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A shell model analysis of the isobaric mass multiplets in the lp shell shows that the isotensor charge
dependent contribution (the coeAicient of T, in the multiplet relationship) is, in all cases save one,
underestimated when only electromagnetic interactions [including (U/c) corrections, vacuum polarization, the
effect of short range correlations, and finite neutron and proton size] are considered. Furthermore, the
discrepancy is nearly twice as large for the seniority zero levels as for the higher seniority states, indicative
of the omission of a short range charge dependent interaction. Since the free nucleon-nucleon scattering data
indicate that the (np) interaction is -2% more attractive than the (nn), the effect of including such a charge
dependent nuclear interaction on this coefficient is examined. When a Yukawa potential with range given by
the vr-meson Compton wavelength is taken for this potential it is found that theory and experiment can be
brought into much better agreement.

NUCLEAR STRUCTURE Shell model calculation of isotensor coefficient in
mass-multiplet relationship. 1P shell studied; need for isotensor nucleon-nuc-

leon interaction demonstrated.

I. INTRODUCTION

In this paper we show that an analysis of iso-
baric multiplets in the 1P shell leads to the con-
clusion that electromagnetic interactions alone
cannot explain the observed energy differences.
This is demonstrated by examining the c coeffi-
cient in the equation relating the energies of
states in a given multiplet'

E =Q+5T@+CTg ~

Several methods are discussed for calculating the
Coulomb interaction and in all cases the com-
puted value of c is found to be smaller than the
expe rimental one.

In first order perturbation theory, provided
isospin is a good quantum number, c depends
only on the isotensor part of the residual inter-
action. If in addition to the Coulomb interaction
one includes the isotensor part of the (v/c)
corrections to the electromagnetic interaction,
the effects of short range correlations, vacuum
polarization, and the finite size of the neutron
and proton, theory and experiment are brought
into better agreement. However, even when all
these effects are included in every case, except
one, the experimental value of c is greater than
the theoretical prediction. Moreover, the rms
error in c is about a factor of 2 larger for the
seniority zero states than for the higher seniority
levels —for the two seniority zero states it is
56.7 keV whereas for the nine higher seniority
levels it is 28.1 keV. Such an effect is exactly
what one would expect if a short range isotensor
interaction had been neglected.

Since the free nucleon-nucleon scattering data
indicate that the T =1 (np) interaction is approxi-
mately' 2% more attractive than the (nn) poten-
tial this is a possible source of the short range
interaction. We have, therefore, examined what
effect an increase of V„~ over V„„or V» would
have on the calculated value of c. Although the
difference between V„~ and V„„can arise from
both an isovector and isotensor interaction, the
former does not contribute to c in lowest order
perturbation theory and consequently only the
latter is considered. If we take an isotensor
interaction VcD which makes V„~ more a,ttractive
than V„„by 2% in the T =1spin-sin-glet state the
rms error in c is reduced by almost a factor of
2. Without the charge dependent nuclear force
the rms error in c is 35.1 keV, whereas when it
is included the error becomes 18.1 keV. Further-
more, the rms error in the seniority zero values
becomes almost the same as that for the higher
seniority levels, 21 keV for the former and 17.4
keV for the latter. Consequently, the addition
of an isotensor interaction of the magnitude re-
quired by the free nucleon-nucleon scattering
data materially improves the fit to c. However,
in view of the uncertainties in calculating c one
cannot deduce a reliable value for (i V„s

~

—
~ V„„~)—all one can say is that the data imply

that V„~ is more attractive than V„„or V».

II. DATA AND RESULTS

In column 4 of Table I we list the experimental
values of c in keV. In general these have been
obtained by use of the binding energy tables of
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TABLE I. Values of the coefficient c, Eq. (1), for the lp shell. The Coulomb results were
calculated using Woods-Saxon eigenfunctions with the binding energy prescription of Eq. (5).
Other electromagnetic contributions, (a)-(e) discussed in Sec. II B, are included in column 6.
These were calculated using oscillator wave functions with &=0.48 fm for A =8 and 9, &

=0.53 fm ~ forA=10, 12, and 13, and +=0.575 fm forA =14 [R& rexp(-&n r )]. (These
values of & more or less reproduced the rms radii of the Woods-Saxon eigenfunctions. ) The
last two columns give the theoretical values of c when the nuclear isotensor potential of Eq.
(14) is included and evaluated withthe values of & cited above. The rms error has been evaluated
on the assumption that the experimental value for the A =8 3+ state is 223 keV.

