Identification and decay of 242 U and 242 Np

P. E. Haustein, H-C. Hseuh, R. L. Klobuchar,* E-M. Franz, S. Katcoff, and L. K. Peker Brookhaven National Laboratory, Upton, New York 11973

(Received 9 January 1979)

The nuclides ²⁴²U and ²⁴²Np were discovered by chemical separations from targets of ²⁴⁴Pu irradiated with 30–160 MeV neutrons followed by γ -ray and β -ray spectroscopy. The parent ²⁴²U decays with $T_{1/2} = 16.8 + 0.5$ min; 14 γ rays ranging from 55.6 keV to 585.0 keV were assigned to its decay. The ²⁴²Np daughter half-life is 2.2 \pm 0.2 min and 39 γ rays following its decay have energies between 620.6 and 2370.5 keV. Q_{β} – of ²⁴²Np is 2.7 \pm 0.2 MeV. A level scheme is proposed for ²⁴²Pu in which the lowest 7 levels were previously described and 12 new levels are shown. The ground state of ²⁴²Np is assigned $I^{\pi} = 1^{+}$ and 6 excited levels are proposed which accommodate most of the observed γ rays from decay of ²⁴²U.

RADIOACTIVITY ²⁴²U, ²⁴²Np from ²⁴⁴Pu $(n, 2pn)^{242}$ U^{\mathbb{Z}}²⁴²Np; radiochemistry, Ge(Li) and plastic detectors. ²⁴²U: measured $T_{1/2}$, E_{γ} , I_{γ} ; deduced E_{β} -, I_{β} -, $\log ft$, decay scheme, J, π , Nilsson state assignments. ²⁴²Np: measured $T_{1/2}$, E_y , I_y , E_{β} , I_{β} ; deduced log ft, decay scheme, J, π , Nilsson assignments.

I. INTRODUCTION

The Brookhaven Medium Energy Intense Neutron facility' (MEIN) has made possible the production of several new neutron-rich nuclides,²⁻⁵ particularly in the mass region above that of the fission products. The neutrons are produced by interaction of the 200-MeV proton beam (100 μ A mean current) from the Linac injector of the Brookhaven Alternating Gradient Synchrotron with a watercooled copper beam stop. The useful flux of these spallation neutrons with $E \ge 25$ MeV is $\approx 1.3 \times 10^{11}$ $n cm^{-2} sec^{-1}$. Sources of the new radionuclides were produced by $(n, 2pn)$ reactions and isolated with sufficient purity and in sufficient intensity to permit partial characterization of the decay properties despite the generally short half-lives of these nuclides. Previous studies concentrated on new even-even product nuclei whose predicted low β -decay energies indicated that their lifetimes would be sufficiently long to permit their isolation by radiochemical means and characterization by γ - and β -ray spectroscopy.

Extension of studies of this type into the heavy element region is of particular interest for several reasons: (I) broadening of nuclear structure systematics to provide comparisons with models which treat the collective and quasiparticle modes of nuclear excitation in heavy nuclei; (2) characterization of the nuclear mass surface for refinement of nuclidic mass models; (3) providing complementary energy level data by radioactivity measurements for nuclei which cannot be adequately studied by either neutron capture γ -ray or chargedparticle reaction spectroscopy; (4) providing additional input data for a more reliable prediction of the nuclear properties of the postulated superheavy elements; and (5) supplying parameters needed for calculations of nucleosynthesis of heavy elements in high neutron flux environments by the s and r processes.

The availability of 244 Pu as target material and consideration of nuclear mass systematics and of probable $\log ft$ values indicated the feasibility of probable $\log_l l$ values indicated the reasibility producing 242 U and 242 Np for study by means of ⁴⁴Pu(n, 2pn)²⁴²U $\stackrel{\beta}{\rightarrow}$ ²⁴²Np. This work led to the discovery and characterization of these two nuclei,' which are the heaviest known isotopes of ^U and Np. New levels in 242 Pu were found in addition to those which had been deduced previously from nuclear reaction studies.^{$7-9$} Information on the $\frac{1}{2}$ and $\frac{1}{2}$ are settled states. The matrice of $\frac{1}{2}$ and $\frac{1}{2}$ are settled for the first time. Level schemes were constructed and discussed within the framework of the collective model and Nilsson orbital systematics.

