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g + d clustering of three-nucleon systems: D-state effects in (d, t) and (d, He) reactions
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The S- and D-state radial components uo and u, of the relative motion between the clusters d + n in
'H necessary in a full finite range distorted-wave Born-approximation analysis of (d, t) reactions, are
calculated using realistic triton and deuteron wave functions derived from the Reid soft-core potential. The
parameter D, which provides a measure of the asymptotic D state to S state ratio is found to be almost
entirely determined by the triton D state, the deuteron D-state contribution being about 10%. Using the
Strayer and Sauer triton wave function, the value D, = —0, 17 fm is obtained after correcting the
asymptotic behavior of the d-t overlap. This result suggests that the Reid soft-core potential overestimates

D2 by about 20% compared with values extracted from a local energy approximation analysis of,d, t) tensor
analyzing power data. The diA'erence between D, for (d, t) and (d, 'He) is discussed.

NUCLEAR STRUCTURE 3H; calculated S and D states of the overlap integral
with deuteron; deduced Do and D2 for {d,t) and (d, He) reactions.

I. INTRODUCTION

It is well known that the deuteron D state has a
very strong effect on the terisor analyzing powers
of (d, P) and (d, n) reactions. ' Similar effects have
been shown to be present in (d, t) and (d, 'He) reac-
tions. ' 4 In these reactions it is the D-state com-
ponent of the relative motion between the clusters
N+d in 'H and 'He which can have quite large ef-
fects on the tensor analyzing powers. When finite
range effects are included in the distorted-wave
Born-approximation (DWBA) theory using the local
energy approximation' (LEA) the magnitude of the
D-state effects is completely determined by a sin-
gle parameter D, which can be adjusted in order to
fit the data. The value of D, for (d, t) reactions
calculated' with a very simple triton wave function
is in reasonable agreement with the values of D,
extracted from an LEA analysis of tensor analyz-
ing power measurements.

In the present work we have calculated the S-
and D-state components of the relative motion be-
tween the d+n clusters in 'H. From these relative
motion wave functions we can calculate D, and dis-
cuss the information on the three-nucleon bound
system contained in this parameter. The same
wave functions are required in a full finite range
DWBA calculation for (d, t) reactions which is re-
quired in order to include properly the D-state ef-
fects and therefore test the accuracy of the LEA.

In the DWBA the transition amplitude for a (d, t)
reaction depends on the internal structure of the
deuteron and triton through the matrix element

~(»=&X /" v"(p)II'. Iv+( 0)&

where V,„ is the interaction between the deuteron

and the transferred neutron, y, ~ and y~+ are the
internal wave functions of the deuteron and triton,
and X, ~, is the spin wave function of the transferr-
ed neutron. The vector p is the internal coordin-
ate of the deuteron and r is the separation of the
transferred neutron from the deuteron center of
mass. Using the Schrodinger equation for the
three-nucleon bound system we can write

where

T is the kinetic energy operator in the coordinate
r and B is the difference between the binding en-
ergies of the triton and deuteron. Equation (3)
shows that all information on the deuteron and tri-
ton internal structure which can be obtained from
a DWBA analysis of (d, t) reactions is contained in
the overlap integral G(f).

From general angular momentum and parity
selection rules we conclude that G(r) can contain
only S- and D-state terms. Thus we can write

&(Ig,—,
'
v„lsd), (4)

where s is the spin transfer; s= —,
' for A=2 ands= —,

'

for I =0. The radial wave functions uo and u, de-
scribe the relative motion between the deuteron
cluster and the remaining neutron in the triton.
In low energy (d, t) .eactions the dependence of the
DWBA transition amplitude on uo and u, is to a
large extent determined by the values of the zero-
range normalization constant
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Do=-v 4mB u (r)r dr
0

(5)
ponent with orbital angular momentum / and tak-
ing into account Eq. (12) we can write

and the D-state parameter

1 JD u, ,(r)r'dr' »1'u, (r) 'dr (6)

I"," '(r)=e(:(2a)'i*(l+—+, , (Bl
3 3 e~

ar (ar)' r
where a=(SBj4MS')'~', C and e are dimensionless
constants.