A I T Expt. Coulomb
Coulomb
+(a)-(e)

c in keV
Charge dependent nuclear interaction

V =0.3 MeV
50=1 9=-g

1 1

8 2 1

3 1
f 3

9 Y 2

3 3

208 201

240 205

210

223 ' 190

«223 214

198

197

216

207

212

216

258

247

201

199

239

224

10 0 1

2 1

1 1

363

297

287

251

216

296

260

385

324

379

314

240
12

2 1
3 3

13 2 2

14 0 1

rms error in keV

208

256

204

40.7

213

294

35.1

238

278

378

23.6

201

255

363

18.1

Wapstra and Bos3 together with the compilations
of Ajzenberg-Selove. 4 There are two exceptions:
First, the value of c for the 3 =9 states was
taken from the work of Kashy et pl. ' Second,
the states in Be have mixed isospin and since
we are interested in the c coefficient for the
T=1 states we must take this into account. The
best available data on the 2' states indicate that,

the 16.627 and 16.911 MeV levels are each
50/o T =0 and T =1 so that the unperturbed T =1

state was taken to lie at 16.769 MeV. As far
as the 1' states are concerned, Qothoudt and
Garvey' find that the 18.154 MeV state is about,
4.5% T =1 and this has been included in making
the entry in Table I. Finally, Oothoudt and Qar-
vey assign 7 =1 as the dominant component of the
19.06 3' state with an undetermined amount of
T =1 mixed into the 19.22 MeV level. For this
reason only, a limit is placed on c for the 3'
level.

A. Coulomb effects

To estimate c we have made a conventional
shell model calculation in which the sum of the
nuclear two-body residual interaction and the
Coulomb repulsion between two protons was

with

(2)

H =P'/2m —Vo/(1+exp[(r —R)/a]}+V„

where

2

V, =2 [3 —(r/R)'] for r &R

Qe2
for g &g. (4)

The parameters of the Woods-Saxon potential
were taken to be g=0.65 fm, R =1.2g'~' fm (the

diagonalized using all possible 1p-shell basis
states and assuming ',He2 is an inert core. For
A &9 the (6-16)2BME of Cohen and Kurath' were
used for the residual nucleon-nucleon interaction
and for A ~9 the Kumar interaction, which was
specifically designed to reproduce the data at the
beginning of the shell, was used. [There is little
difference if the (6-16)2BME of Cohen and Ku-
rath are used instead of the Kumar ones. ] The
single particle wave functions used to calculate
the two-body Coulomb matrix elements were
eigenfunctions of
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effect of changing a and xo mill be subsequently
discussed), and the value of Vp was adjusted to
give the "correct" binding energy. For the re-
sults listed in column 5 of Table I the correct
binding energy was assumed to be

E,(",X„(I,T))- E,(',He, )
(a- 4) (5)

where Es(2X„(I,T)) is the binding energy of the
nucleus ~2X„ in the state (I, T)—in other words,
each of the valence p-shell nucleons was assumed
to have the same binding energy. Thus, for
example, in ca(culating the two-body Coulomb
matrix elements for the I=2 state in 4Be4, solu-
tions of Eq. (2) were used with e =- 2.859 Me&,
whereas for the I=2 state in, B3, &=- 2.360 MeV.
[We shall show' later that using z given by Eq. (5)
gives values of g slightly larger, but riot appre-
ciably different, from those obtained with other
reasonable prescriptions. ]

A comparison of columns 4 and 5 shows that
c is always underestimated by the shell model
calculation. One's first reaction is to ask if this
discrepancy can be cleared up if a different pre-
scription is used to obtain q. Before discussing
that, however, we would like to make some com-
ments about the A. =14 System.

The A=14 nuclei were treated as two holes and
the single-hole energies used in the calculation
were taken from the spectra ",N8 and '8O, . The
energy of the two proton holes in '6C, relative to
",O, is 22.335 MeV so that the Coulomb interac-
tion was calculated using eigenfunctions for
which q =- 11.1675 MeV. The Cohen-Kurath
matrix elements were used in all three nuclei.
However, since the proton and neutron wave
functions are different one should really change
the nuclear matrix elements as one goes across
the multiplet. ' To estimate what effect this
would have, we assume a 5 function for the re-
sidual nucleon-nucleon interaction and evaluate
its matrix elements using different Woods-Saxon
eigenfunctions for neutrons and protons. With
the 5-function potential the interaction matrix
elements are given by products of Clebsch-Gordan
coefficients multiplied by f R„4rpdr, f R„'R„pr'dr,
and f R,4r'dr for the (r4, n), (n, p), and (p, p) sys-
tems, respectively, where R„(R,) is the neutron
(proton) radial wave function. Thus the value
of say the (n, n) interaction compared to
the (r/, p) would be given simply by the ratio
f R„r dr/f R„'R,2r'dr We assume t.he Cohen-
Kurath matrix elements are the appropriate (n, p)
ones and that they scale in this manner. When