II. EXPERIMENTAL METHODS

In order to produce and isolate sources of 242 U and 242 Np from neutron-irradiated 244 Pu targets it was necessary to overcome a number of difficulties. The rare target material had to be recovered and recycled, and it had to be irradiated in a chemical form from which uranium could be separated rapidly. Extremely thorough chemical purifications mere required because the cross section for the $(n, 2pn)$ reaction is very small compared to the production cross sections of fission products, Np isotopes, and other Pu isotopes mhich were produced during the irradiations. Furthermore, 14.1 h^{240} U and its 7.2-min $^{240}Np^m$ daughter were con-

2332

stantly produced from the ²⁴⁴Pu target by its α decay; their intense radiations were expected to interfere seriously with measurements of the much ϵ and the set fously with measurements of the much smaller amounts of 242 U and 242 Np that were produced. All of these problems were solved, or at least minimized, by the methods and procedures described below.

A. Targets and irradiations

The Pu target material (100-200 mg, 98.6% 244 Pu) in the +4 oxidation state was adsorbed from '7. 5N nitric acid onto DOWEX MP-1 anion exchange resin $(2-3 g)$ contained in a quartz cartridge. Immediately before the irradiations the 240 U which mediately before the irradiations the 240 U which
had grown in by α decay from 244 Pu was eluted off the resin with more nitric acid. The cartridge was sealed in Mylar and irradiated for 30 min in the MEIN facility at an effective flux of 1×10^{11} n $\text{cm}^{-2} \text{sec}^{-1}$ (30–160 MeV). Transfer to and from the irradiation position was by means of a pneumatically operated rabbit.

B. Chemical separations and source preparation

Immediately after the irradiation uranium was chemically separated from plutonium, from fischemically separated from plutonium, from fis
sion products, and from other contaminants.¹⁰ The principal steps were (1) elution of the U from the cartridge with $7.5N$ nitric acid leaving target Pu behind as Pu^{+4} , (2) adsorption of U onto a column of DOWEX MP-1 anion exchanger and washing with 10N nitric acid to remove most fission products, (3) elution of the U with $3N HNO₃$, (4) solvent extraction of the U with ethyl acetate adsorbed on a polystyrene divinyl benzene chromatographic column, (5) adsorption onto another MP-1 column and washing with $6N$ HC1, and (6) elution of the U with water. Additional operations involved various evaporations to effect volume reductions, valence changes (e.g., Pu^{+6} to Pu^{+4}), and volatilizations of Ru and Tc contaminants. A special precipitation was needed to remove Te completely. The equilibrium source of U-Np was counted either as a solution in a flat glass vial or it was dried onto a glass disk. This procedure was performed in ~ 50 min; chemical yields, based on 0.2-0.⁵ mg added U carrier, were ~50%.

When it was desirable to study the 242 Np sepawhen it was desirable to stady the lapseler value of the state of the state of the state of the value of the value of the state of the state of the value of operations were needed. The uranium was adsorbed onto another MP-1 column from 2M acetic' acid. After allowing an appropriate time for the 242 Np daughter to grow in, it was "milked" by elution with more $2M$ acetic acid. The parent 242 U is adsorbed very strongly by the MP-1 resin, so that its radiations can be emphasized strongly over those of the 242 Np by continuously flushing the column with acetic acid (see below).

Each quartz cartridge with the 244 Pu adsorbed as Pu^{+4} on the resin was usually used for two irradiations. Then the Pu was removed by reduction to Pu^{+3} with 5% hydroxylamine-hydrochloride and elution with 0.35N nitric acid.

C. γ -ray measurements

Several calibrated Ge(Li) detectors of large volume $(\geq 50 \text{ cm}^3)$ and high resolution [full-width at half-maximum (FWHM) \approx 2.0 keV at 1332 keV] were used for the γ -ray spectroscopy. The low energy region $($ 100 keV) was also studied with a thin Be window $Ge(Li)$ x-ray detector of ~ 0.8 -keV resolution at 60 keV. The data were collected on magnetic taye by means of computerized 4096-channel analyzers. Energy and efficiency calibrations were made with National Bureau of Standards γ ray sources. Data analysis was done by means of the SAMPO code¹¹ for γ -ray spectra and the CLSQ code¹² for decay curve fitting.