C is a well known parameter of the three-nucleon
bound system which can be determined from vari-
ous types of experiments' and in particular is re-
lated to D0. An estimate of C can be obtained by
substituting Eq. (7) into Eq. (5):

Due to the factors x' and r', D, and D, are particu-
larly sensitive to the tail of the radial wave func-
tions u0 andu, . In the asymptotic region they go
as

CXT

u,"" '(r)=C(2a)' '

u =u00+ u22
0 0 0 0

u =u 2+u20+u22.
2 2 2 2

(12)

(14)

q,"(p)= g (ImIo~ lg, )~, (p)I,"(p)x,'q, ,
1 =0, 2

(15)

where X, and@, are the spin triplet and isospin
singlet wave functions.

A. Approximate triton D state of Jackson and Riska

Notice that the D-state part of the overlap can only
be nonzero if either the deuteron or the triton wave
function contains a D-state term. Furthermore,
the most important contribution to u, comes from
the triton D state and is therefore given by u2~.

On the other hand u0 is almost entirelg determined
by u except for a predictably small contribution
from the overlap between the deuteron and triton
D states.

In the present calculations of the overlap func-
tion G(r) we use the deuteron wave function of
Reid' (soft core)

II. CALCULATIONS OF uo AND u2 WITH REALISTIC
WAVE FUNCTIONS

From the angular momentum coupling in the tri-
ton we can easily identify the contributions from
different components of the deuteron and triton
wave functions to the S- and D-state parts of the
overlap function G(f). The orbital angular momen-
tum L in Eq. (4) is given by

X= s, -(s,+ s,+ s,)-1, (11)

where s, is the triton angular momentum, s; are
the three nucleon spins, and 1 is the deuteron or-
bital angular momentum. Thus

T =I'-1, (12)

where l is the triton orbital angular momentum.
Representing by u~~ the contribution to the radial
wave function u~ from the overlap between the deu-
teron wave function component with orbital angu-
lar momentum ) and the triton wave function com-

On the other hand the only source of information
on the asymptotic D-state to S-state ratio & is pro-
vided by D, . From Eqs. (6), (8), and (9) we obtain

&=—e D2.

This approximation is known' to be very accurate
in the deuteron with deviations of the order of 1%.
In this case the deuteron quadrupole moment Q
also gives as a rough estimate e=v 2 Qa'.

(|l,k~V")S)= (

e""' '""')V~(p)S„(~dp d1', (17)

where

gq=v(T', p)ko (18)

In order to estimate D, for (d, t) reactions we
have first used the model triton D state of Jackson
and Riska, which is obtained in first order per-
turbation theory. In momentum space it is given
by

1
~ ) B,-q2/m-sa'/4m

x(fl, g~ Vr'+ Vr'+ Vr'~S), (16)

where q and k are the momenta conjugate to p and
r, respectively, B, is the triton binding energy,
V~~ is the tensor force between nucleons i and j,
and ~S) is the normalized triton S-state wave func-
tion. This simple approximate D-state wave func-
tion gives a very accurate description of the
asymptotic region which makes it particularly
convenient for our purpose.

The three tensor force terms in Eq. (16) give
quite different contributions to u, . In order to
analyze these contributions we represent by 1. and
2 the nucleons in the deuteron and by 3 the trans-
ferred neutron. Apart from the energy factor,
present in the three terms, the tensor interaction
between nucleons 1 and 2 yields



240 F. D. SANTOS, A. M. EIRO, AND A. BARROSO 19

is the triton S-state wave function and

Sn-(&z p)(&~ p) s-&x. &2

is the tensor force operator. In Eq. (18)
1

&o-~2(Xzn2-X2ni)

is the full antisymmetric spin and isospin part- of
the S state, X,(q, ) and X,(q, ) represent 3-nucleon
spin (isospin) wave functions, '0 and v(f, p) its nor-
malized radial part. Performing the angular inte-
gration in Eq. (IV) we obtain

re
(((, slv';Is)=-4(~ p v;"((()(o,~~,).'s, fj (s )j,(qv)v (v)U(v, v)vVdvsv,

(20)

where [c,x ~,] ' represents the second rank tensor product of the spin operators and j ~ the spherical Bess-
el functions.

