
boson model with quadrupole forces for N= 8 (Sec. II) and
with the two-dimensional VMI model (Sec. III).

so '2 ——~-+4(L/s'~0)'- a(L/s'~0)' " . (25)
Cdp g Cdp

vR,
Boson

R8
VMI

This can be written in the form

1L + &2L + +SL

It is convenient to define the parameter p by

CIA~
p —~

Q2

(26)

(27)

2+6
2.25
2.50
3.00
3.50
3.75
4. E «1

2++E
2.31
2.58
3.05
3.48
3.71
4-2 e

2++~
2.28
2.50
2.90
3.36
3.62
4
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IV. GENERAL BOSON MODEL

For an arbitrary interaction between the bosons (i.e. , not necessarily quadrupole) the energy of the yrast
states expanded in powers of I is (in the limit of N- ~)

(voo oy)
' lr (zu22 2zv2p +zippo) N( voo 2o ) L

~ + ~20 00& +
4e 2 2

+
2e 4

W

+ —— 1+ (nr —2&v +w )
(voo-o2) I 3

22 20 00 (34)

We can again parametrize the energy in the form
(27). Then in the weak coupling limit

X« I

we find

(35)

2N
PggA, =Pp 1 +—u'22 —2M'2p +~ppi 1 —

Pp
o )

(36)

where

("oo- o~)

(1022 —2zUop + oopp)

For the special case of the QQ interaction

Vpp" 2 (38a)

$022 ——
ZUpp

——gq (38b)

ZU 2p
———'2g

~

we obtain

p =-,'(l +X).

(38c)

(39)

However, the value of p depends on the nature

i

Here ~«represents the matrix element of the in-
teraction between two s bosons. zv20 is the sym-
metrized matrix element for d and s bosons, and

m22 refers to the interaction between two d bosons
with the same m. ~22, where the m's are anti-
parallel, does not enter into Eq. (33).

Finally, zvpp 22 refers to the off-diagonal matrix
element of the interaction. According to the RPA,
the phonon energy is

[e(o+Nv)]'~2

where v is proportional to the interaction matrix
element and independent of ¹

The boson model reproduces this dependence
(up to order N2) provided

(vpo" 22) '2(%20 Kop)
-2 —, 2

of the interaction. For example, if in the QQ in-
teraction we change w22 from -g to -2g then the
phonon condition (34) is still satisfied, but the val-
ue of p is changed to

p =2(l —X),

which happens to be the same as in the VMI model,
at least in the weak coupling limit.

This assumption implies that m» is more attrac-
tive relative to, say, m», than for a quadrupole
interaction. This in turn suggests a stronger
attraction between two nucleons in overlapping
orbits than what is implied by a quadrupole force,
i.e., which is plausible in view of the short range
nature of the effective nucleon-nucleon interaction,
though this point has not been investigated in de-
tail.

V. CONCLUSION

We have considered a simple version of the boson
model containing only L =0 and L =2 bosons and a
quadrupole interaction between bosons. This mod-
el illustrates in a simple way the transition from
vibrational to rotational spectra. The results are
quite similar to those predicted by a two-dimen-
sional variable- moment- of- incr tia model.

The description used here we hope gives some
insight into the excitation energies of collective
states. It remains now to extend this description
to the more realistic, but more complicated,
three-dimensional case, though we expect the near
equivalence of the boson and VMI results to hold
here too.

The author is very grateful to Dr. F. Iachello,
Professor T. Tamura, Professor A. Goodman,
and Dr. G. S. Goldhaber for stimulating discus-
sions, and thanks the computing center of UCLA
and Brookhaven National Laboratory for making
computing time available. This work was partially
supported by the National Science Foundation.

~A. Arima and F. Iachello, Phys. Bev. Lett. 35, 1069
(1975).

S.A. Moszkowski, Phys. Bev. 110, 403 (1958).

3E. Taruishi, Prog. Theor. Phys. 39, 53 (1968)-.
46. S. Goldhaber', , C. B. Dover, and A. L. Goodman,

Annu. Nuel. Sei. 26, 239 {1976).