D. Beta-ray measurements

A plastic scintillator 2.5 cm thick attached to a photomultiplier tube was used as a detector for the β rays. Energy calibrations were made with sources¹³ of 204 Tl, 210 Bi, and 144 Ce-Pr. The absolute β -disintegration rate of the ¹⁴⁴Pr (end point of 2997 keV) was determined by counting a very thin source $\langle 10 \mu g/cm^2$ in a 4π gas proportional counter; it was then used to calibrate the efficiency of the plastic scintillator. In addition the end point of the $^{240}\text{Np}^m$ β spectrum¹⁴ was used as an internal standard, both for energy calibration and for correcting systematic errors due to source thickness and pulse pileup in the high counting geometry required.

III. EXPERIMENTAL RESULTS

Most of the γ -ray measurements were done with sources in which the 242 U and its 242 Np daughter were in secular equilibrium. The most intense peaks were from 237 U, 239 U, and 240 U- 240 Np^m. In the early runs (with 10-30 mg Pu targets) two weak peaks were observed, at 735.9 keV and 780.4 KeV, which could not be attributed to known uranium isotopes or their neptunium daughters. Transitions of these energies were seen previously in studies⁹ of ²⁴¹Pu(n, γ)²⁴²Pu; furthermore, a level at 781 keV had been observed in $^{242}Pu(d, d')$ experiments⁸ which was assigned to $I^{\pi} = 1^{-}$ in a $K=0$ octupole vibrational band. Tentatively, it was assumed that β decay of ²⁴²Np, a short-lived was assumed that β decay of γ γ , a short-rived daughter of 242 U, was feeding this same level. It was also noted that the 44.5-keV energy difference

 $\boldsymbol{19}$

 $(780.4 - 735.9)$ corresponds to the well established 2^+ -0⁺ transition in the $K = 0$ ground state rotational band of 242 Pu.

The new γ rays decayed with a half-life of about 17 min and it was presumed that this is characteristic of the 242 U parent. The intensities of these peaks relative to peaks from 237 U and 239 U remained constant from run to run; thus the new lines were not caused by impurities and indeed they must be related to an isotope of U, or to its short-lived Np daughter. Chemical separations of Np from ^U soon confirmed that the 735.9- and 780.4-keV γ rays followed decay of the daughter and that the Np half-life was about 2 min. Figure 1 shows the decay of Np fractions milked periodically from the U parent. Subsequent experiments, with more target material, revealed 14γ rays from 242 U and 39 γ rays from 242 Np. Initial counting rates were usually about 100 min^{-1} in the 735.9-keV peak.

A. γ -ray spectra and half-lives

The highest γ -ray intensities were obtained from equilibrium sources, but the "cleanest" spectra, those with fewer and smaller extraneous peaks, were obtained from the continuously milked sources. Figure 2 shows the γ spectrum from a U source on an ion exchange column placed next to a Ge(Li) detector while the Np daughter activities were being flushed out with acetic acid. The peaks from 23.5 -min²³⁹U are identified and those from 6.75 -d 237 U are indicated by an asterisk. All

FIG. 1. Decay of 242 Np fractions milked periodically from 242 U parent. The measured activities correspond to sum of 735.9- and 780.4-keV γ rays; they are indicated by circles and typical error bars are shown. Extrapolations to the times of separation from U are shown by squares. The genetic relationship is demonstrated and within experimental errors the half-lives agree with the other measurements.