For the tensor interaction between the particles 2 and 3 an analogous derivation leads to the following ex-
pression:

xi'-'(21.+1)(21. +1)(2I +1)(f. OI OIpO)(L01 OI~O)(I OI. OI2O}

L L 2
x . Vr(p) v ( P) p)j~( ', qp')j ~ ( ~k—p)j, ,(2kr)j, ,(qr) p'r'd p dr.a l (21)

f (s)v (R)=f sse "'u (v)v ()')' (22)

the radial function f,(k) has the following expansion
for small momenta:

f2(k}=a2k +ack4+ ". (23)

It can be easily proved" from Eqs. (6) and (22) that
D2 is proportional to the coefficient of the k' term
and is given by

D=-02 4% u X XA'
Q

In first order perturbation theory with the wave

The tensor interaction between the particles I and
3 gives an identical expression except that 0, and
0, are substituted by cr, and o, respectively.

For the triton S state we use the wave function of
Jackson, Lande, and Bauer" and we take only the
main component" that has no angular dependence
on I' or p. The triton D state is generated accord-.
ing to Eq (12) fr.om the same S-state wave func-
tion. With this model for the triton u2 is zero be-
cause v isascalarinp. Dueto the same reason the
only contributions to u2~ arise from the tensor
force between the nucleon pairs 13 and 23. The
term u2" in Eq. (14) is probably small and was not
estimated with these wave functions.

Since the approximate triton D-state wave
function is given in momentum space it is particu-
larly easy to calculate D, directly. If we represent
the Fourier transform of the overlap G('P) by

function described we obtain a triton D state with
a probability of 4% and D,= -0.14 fm'. The calcu-
lation can be improved if we introduce a normal-
ization constant on the right-hand side of Eq. (16)
and require that the sum of the triton S- and D-
state probabilities to be equal to 1. Our final result
for D, is then

D, = -0.648[P~/(1-P~)]' fm, (25)

where PD is the triton D-state probability. For a
triton D-state probability of 8%%uo, Eq. (25) gives D,
= -0.20 fm~.

B. Triton wave function of Strayer and Sauer

In view of the rather crude approximations in-
volved in the previous calculation we have chosen
a more realistic triton wave function to obtain the
radial overlap functions uQ and u, . We. use the tri-
ton wave function of strayer and bauer' which is
generated through a variational calculation from
ihe soft-core Reid nucleon-nucleon potential and
gives a reasonable agreement with the three-nu-
cleon ground state properties. It is expressed in
a translationally invariant basis of harmonic oscil-
lator functions which is convenient to perform the
numerical calculation of the overlap with the deu-
teron.

Following essentially the same notation of Ref.
14 we write the projection of the triton wave func-
tion into an isospin zero state for particles 1 and
2q as
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q),'&(I, p) = Q g, , b, ,(l x s g
~ ,' o-, )

l'=O, 2
X' a'

fl
g

l
y

tl 2l 2 ( l
y

even')

C(N, L, N, L,)i'&""&(n,l, n 2l„ l ON, L,N, L„ l )

x p (l,m, lmm2). l X ) l&xlxm, )(n2l, m, ),
mg5t2

(26)

where

1 2 1 2

0.6

I I I I I I

H OVERLAP3

—STATE

and X3 is the J=—', three -nucleon spin wave function.
The C(N, L,N,L,) are the same coefficients as in
Eg. (1) of Ref. 14, (n, l,n, l„ l ON, L,N, L2, l ) are
Brody-Moshinsky brackets, ~n, l,~) and ~n212~
are harmonic oscillator wave functions in the co-
ordinates p and r, respectively. The energy of
the various terms in the above expansion is char-
acterized by the number of oscillator quanta

Q=2n, 1+,+2n, +l, .