1$.1675 MeV for protons and —14.4443 MeV
for neutrons (half the 'pop binding relative to

8O8) '

=1.0289,
V 1l'

f R,'r'dr =0.9727 .
f R„'R,'r'dr

When these numerical results are used, for
example, . in conjunction with the Cohen-Kurath

((pp/&)p
~

V~ (pp/, )p'), one finds that this matrix
element shouM have the values —3.285 60,
—3.19342, and —3.10628 MeV for the (n, n),
(n, p), and (p, p) systems, respectively. Similar
changes occur for the other two I=O matrix ele-
ments and when these are computed the resulting
value of (.- becomes 276 keV —a decrease of 6 keV
from the Coulomb value.

Thus, although the change in matrix elements
due to different neutron and proton w'ave functions
is quite substantial, the net effect on (.. is small.
The reason for this may be simply seen if one
writes the change in the matrix element in terms
of isospin tensors of rank zero, one, and tmo.
If we define the change in ((pp/2)p

~
V((p3/8)p ) to

be b,Ep( —,'2', 22) this quantity may be written as

3 3 3 3 ap +a& [7,(1) +r,(2)] +apTf3
P 22&22

(6)

where

T„=7,(1)r,(2) ——,
'

p (1) 3 (2)

is an isospin tensor of rank two and has the
value +—,

' when operating on an (nn) or (pp)
state and —

8
when applied to an (np) eigen-

function. From the numerics given in the pre-
ceding paragraph it follows that

g, =O.OOO 53,

aq ——0.01405,

g2
——0.000 40 .

(7)

Consequently, the size change gives an almost
isovector contribution and this will not effect
the coefficient of T, in lowest order unless the
nuclear wave functions have mixed isospin. In
particular, for the T=1 states, which comprise
most of our data, only a T ~ 2 admixture can give
a contribution to c and since we deal with yrast
T =1 states this i.s not likely to be important. For
the T =~ states in the A. =9 and 13 systems, the
isovector part of this operator could give a con-
tribution proportional to T, if some T =—,

' is
mixed in. However, there is no experimental
evidence for significant isospin mixing in these
levels and consequently the difference in neutron
and proton wave functions will be neglected from
now on.
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Another worry is the effect of 25+ excitations
which Qoldhammer' has found to be important
in the mixing of the T=O and T=1 levels in the

1p shell. To estimate this effect in the &=14
nuclei we have used the Kuo matrix elements"
for the other-than-P-shell part of the residual
nucleon-nucleon interaction and have calculated
the Coulomb matrix elements assuming
o. =0.575 fm ' [R,t-y exp(- ~o. 'r')]. The reason
for this choice of n is that it reproduces the
rms radius given by the Woods-Saxon eigen-
functions. To simplify the calculation we have
assumed that the 0' state in the A=14 system is
(lp«, )

' (this comprises more than 85% of the
actual wave function of this state). In this case
the possible 25m excitations are as follows:

(a) excitation of

1Pf/p shell,
(b) excitation of

(2s, 1d) shell,
(c) excitation of

the (2p, 1f) shell,
(d) excitation of

shell.

a pair of 1sf/p particles to the

a single 1s«, particle to the

a single 1p-shell nucleon to

two 1p particles to the (2s, 1d)

when 5~ =13.7 MeV, the value appropriate to
n =0.575 fm '. For the second type of excitation
one finds that

be[1s&&, - (2s, 1d)] =- 0.153 97/25&@

=- 5.62 keV.

The contribution to c that arises when a, single
p-shell nucleon is excited to the (2p, lf) shell
ls

b c[1P- (2P, 1f)]=—0.442 46/2h(u

=- 16.15 keV,

with by far the largest contribution coming from
excitation of a 1P3/, particle to the 2p3/g orbit.
The final 2I~ excitation involving two p-shell
nucleons excited to the (2s, 1d) shell will be dis-

A perturbation theory estimate of these quan-
tities leads to the conclusion that

bc[(ls, ),)'- (1Pf/g) ] 0.18566/25(o

=6.78 keV

cussed in the next section under the heading of
short- range correlations.

Thus,

bc(g+5+c) =- 14.99 kelt

is much smaller than the isovector contribution
which mixes the T=0 and T=1 states in the 1P
shell. ' Furthermore, the effect of these 25m

excitations is to decrease c and hence bring
theory and experiment into even greater dis-
agreement.