peaks attributed to 242 U are labeled with the appropriate energy in keV (820.8 is in parentheses because this peak is from decay of residual 242 Np). Other peaks¹⁴ which are not labeled are from ²⁴⁰U-Np. All 14 of the 242 U γ rays which have been established are listed in Table I. The intensities were derived from various sources measured with calibrated detectors. Figures $3(a)$ and $3(b)$ show the γ spectrum (up to 2 MeV) from Np which was being milked continuously from U on a column (behind a Pb shield) and flowed through a glass cell placed next to a Ge(Li) detector. The portion of the spectrum above 2 MeV [bottom panel in Fig. 3(b)] was obtained from measurements with equilibrium sources but the data are normalized to those from the milked source. Unlabeled peaks are from 7.2-min 240 Np". The 242 Np results from all runs are summarized in Table II, where 39 γ rays are listed. Intensities of the parent and daughter γ rays shown in the tables were related by comparison with the 735.9-keV line and by making proper correction for the genetic relationship. In some cases small corrections were applied for coincidence summing; in other cases corrections were cidence summing; in other cases corrections w
made for γ rays,^{14,15} from ²⁴⁰Np^m or ²³⁹U, whose energies almost coincided with those from 242 U-Np. The uncertainties in γ energy are 0.1-0.3. keV in most cases while the errors in relative intensity vary between a few percent and 50% .

The more intense γ rays were used for half-life determinations of the parent and daughter. By combining data from several of the most intense runs we have by least square analyses¹² $T_{1/2}$ = 16.8 \pm 0.5 min for ²⁴²U and $T_{1/2} = 2.2 \pm 0.2$ min for ²⁴²Np.

B. β -ray spectroscopy and Q_{α} .

The β -ray measurements were made in order to determine Q_{β} - for decay of the ²⁴²Np and to establish a basis for estimating absolute γ -ray abundances. Since the β -ray intensity of 240 Np^m was very high and its spectrum¹⁴ extends to 2.18 MeV it was possible to observe a pure β spectrum of ²⁴²Np only above this energy. We postulated that a large fraction of the 242 Np β -decay strength would feed the ground state of 242 Pu and/or its low-lying 2⁺ level, in a manner analogous to that observed in 240 N_I decay¹⁴ (52%). Theoretical predictions¹⁶⁻¹⁸ of t decay¹⁴ (52%). Theoretical predictions¹⁶⁻¹⁸ of the β -decay energy of ²⁴²Np range up to 3.0 MeV.

Figure 4 shows the higher energy portions of two β -ray spectra from a thin uranium source. The upper curve was obtained 1.0-1.⁵ ^h after the irradiation and the lower curve (normalized) was obtained later when the 242 U-Np had decayed away completely. Multiscaling of the β spectrum above 2.2 MeV resulted in a single component decay curve which exhibited the 17-min half-life char-

FIG. 2. γ -ray spectrum of a 242 U source from which Np daughter activity was being removed continuously. Energie in keV are given for each 242 U peak (the one at 620.6 keV is from residual 242 Np). The 239 U peaks are identified and those from $^{237}{\rm U}$ are indicated by asterisks. The other peaks are from $^{240}{\rm U}$ – $^{240}{\rm Np}^m$

 $\overline{19}$

TABLE I. γ -ray energies E_{γ} , in keV, and intensities I_{γ} from decay of 16.8-min ²⁴²U. I_{γ} is relative to 100 for the 735.9-keV γ ray of the daughter ²⁴²Np.

$E_{\,\bm{\nu}}$	I_{ν}	$E_{\,\nu}$	
55.58 ± 0.06	75 ± 3	274.2 ± 0.2	2.2 ± 0.8
67.60 ± 0.05	184 ± 5	304.5 ± 0.2	6.8 ± 1.5
160.4 ± 0.1	15 ± 4	320.6 ± 0.1	± 1 4
182.0 ± 0.1	14 ± 1	329.7 ± 0.1	±1 15
220.4 ± 0.3	3 ± 1	530.6 ± 0.2	± 2 4
226.3 ± 0.1	2 ± 1	572.9 ± 0.1	± 2 36
238.2 ± 0.1	4 ± 2	585.0 ± 0.1	37 ± 2

acteristic of the ²⁴²U-Np pair in secular equilibrium. The end point energy of the 242 Np β rays was measured to be 2.7 ± 0.2 MeV. Assuming that there is appreciable decay directly to the 0^+ ground state, this value is also Q_{β} -. If these higher energy β rays are predominantly from decay to the 2^* level in ²⁴²Pu, Q_{β} - will be higher by 44.5 keV, but this difference is much smaller than the 200keV uncertainty in the measurement. Thus, we conclude that Q_{β} -=2.7 ± 0.2 MeV for ²⁴²Np. Observation of the lower energy β spectrum of ²⁴²U was not possible because it was masked by the