In the present calculations the harmonic oscillator
basis is truncated at Q=50. This wave function
underbinds the triton by 1.8 MeV.

The various terms in Eqs. (13) and (14) which
sum up to up and I, were obtained by performing

the overlap in the coordinate p between the expres-
sions (15) and (26) and are shown in Fig. 1. As ex-
pected. ' we find that N2 is considerably smaller
than u2 . The term I,"is likely to be even small-
er than u2" and was not calculated. As regards up

we find that sPp' is always about one order of mag-
nitude smaller than u,". In the present calcula-
tions we have not included the triton 8 -state com-
ponent due to its very small probability and be-
cause it contributes to u, only through the small
overlap with the deuteron D state.

The total radial overlap functions ~p and u2 are
represented in Fig. 2. From these we obtain the
value D,= -0.113 fm'. The effect of the deuteron
D state is to decrease D, by only about 10%%uo. Ne-
glecting 20' and-u2 we obtain D,= -0.126 fm'. The
decrease in D, results from the fact that u,"and

u2 have opposite sign in the important asymptotic
region while u~ and u20 have the same sign.

Frpm Qp we obtain Dp= -177.6 Me& fm' ' which
is in good agreement with other recent calcula-
tions. " This value includes the small contribution
from the overlap between the deuteron and triton
D states which has not been estimated previously.
Neglecting I", we obtain D,= -165.0 MeV fm3+.
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FIG. 1. Contributions to the radial wave functions uo
and u2 of the S- and D-state components of the d- H
overlap as defined in Eqs. (13) and (14). uo anduo
result from the overlap between the deuteron $ state and
triton D state and u2 results from the overlap between
the deuteron D state and the triton S state. The total
uo and g2 are represented in Fig. 2.
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FIG. 2. Total radial wave functions uo and u2 of the
S- and D-state components of the d-3H overlap calculated
with the Strayer and Sauer triton wave function.
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D~( He) 1 1 Se('He)
D2('H) e('H)

If we take into account that asymptotically the
overlap function d-'He behaves as a Whittaker
function, instead of a Hankel function, the multi-
plicative constant in Eq. (2V} is slightly reduced'
to &.089.

Vfhen comparing the above ratio with values of
D, extracted from DWBA analysis of (d, t) and

(d, 'He) reactions we have to consider that the de-
finition of the reaction form factor may not be the
same in the two cases. In the conventional form
of the DWBA matrix element'6 for (d, SHe) reac-
tions the Coulomb part of the d-p interaction
should be omitted from Eq. (1) when the distorted
wave in the exit channel is generated with the total
Coulomb interaction between 'He and the residual
'nucleus. The main effect on D„because of its
sensitivity to the tail of the overlap, is due to the
long range part in' of the Coulomb d-P interac-
tion. With this approximation the function E(r) be-
comes

(28)

where G(f) is the overlap between the deuteron
and 'He. Considering, as in Eq. (10), that the
asymptotic region has a dominant role we obtain

D, ('He)
1 095

e('He)

D,('H) e('H)
' (29)

The ratio decreases since the numerator in Eq.
(6), because of the x' factor, is less sensitive than

the denominator to the Coulomb term. The effect
of omitting the Coulomb part of the d-p interaction
is therefore predicted to be smaller in D, than in

D, The multiplicative constant in Eq. (29) de-
creases to 1.035 when the Hankel functions are re-
placed by Vfhittaker functions.

To determine D,('He) from Eq. (29) we would

also have to estimate D2(SHe)/D2('H). This quantity

is probably close to one since e is mainly deter-
mined by the intermediate and long range tensor
force and therefore it is not very sensitive to Cou-
lomb effects. This implies that D2(SHe) is larger
than D2(SH). However, the precise determination
of D,('He) requires the use of a reliable 'He wave

function.