Finally we consider what influence changes in

g and ro have on the computed value of c. First,
if we try to reproduce the observed value by
keeping g fixed, zo must be reduced from 1.2 to
0.8 fm when & =—11.1675 MeV. That one needs
such an abnormally small value to explain c by
changes in xo alone has already been noted for
the A =9 system by Auerbach et gl. ' Qne can,
of course, obtain the same spatial confinement
of the nucleons by keeping ro fixed and increasing
the binding energy. To reproduce experiment
in this way, & must be —34 MeV. Alternatively,
a somewhat less diffuse potential slightly in-
creases the value of c. For example, if we take
g=0.5 fm, xo —1.2 fm, and & =- 11.1675 MeV,
c =294 keV. Thus although different choices of
xp and Q can change c, no reasonable juggling of
the well parameters can account for experiment,
and it seems clear that something other than the
Coulomb interaction is needed in the 4=14 sys-
tem —a result already noted by Altman and Mac-
Donald "

For other than two-particle or two-hole nuclei-
one has more flexibility in the way the Coulomb.
energy can be calculated and we shall now dis-
cuss some other alternatives.

1. Different binding for neutrons and protons

Because of the Coulomb repulsion between a
valence proton and the core, a proton will be
less tightly bound than a neutron. For example,
in the A=5 system this difference is 1.07 MeV.
If this is taken into account in Eq. (5) the correct
value of & will be smaller in absolute value. As
a consequence, the Coulomb matrix elements cal-
culated with these wave functions will be smaller,
hence c will be smaller.

2. Parentage problems

In perturbation theory the Coulomb energy associated with the n-particle state (I, T) is given by the
expression

(8)
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where (I)& is the two-particle parentage coeffi-
cient, (71 T, +1—1I TT) is the isospin Clebsch-
Gordan coefficient, and (jj'}z,z, stands for the
antisymmetric wave function of two protons in the
states j and j coupling to (J,T8). In all but the
two-particle or two-hole systems the probability
that the two singled-outprotons couple to the
ground state of the neighboring nucleus is less
than one. Consequently, one might take a differ-
ent binding energy for each singled-out pair.
That is, when the proton pair is coupled to the
parent state ~z ooI'„(J7), the energy & to be used
in calculating

&(jj');r,=i I .I

(j"j'")z r =1&

would be

-0.7 I 8—'2T-~

-3.]02—a-m v

-4.042

—2.859—w-m v-v—

9
4Be5

—I.929

9
sB4

-3.043 v-v—

-3,650

—2.859—m-m v-v—

e ='- —,'(Z, (",-,'Z„(ZT) )- Z, (",X„(IT))) .

(Such a prescription has already been considered
by Blomqvist and Wilkinson'5 in the calculation
of P-decay matrix elements. ) Using different
Values of & is likely to be most important when
the valence pa,rticles are loosely bound to the
core. Consequently, we have investigated the
effect this will have on the values of c for the
A=8 system. Wherever possible we have used
experimental values of &; when this was not pos-
sible the theoretically predicted values were
used. The change iri c, Ac, that comes about
when this scheme is used instead of Eq. (5) is
Ac=-2 keV, —4 keV, and —7 keV for the 1', 2',
and 3' states, respectively. Thus this prescrip-
tion leads to a slightly smaller value of c, in-
creasing the discrepancy between theory and ex-
periment. [It should be noted that the value of
c obtained using perturbation theory and & deter-
mined by Eg. (5) is within 1 keP of the value ob-
tained from a full diagonalization of the Hamil-
tonian. ]

3. Nilsson-type model

Qne might imagine a situation in which a group
of valence nucleons form a very stable structure
and the last nucleon(s) are rather loosely bound.

FIG. 1. Nilsson model for the A = S quartet. The
numbers to the left of each level are the values of e' in
MeV for the I= ~ state.

To estimate the effect this might have on the
value of c we have considered a Nilsson-type
model'6 where at most two neutrons and two pro-
tons can occupy a level. The situation for the
A =9 quartet is shown in Fig. 1. The numbers
beside the levels correspond to the binding
energy (value of e) for each particle in the orbit.
For example, in 6C3 one finds from the binding
energy tables that the energy of the last two
protons relative to the, Be, core is —1.436 MeV
and the energy of the nucleons in 4Be3 relative
to ',He, is —9.306 Me V. If we assume each
nucleon in a given level has the same energy,
the numbers shown in the figure are obtained.
The Coulomb interaction is now incorporated into
the shell-model calculation in the following way:
In 6C3 there is one Coulomb interaction involving
two protons bound by 0.718 MeV, one involving
particles with q =—3.102 MeV, and four in which
one is bound by 0.718 MeV and the other by
3.102 MeV. Thus in carrying out the shell-model
calculation for ',C, we use the average Coulomb
matrix elements

«jj'').
I
I'. I(j"2'").

& =8 (&(jj').
I
I'.