FIG. 3. (a) Lower energy portion of γ -ray spectrum from 2.2-min²⁴²Np source which was being continuously milked from its 16.8-min 242 U parent. Energies are given for the 242 Np peaks while the other peaks are from 240 Np^m. (b) Higher energy portion of γ -ray spectrum from 2.2-min ²⁴²Np which was being continuously milked from its 16.8-min ²⁴²U parent (upper two panels). The lowest panel was obtained from sources of ²⁴²Np in secular equilibrium ities are normalized to those of the upper panels. Energies are given in keV for each ²⁴²Np peak.

FIG. 3. (Continued).

much more intense radiations from ²³⁹U and the ²⁴⁰U-Np chain. $\beta-\gamma$ coincidence measurements were not attempted because of insufficient activity levels.

Additional β -ray measurements, in combination with γ -ray counting of the same ²⁴²U-Np source, were performed in order to estimate the fraction were performed in order to estimate the race of 242 Np decays feeding the 0^+ and 2^+ states in 242 Pu. The total absolute intensity of the 2.7-MeV β disintegrations was derived from the portion of the spectrum above 2.18 MeV by comparison with the analogous portion of the ¹⁴⁴Pr β spectrum $(E_{\beta}$ - $=2.997$ MeV) in the source of 144 Ce-Pr which was calibrated absolutely by $4\pi \beta$ counting. The absolute intensity of all the ²⁴²Np β rays feeding exrate intensity of all the $N_{\rm P}$ rays reeding ex-
cited levels in 242 Pu, at 780.4 keV and higher, was determined indirectly from the measured intensity of the 735.9-keV γ ray and the relative intensities

TABLE II. γ -ray energies E_{γ} , in keV, and intensities I_{γ} from decay of 2.2-min²⁴²Np. I_{γ} relative to 100 for the $735.9 - \text{keV} \gamma$ ray.

E_{γ}	I_{γ}	E_{γ}	I_{γ}
± 0.1 620.6	18 ± 2	1517.6 ± 0.1	24 ± 1
647.4 ± 0.3	5.5 ± 0.5	1550.9 ± 0.1	7 ±1
681.4 ± 0.4	2.9 ± 1.0	1813.7 ± 0.2	3.5 ± 0.5
685.0 ± 0.1	7 ± 1	1826.9 ± 0.3	2.3 ± 0.5
735.93 ± 0.07	100	1859.2 ± 0.3	11.0 ± 0.5
780.44 ± 0.05	53 ± 1	1874.5 ± 0.3	5 ± 1
813.6 ± 0.1	± 2 24	1905.1 ± 0.2	5.5 ± 0.5
± 0.2 948.0	1.7 ± 0.5	1925.4 ± 0.2	4.5 ± 0.5
1007.3 ± 0.2	3.0 ± 0.5	1949.9 ± 0.2	14.8 ± 0.5
1034.2 ± 0.2	5.5 ± 1.0	1969.9 ± 0.2	10.5 ± 0.5
1039.2 ± 0.3	2.2 ± 0.5	1984.5 ± 0.5	1.0 ± 0.2
1093.5 ±0.1	23 ± 2	1992.1 ± 0.3	4.0 ± 0.2
1110.0 ± 0.2	7. ±1	2042.4 ± 0.7	0.8 ± 0.2
1123.1 ± 0.2	5. ±1	2061.1 ± 1.0	0.6 ± 0.2
1137.1 ± 0.1	25 ± 1	2076.8 ± 0.5	1.3 ± 0.3
1172.0 ± 0.3	2.9 ± 0.6	2201.6 ± 0.5	1.2 ± 0.3
1181.6 ± 0.2	3.0 ± 0.5	2246.0 ± 0.5	0.9 ± 0.3
1239.9 ± 0.1	4.9 ± 0.5	2357.9 ± 0.5	1.0 ± 0.5
1383.6 ± 0.4	2.5 ± 1.0	2370.5 ± 0.5	1.0 ± 0.5
1473.1 ± 0.1	45 ± 1		

of all the γ transitions (see decay scheme below). Thus, the fraction of all ²⁴²Np β decay to the 0⁺ ground state and the 44.5-keV 2^+ level is $83 \pm 5\%$. This value is not sensitive to uncertainties in the decay scheme, nor do the β rays feeding the I^{π}

FIG. 4. Upper portions of the β -ray spectra of $^{240}\text{Np}^m$ and ^{242}Np . The end point of the latter is 2.7 ± 0.2 MeV and is based on comparison with 2.18 MeV for $^{240}Np^m$ and with other standards.