C. Comparison of D2 for 3H and 3He

The difference between D, for 'H and 'He is
probably mainly determined by the different bind-
ing energy of the two nuclei. Using Eq. (10) we ob-
tain

III. DISCUSSION

The values of D, extracted from a DWBA analy-
sis of the tensor analyzing powers of (d, t) reac-
tions vary within the range -0.22 fm to -0.30 fm .
For the '"Sn(d, t} "'Sn and '0'Pb(d, t) "'Pb Knutson
et al. obtain D2= -0.24 fm'. Further calculations
for the '"Pb(d, t) '"Pb reaction lead to a slightly
smaller value" of -0.22 fm'. For the 'Be(d, t)'Be
reaction" the agreement between theory and ex-
periment is not good enough to enable the deter-
mination of D2 Mor. e recent data' for the ~Zn(d, t)

Zn favors a larger value of D,= -0.30 fm'.
The reliability of thip information on D, is of

course limited by the accuracy of the DWBA theory
and of the approximations involved in its applica-
tion. Vfe note, however, that the- predictions for
reactions that are carried out at energies below
the Coulomb barrier are considerably more reli-
able than for reactions where the transfer can take
place deep inside the nucleus. It is significant that
the agreement between theory and experiment is
considerably better for the heavier targets. D, be-
tween -0.22,fm' and -0.24 fm' is therefore likely
to be the most reliable present estimate which can
be obtained from (d, t) reactions. They are in rea-
sonable agreement with the value D,= -0.20 frn'
calculated with the triton wave function of Jackson
and Riska.

For the "Al(d, 'He)"Mg reaction the best fit to
the data is obtained with D,= -0.22 fm while for
the ~Zn(d, 'He)~Cu it is' D; -O.SV fm'-. As the
tensor analyzing powers for the mirror reaction
have also been measured, ' it is therefore possible
to deduce directly from experiment that for this
pair of reactions D2('He)/D, ('H)=1.2V +0.13, which
ia qualitatively in agreement with the theoretical
predictions.

The rather small value obtained for D, with the
Strayer and Sauer wave function can be a conse-
quence of the fact that u, and u, do not have the
correct asymptotic behavior. Owing to the nature
of the harmonic oscillator functions generated in
an infinite potential well, the convergence of the
expansion is very slow in the asymptotic region.
In fact the calculated u, and u, are not proportion-
al to the Hankel functions h,(in') and h, (iver), re-
spt;ctively, for very large x. Furthermore, we
have to consider that the value of n corresponds to
a triton binding energy of 6.7 MeV instead of the
experimental value of 8.48 MeV.

In order to estimate the effect on D, of the ano-
malous behavior of Lo and u, in the asymptotic re-
gion we have assumed that in this region they are
proportional to h and h, . For c. we take the value
that corresponds to a triton binding energy of -7.3
Me& which is the minimum extrapolated value"
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that can be obtained with the Reid soft-core poten-
tial. By varying C and& inEgs. {7)and(8) wecan
match the calculated uo and u2 to uoa ymand +2as m'

The matching points for the S and D states occur
respectively at 3.5 and 5.0 fm where only the long
range part of the central and tensor force acts.
This may be interpreted as an indication that the
calculated u, and u, provide an accurate descrip-
tion of the overlap function at smaller distances.

With the wave functions corrected in the asymp-
totic region we obtain D,=-0.1.7 fm'. Thus, as-
suming that these wave functions give a reliable
representation of the most accurate overlap which
can be obtained with the Reid soft-core potential,
we conclude that this potential overestimates D,
by about 20%%uo.

It is a rather unexpected result since D, is
essentially a measure of the relative strength of
the intermediate and long range tensor force rela-
tive to the central force and the Reid soft-core
potential has a strong tensor component giving a

deuteron D-state probability of 6 4.%/p .
FuD finite range calculations for the tensor

~alyzing powers of (d, t) and (d, 'He) reactions
are necessary to determine whether the disagree-
ment between theory and experiment, particularly
for the light targets, is a consequence of the LEA
and therefore determine the reliability of the val-
ues of D, which have been extracted from experi-
ment. The present radial overlap wave functions
can be used in full finite range (d, t) and (d, 'He)
calculations provided that they are corrected in
the asymptotic region.
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