I
(2"j'").&o. ~8, 8. »8+&(jj').

I
I'. I(j"j'").». ~88, o. ioo

+«(jj'}.
I
I'.I(j"~"'}.&0. 718; 8 ~ 102)

where ((22 }~
I

I'. l(g f'")~&.. .. is the Coulomb ma-
trix element evaluated when one of the particles
is bound by & and the other by &'. - When c is
calculated in this way its value for the I=-,'
T=—,

' state is 196 keV—14 keV smaller than

given in Table I and again in the wrong direction
to reconcile theory and experiment.

From the foregoing it would appear that other
reasonable methods of calculating the Coulomb
interaction give somewhat smaller values of c.



2364 R. O. LARSON 19

Consequently, one must look to other effects if
one is to bring theory and experiment into agree-
ment.

(a) (v/c)2 corrections to the electromagnetic interaction

The (v/c) corrections to the Coulomb inter-
action are conveniently calculated from the
formula given by Close and Osborn. " There are
three terms to be considered. First, the Breit-
Darwin interaction which results from unretarded
one- photon exchange.

1 e ' 1 1
BD 32 P12 3 P12 P12 12 3 '. 12 P12

r12 r12

1 1
P12 P12 12 r12 3 12

' P12 ~12
r12 r12

(9a)

where r, 2 =r, —r2, p, 2 =p, —p2, P, 2
——p, +p2, and

T„ is the isotensor operator of Etl. (7). There
are also isoscalar and isovector contributions to
this operator, but as already discussed they give
vanishing contributions to c in first order and as
a consequence have been neglected.

There are two (v/o), corrections that take the
form of a spin-orbit interaction, namely the
electromagnetic spin-orbit coupling with the
Thomas factor and the interaction between the
magnetic moment of one particle and the field
produced by the motion of the other. When these
are combined, the resulting operator whose
matrix elements we have to evaluate is

2ea, S l„
is —

2 2~c (Ar Rp+2)
r12

2) Pi2" R2] &i»4 r12
(9b)

where g„and g~ are the nuclear g factors and
have the values —3.82 and 5.58, respectively, S
is the total spin operator, and hl12 r12xp12
Once more, only the isotensor part has been
written down.

The third contribution comes from the dipole-

B. Other electromagnetic effects

In this section we shall discuss other electro-
magnetic effects that will influence the value of
c. Since these are quite small an adequate
approximation is to evaluate matrix elements
of the requisite operators by use of harmonic
oscillator wave functions. We shall first dis-
cuss each one individually in the context of the& = 14
system where the results are given for the oscillator
constanto. =0.575fm '[A»-r exp(- ,'oi'r—')]

dipole interaction and this gives rise to a tensor
force

1 85 2 1
uu

—
16 2 (Ar gP) s

&(Boi ~
&,o, ~

&,
—o, o,riq ) T,2. (9c)

28 8 g 3p
—', —y+

i
ln(Er„)

i
+ Er„3m' r, 2 4

+o((x.„) )+. . .I, (10)

where @=0.5772 is Euler's constant and
ft ' =fi/m, c = 386.2 fm. Since this increases the Cou-
lomb repulsion it will increase the calculated
value of c. However, the magnitude obtained by
use of oscillator wave functions with e =0.575
fm ' is small and only increases c by 3 keV for
the 9=14 nuclei.

(c) Short-range correlations

In the preceding section the Coulomb interac-
tion was calculated using uncorrelated wave
functions. Although most 25~ excitations were
considered at that time, one was left out-
namely„ the one in which a p-shell nucleon is
promoted to the (2s, ld) shell. Such 21+, and
greater, excitations give rise to short-range
correlations in the relative wave function of the
two interacting nucleons. McCarthy and Walker"
and Bertsch and Shlorno ' have estimated that
these correlation effects give only a slight change
in the Coulomb energy. In Table I of the Mc-
Carthy-Walker paper the Talmi integrals appro-
priate to the Coulomb force are given for os-

In addition to these three terms there are two
5-function contributions, one in the dipole-dipole
interaction and the other from the effect of
zitterbewegung. These mill be considered in
parts (d) and (e) of this section.

Explicit expressions for the 1p- shell matrix
elements of the spin-orbit and tensor force can
be found in the literature. ' The remaining terms
can be evaluated by straightforward Racah
algebra and use of the fact that

dr p=- iSr —.
dr

'g/hen all three of these (v/o)' corrections are
added to the Coulomb potential the resulting
value of c for the A. =14 system is c =283 keV,
a 1 keg increase over the bare Coulomb value.