 $=1$ ⁻ level at 780.4 keV affect the analysis because their end point energy (1.92 MeV) falls below the energy interval that was used. The 83% value was then applied to calculate approximate absolute γ ray abundances and the fractions of β -ray feeding into various levels (Figs. 5 and 6).

FIG. 5. Decay of ²⁴²Np and proposed level scheme of ²⁴²Pu. Figures in parentheses refer to γ -ray intensities per 100^{242} Np decays.

C. Effective cross sections for 244 Pu(n, 2pxn) reactions

The effective cross sections σ_{eff} for production of the various uranium isotopes from the 244 Pu target were determined from several of the runs. Neutron flux measurements were made by assay of 24 Na induced in small aluminum monitor foils; σ_{eff} for ²⁷Al(n, α)²⁴Na was taken as 40 mb.¹ Absolute disintegration rates were determined for ^{237}U , 239 U, 240 U, and 242 U from the intensities of the strongest γ rays and their known abundances. Corrections were made for detector efficiencies and chemical yields. For 240 U a large additional correction (50%) was made for the amount formed from the α decay of ²⁴⁴Pu. A similar correction $(10-15%)$ was needed for growth of 237 U from 241 Pu (present as 0.074 atom $\%$ of the target). The results are shown in Table III and are based on 6 runs.

1V. DISCUSSION AND CONCLUSIONS

Because of insufficient source intensity and relatively short half-lives, it was not practical to perform γ - γ and β - γ coincidence measurements. Thus, the proposed level schemes were con-

TABLE III. Effective cross sections σ_{eff} , in mb, for $(n, 2pn)$ and $(n, \alpha x_n)$ reactions from ²⁴⁴Pu target.

Product	Reaction	$\sigma_{\rm eff}$ (mb)
16.8-min 242 U	(n, 2pn)	0.6 ± 0.3
$14.1 - h^{240}U$	(n, α_n)	2.5 ± 1.2
$23.5 - min$ 239 U	$(n, \alpha 2n)$	1.8 ± 0.6
$6.75 - d^{237}U$		$(n, \alpha 4n)$ 1.7 \pm 0.7

structed with the help of energy sums and differences, and intensity balances. Several previously known levels⁹ in 242 Pu, and analogies with the nuclear systematics of neighboring nuclei provided a framework for characterizing some of the levels.

Decay of 2.2-min 242 Np to levels of 242 Pu is shown in Fig. 5. The 44.5-keV transition, which is highly converted, was not seen directly, but six pairs of γ rays were observed which differed in energy by 44.5 keV. In most cases the ratios of reduced transition probabilities for these pairs agreed with theoretical predictions (Table IV). The 4' level at 147.2 keV is fed by three γ rays, but the 102.7keV transition to the 2' level was not seen because it is strongly converted and a weak γ ray at this energy is masked by the intense $K \times \text{rays. Higher}$ levels of the ground state rotational band were not observed. The $K = 0$ octupole vibrational band is represented by the 780.4 -keV $1⁻$ level and the $832.2 - keV$ 3⁻ level. These two and the 992.5-keV level also had been seen in the $^{242}Pu(d, d')$ studies.⁸ In addition to all of these levels (up to 992.5 keV) the ²⁴¹Pu(n, γ) experiments⁹ also indicated the 1039.2-keV level. The 787.7 -keV line which is the crossover transition from 832.2 keV to 44.5 keV was not identified due to a strong interference was not numerised the α strong interference from a γ ray at 789.6 keV in the decay of 240 Np^m . A dashed line was used to indicate a level whose position in the scheme is based on only a single γ -ray energy. The levels shown above 1039.2 keV were not found in previous work, and they were placed on the basis of intensity and energy sums. Estimates of β -ray feeding to the various levels were deduced from γ -ray intensity balances (to and from each level). Thus, $\log ft$ values could be