(b) Vacuum polarization

The virtual emission and absorption of an elec-
tron-positron pair modifies the usual Coulomb
interaction by adding to it a term'
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cillator wave functions and for wave functions ob-
tained by solving the Bethe-Goldstone equation
with the nucleon-nucleon interaction taken to be
the Hamada-Johnstone potential. If we use as the
"starting energy" co„=- 24.3 MeV the change
brought about by correlations gives a slight de-
crease in c and for 4=14, c =277 keV.

(d) Finite proton and neutron size

Electron scattering experiments lead to the
conclusion that the proton and neutron are not
point particles but instead both have an electric
charge and magnetic moment distribution. Sauer
and Walliser, using Sachs form factors for the
nucleons, have given explicit expressions for the
effect of finite nucleon size plus zitterbewegung.
The appropriate formulas are Eqs. (A-2)-(A-4)

of their paper with the coefficient of 0, ~ o, set
equal to zero. If one evaluates matrix elements
of these operators using harmonic oscillator
wave functions with a =0.575 fm ', one finds a
very substantial decrease in the value of c. When
this effect alone is added to the static Coulomb
interaction one finds c =262 keV.

The repulsive core in the nucleon-nucleon in-
teraction cuts down the probability of two nu-
cleons being close to each other and consequently,
since the finite size correction is short ranged,
one overestimates its value when harmonic oscil-
lator wave functions are used. To investigate the
effect that the repulsive core has on the computed
decrease in c, we have redone the calculation in-
cluding a Jastrow correlation function appropriate
to the standard hard-core potential of Moszkowski
and Scott, "

f(r) =0 for r &0.4 fm

=(1 —exp[- 2.12(r —0.4)]][1+1.276 exp[- 2.12(r —0.4)]) for r &0.4 fm .

When this Jastrow function is used one finds that
c =276 keV. If the nucleon-nucleon interaction is
described by a soft-core potential one would ob-
tain a value between these two extremes.

(e) Spin-spin contact term

The final term in the (v/c) reduction of the
Hamiltonian is proportional to cr, ~ O„and when
the finite size of the nucleon is taken into account
the operator for this is given by the o, ~ o, terms
in Eqs. (A-2) —(A-4) of the Sauer-Walliser. paper. '~

We first evaluate the matrix elements using har-
monic oscillator wave functions with the Jastrow
function of Eq. (11) set equal to 1 for all values of

Under this assumption, one obtains a 34 keV
increase over the static Coulomb limit so that
c =316 keV for the A =14 system.

Of course, as already discussed, f (x) =1 gives
an overestimate for the change in c. As an al-
ternative we have ca,rried out the calculation
using the Jastrow function of Eq. (11) and obtain
c =299 keV. Clearly a soft-core potential will
give a value intermediate between these two.

l

If we include all five corrections enumerated
in this section and add them to the static Cou-
lomb energy, we find that for the A =14 system

c =294 keV when f (y) =1, for all y

and

c =290 keV when f (r) is given by Eq. (11) .
In column 6 of Table I we list the values of c for
all the nuclei when f(r) =1. Since the nucleon-
nucleon interaction does have a repulsive core,
these entries provide upper limits for the theore-
tical values of c that can be obtained from the static
Coulomb interactions plus the corrections (a) to (e)
of this section. Moreover, the effects discussed in
Sec. A, i.e., the use of different prescriptions for
calculating the static Coulomb interaction and the
2g& excitations discussed there, are not included in
the tabulated results. Since these tend to make c
even smaller, column 6 almost certainly gives upper
limits for c and even these upper limits are, in all
cases except one, smaller than experiment.

It is clear that some of the c values could be
brought into line with experiment with only minor
modifications in the wave functions used to cal-
culate the Coulomb matrix elements. However,
it is also obvious that this is not always the
case. The two seniority zero 0' levels have an
rms error 56.7 keV compared to 28.1 keV for
the other nine states (in calculating the latter
number the experimental value for the A. =8 3'
state was taken to be 223 keV). Thus the rms
error in the seniority zero states is twice as
large as that encountered in the higher seniority
levels. Such an effect is exactly what one would
expect if a short-range isotensor interaction had
been omitted. In the next section we examine the
effects such an added potential would have.
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III. CHARGE DEPENDENT NUCLEAR FORCES

The free nucleon-nucleon data indicate that in
the spin-singlet state the (nP) interaction is2'~
about 2% more attractive than the (nii) potential.
This difference can be brought about by an inter-
action of the form

(13)

or

- t. ~"i2
VC D V yo @pi}T12

p, r&&

where p, is the inverse of the p-meson Compton
wavelength, Po and P, are the singlet and triplet
spin projection operators, respectively, and V
and Q are numbers. When

V=0.3 MeV (15)

the (np) interaction due to Eil. (14) is 2% stronger
than the (nn) potential.

One could, of course, vary V and Q so as to
best reproduce the experimental values of c.
However, in view of the uncertainties in the cal-
culation of c, we have merely examined'what
happens when V is held fixed at 0.3 MeV and Q is
allowed to take on two different values. (Once
b, c is known for two values of Q one ean extra-
polate to any other values of V and Q since in
perturbation theory Ac depends linearly on V and

VQ.) In all eases matrix elements of Ve~ were
evaluated using harmonic oscillator wave func-
tions with the values of n quoted in the table cap-
tion. If Ve~ is spin independent (Q =1) the re-
sults listed in column 7 of Table I are obtained
when the Coulomb interaction is calculated using
the binding energy prescription Eil. (5), and the
corrections (a)—(e) discussed in the preceding
section are included. In all cases, c is increased
by the addition of this term and as a consequence
the theoretical values become closer to the ex-
perimental ones.

As an alternative we have examined what hap-
pens when V~~ has a Rosenfeld spin dependence,

Vcr =VcD(&) ~i2 &

where T,2 is the isotensor operator of Eil. (7).
The first of these, which implies. that the (nn),
(pp), and (np) .interactions are all different, is
a vector in isospin space and unless the wave
functions describing the nuclear states in ques-
tion have mixed isospin it will not contribute to c.
On the other hand VCD is an isospin tensor of
rank two and consequently its matrix elements,
evenbetween states with good isospin, will have a
T dependence. We have, therefore, examined
the effect on c of a potential of the form

Q =- -'. The results of this calculation, listed
in column 8 of Table I, show that the rms error
is now reduced to 18.1 ke V and, as might be
expected, the most marked improvement is in
the seniority zero states; their rms error has
been reduced by 35.7 keV and now stands at
21 keV. For the higher seniority states there is
also some improvement —a decrease in their
rms error by 10.7 keV to 17.4 keg. Thus the
rms error for the seniority zero states is about
the same as for all others, and, with the possible
exception of the 3' states in the A = 8 system,
the addition of VcD improves the fit to the data in
every case.

IV. DISCUSSION

Eight of the eleven pieces of data considered in
this analysis involve yrast T =1 triads. The
actual wave functions of these states may have
admixtures involving T=O (when T, =O) and

T = 2, so that the eigenfunction describing a
physical state would have the form

fr=i+—e 4r 0+Plr==i ~ (16)

It is possible that n could be fairly large for the

T, =O nucleus since the yrast T= 1 level is em-
bedded in a sea of T = 0 states. On the other
hand, the T=2 states lie about 10 MeV above
the yrast T= 1 of given spin and because of this
large energy difference P should be small. Thus,
aside from small effects dependent on P, the
change in energy aE brought about by V» and

V~0 would be given by

«= Or. i o'Pr=b
I
~ss VeD I ~T i oi~rao) '

The main terms in sF involve matrix elements
of V» and V~D between the purely T=1 states.
The first of these, which involves the isospin
vector V», will give a contribution proportional
to T, and the second, which depends on the iso-
spin tensor VcD, is proportional to T, . The
term linear in n vanishes for V~D and is indepen-
dent of T for.V». In addition, the terms pro-
portional to n' vanish. Thus the only admixtures
into the &=1 states that might be large give no
contribution proportional to T,

' and as a conse-
quence cdepends almost entirely. on V~D.

In view of the above arguments, it follows that
for the majority of the cases given in Table I
V» does not affect c directly. It does, however,
indirectly, in that one only knows that the (nP)
interaction is more attractive than the (nn) by
about 2%. Part of this difference can be attributed
to a nonvanishing Vz~, and the remainder to VCD.

Since V~D does not contribute to the difference in
the (nn) and (pP) interactions, Vzs should be ob-
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tainable if the (pP) and (nn) scattering lengths are
known. However, the separation of the Coulomb
and specifically nuclear (PP) scattering lengths is
extremely sensitive to the very short range part
of the nucleon-nucleon interaction" and as a
consequence the free particle data determine
neither p» the specifically nuclear proton-proton
scattering length, nor V». Thus V, the inter-
action strength of Eq. (14), is uncertain, but un-

doubtedly is only a few percent of the isoscalar
potential strength which would be 30 MeV for a
Yukawa potential.

On theoretical grounds one would expect a short
range isotensor component in the nucleon-nucleon
interaction and there are two aspects of the theo-
retical values of c that indicate such a term is
needed:

(1) In Sec. II A we discussed a variety of ways
of calculating the Coulomb interaction and found
that in all cases our binding energy prescription,
Ecl. (5), gave the largest value of c. The results
listed in column 6 of Table I are for the Coulomb
interaction calculated using this binding energy
prescription plus corrections (a) —(e) of Sec. II8.
The 2@co excitations discussed in Sec. IIA, which
tend to decrease c, were not included. Thus the
results listed in column 6 should be upper limits
for c which in all cases, except one, are smaller
than the experimental values. The inclusion of
the isotensor potential Eq. (14) with V=0.3 MeV
increases the calculated values of e thus bringing
theory and experiment closer together.