Level (keV)	E_{γ_1} E_{γ_2}	I_{γ_1} I_{γ_2}	$L=1$ $L=2$	Exp. $B(E_{\gamma_1})/B(E_{\gamma_2})$	$L=1$ $\tilde{L}=2$	Theor. $B(E_{\gamma_1})/B(E_{\gamma_2})$	Assignment $K_i I_i^{\pi} \rightarrow K_f I_f^{\pi}$	
780.4	735.9 780.4	100 53	2.25	2.53	2.0	\cdots	$01^{-} \rightarrow 02^{+}$ $01^{-} \rightarrow 00^{+}$	
1517.6	1473.1 1517.6	45 24	2.06	2.18	2.0	\cdots	$01^ \rightarrow 02^+$ $01^ \rightarrow 00^+$	
1949.8	1905.1 1949.9	5.5 14.8	\mathcal{Q} . 0.40	0.42	0.50	\ddotsc	$11 \rightarrow 02^+$ $11 - 00^+$	
1969.9	1925.4 1969.9	4.5 10.5	0.46	0.48	0.50	\cdots	$11 \rightarrow 02^+$ $11 - 00^+$	
2246.0	2201.6 2246.0	1.2 0.9	1.43	1.47	$\bullet\hspace{0.1cm} \bullet\hspace{0.1cm} \bullet\hspace{0.1cm} \bullet\hspace{0.1cm} \bullet$	1.43	$22 - 02^{+}$ $22 \rightarrow 00^+$	

TABLE IV. Comparisons of ratios of reduced transition probabilities in the 242 Np decay to predictions of the Alaga rule (Ref. 19).

calculated and in some cases spin-parity assignments could be made. Most of the γ rays could be placed in the decay scheme and they account for nearly all of the intensity. However, 11 of the weak lines were not placed.

The decay pattern of 242 Np to levels in 242 Pu exhibits a number of features in common with the decay of 240 Np^m to levels¹⁴ of 240 Pu. The large β -ray branch from 242 Np to the ground 0⁺ and/or first excited 2^+ level of 2^{42} Pu is strong indication of a low spin for the 242 Np ground state. In addition, a significant β -ray branch to the 1⁻ octupole state in significant $p - i$ ay branch to the i -octupole state
 e^{242} Pu, analogous to the i^{240} Np^m decay, again suggests a low spin for 242 Np. Log ft values for these β rays from ²⁴²Np fall within the range for allowedhindered or first forbidden transitions, as they do for $^{240}\text{Np}^m$ decays. The very weak β branch to the $3⁻$ member of the octupole band of 242 Pu suggests that the ²⁴²Np spin is ≤ 1 . A similar analysis for 240 Np^m led previous investigators¹⁴ to assign a spin-parity of 1^- to 7.2 min $^{240}Np^m$ formed by coupling the $\frac{5}{2}$ [523], and $\frac{5}{2}$ [622], Nilsson states. They assigned 5^+ to the 65 -min²⁴⁰Np ground state. formed from $\frac{5}{2}$ ⁺[642]_p, $\frac{5}{2}$ ⁺[622]_n, and its energy is just below that of the $1⁻$ isomer. Thus, there is near degeneracy of the $\frac{5}{2}$ ⁺[642] and $\frac{5}{2}$ ⁻[523] proton states and a deformation $\epsilon \approx 0.2$ is indicated. The $N=149$ odd-mass isotones of 242 Np exhibit ground state spin-parities of $\frac{7}{2}$, suggesting occupation of the $\frac{7}{2}$ [624]_n Nilsson orbital ($\epsilon \approx 0.2$) by the odd neutron. The resultant coupling of these two states $(\frac{7}{2}$ ⁺[624]_n and $\frac{5}{2}$ ⁺[642]_e) yields a spin-parity of 1⁺ for the 2.2 -min²⁴²Np. It is important to note that the present work cannot establish whether this state is the nuclide's ground state or an isomeric state. Whether a high spin isomer exists in 242 Np (analogous to the 65 -min 5^+ state in 240 Np) remain to be established by future studies in which the Np is isolated directly from neutron irradiated 244 Pu.