(2) The values of c given in column 6 of Table
I show that the rms error in the seniority zero
states is a factor of 2 worse than that for the
other levels —56.7 keV compared to 28.1 keV.
In calculating the electromagnetic interaction
energies (in contrast to nuclear energies), one
is dealing with matrix elements of well-known

operators whose expectation values for the
tightly bound seniority zero states do not depend
sensitively on the value of c, Eq. (5). For ex-
ample, when A. =-14 we have seen that for g=0.65
fm and Kp =1 2 fm one must take & about 23 MeV
more attractive than given by Eq. (5) if one is to
obtain agreement with experiment for c. Further-
more, this same result, that the worst discre-
pancy for the Coulomb energy occurs in the sen-
iority zero states, has also been observed in the

=18 nuclei, in the d3&2 shell, ' and perhaps
even in the f, /, region. The inclusion of the
short-range isotensor interaction VoD of Eq. (14)
significantly improves the fit to the 1p-shell c
values, particularly for the seniority zero states.
The rms error in these two c values becomes
21 keV compared to 17.4 keV for the remaining
nine higher seniority levels.

Even after the charge dependent interaction of
Eq. (14) has been introduced there is still one
datum which stands out from the rest. Vfhen V
= 0.3 MeV and Q =-95, the value of c for the
I= ~ T =

& state in the A =9 nuclei is 35 keV
smaller than experiment, and this exceeds the
rms difference of 15.5 keV for the remaining ten
values by more than a factor of 2. In this case
the T= —,

' level in the T, =+ —,
' nuclei is embedded

in a sea of T = —,
' states and the analog of Eg. (17)

ls

8 r 3/2 + fr=1/2 "-I VSB VCD
I fr=3/2 + Pr=1/2) '

(IS)

If one neglects terms proportional to n the
entire T, dependence of 4E' is given by V~D. On
the other hand, in this case the terms linear in
e can have a T,' and higher dependence from both
V~~ and V~8. If we denote the contribution pro-
portional to n by hE' we find

&E' =2 [('1&.0
I

'&)&0 /I I
v=

4~')' %&|)'r=s/& I I Vss I I &r=~/»~~12 +T &&r=3/& I I
VcD

I I
&r-&/&&/'~5&

where (—,'TT,OI ,'T,) is the isospin —Clebsch-Gordan
coefficient, whose explicit value has been put into
the second line of this equation, and the reduced
matrix elements are independent of T . Although
we have evaluated 4E' for V» and V~D, there can
also be a contribution proportional to e due to
the nuclear wave function size effect of Eq. (6)
which can be large and is mainly isovector. Con-
sequently, it would act in the same way as V~~
and could substantially change c even when a is
small. This type of mixing would also manifest
itself by adding additional terms to the mass multi-

piet relationship Eq. (1), for example, a dT,
term. For the yrast I= —,

' T = —,
' level in the A

=9 nuclei, a nonvanishing value of d has been
found and in fact it is larger than for other light
nuclei, d=5.8 keV. Although this value of d
is small, it is larger than normal and this may
be related to the fact that c is badly estimated
for this state. At first sight one might hope to
learn something about the charge dependence of
nuclear forces from a study of the d coefficient.
Bertsch and Kahana'~ have estimated a value of
1 keV for d from second-order, Coulomb effects
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and charge dependent nuclear forces. However,
one could obtain an even larger value from Cou-
lomb effects alone if a T=—,

' state lies very close
in energy to the yrast I=—,

' T=—,
' state. Further-

more, even the sign of d depends on whether the
nearby T=—,

' state lies just above or just below
the T =—,'.level. Thus, until one knows the posi-
tion of a possible nearby T=~ I= state, which
is predicted by both the Kumar and Cohen-Ku-
rath interactions, one cannot hope to learn any-
thing about charge dependent nuclear forces from
a study of the d coefficient in this nucleus.

In conclusion, one can say that a study of the
coefficient of T, in the mass multiplet relation-
ship for the 1P shell leads to the unambiguous

conclusion that the specifically nuclear (nP)
interaction is of the order-of a few percent more
attractive than the (nn). However, the size of
this difference and its spin dependence cannot
be accurately determined from this study be-
cause of the uncertainties in calculating the static
Coulomb energy, particularly for loosely bound
systems.
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