Having assigned I^{π} = 1^{+} to 2.2-min $^{242}{\rm Np},\,$ it is possible to discuss the levels of 242 Pu in more detail (Fig. 5). Below 850 keV of excitation energy ²⁴²Pu exhibits a ground state rotational band $(\hbar^2$ $28 = 7.41$ keV) and a $K^{\pi} = 0^{-}$ octupole band with 1⁻ band head located at 780.4 keV ($\hbar^2/2g = 5.18$ keV). Logft values for β decay to the ground state band and to the octupole band are in the range. expected for allowed and first forbidden transitions, respectively. The $5⁻$ member of the octupole band (924.5 keV) is not observed in the present experiment, nor is the 0' state previously reported at 956 keV from (p, t) reaction studies.⁷ The 2⁺ state at 992.5 keV seen in the (d, d') experiments⁸ is weakly fed $(\sim 0.1\%$, log $ft = 8.3)$ from the ²⁴²Np decay. Excited states above 1.1 MeV decay predominantly to either the levels of the ground state band or the octupole band. Log ft values for these states in combination with reduced transition probabilities for γ rays de-exciting these levels to the 0^+ and 2^+ levels of the ground state band have been compared to predictions of the Alaga model¹⁹ to establish limiting spin-parity assignments for these states. A number of these comparisons are shown in Table IV. The decay pattern of the 1181.6-keV level is puzzling. γ rays from this state to the 0^+ , 2^+ , and 4^+ levels of the ground state band indicate that this state is most probably I=2. The strong γ -ray branch to the 2⁺ level over that to either 0^+ or 4^+ levels is, however, anomalously high and may indicate that the 1137.1-keV transition is, in fact, a composite of the 1181.6 $+44.5$ -keV decay and another moderatly intense γ ray which may occur elsewhere in the decay scheme.

A particularly striking feature in the 242 Np decay is the highly favored β transition to the 2331.3-keV level of 242 Pu. The low log ft (4.9) for this branch suggests that the 2331.3-keV level is

of distinctly different character from the nearby levels which, at ≈ 2 MeV of excitation, are viewed as part of the ensemble of states derived from various statistically allowed combinations of single particle and/or collective excitations. The highly favored β decay to the 2331.3-keV level and the atypical decay pattern of this level to lowerlying states in 242 Pu point to a unique quasiparticle configuration for this state. From consideration of a, number of two quasiparticle configurations which can be constructed out of the available Nilsson orbitals at this excitation energy, a 2' two-proton state $\frac{5}{2}$ ⁺[642]_p, $\frac{9}{2}$ ⁺[624]_p is postulate as a likely assignment for the 2331.3-keV level, The low log ft is consistent with the allowed, unhindered β decay: 242 Np 542 [642]_p, $^{74}_{24}$ [624]_n $+^{242}$ Pu(2331.3 keV) $\frac{5}{2}$ ⁺[642]_p, $\frac{9}{2}$ ⁺[624]_p, in which no change occurs in the asymptotic quantum numbers of the nucleons involved in the β transition.

Additional insight can be obtained from the γ -ray de-excitation pattern of this 2331.3-keV state. Two transitions (1550.9 and 813.6 keV) are observed to lower-lying 1⁻ levels. On energetic grounds one mould expect the 1550.9-keV transition to be considerably more intense than the 813.6-keV transition, but, in fact, the opposite is true. This is taken as an indication of the degree of dissimilarity between the quasiparticle nature of the 2331.3-keV state and the collective nature of the $1⁻$ octupole state and at the same time the similarity between the 2331.3-keV state and the 1517.6-keV level, which by analogy with neighboring Pu isotopes has been assigned 1^- . The smaller $\log ft$ (6.3) to the 1517.6-keV over that to the octupole band head level at 780.4 keV (log ft $=6.9$) is again suggestive of a quasiparticle structure for the 1517.6-keV level. We postulate a twoproton configuration $\frac{5}{2}$ ^{$\frac{642}{6}$}, $\frac{5}{2}$ ^{$\frac{523}{6}$}, for this level, based largely on the availability of Nilsson orbitals at this excitation energy, the unretarded β transition $\frac{7}{2}$ [624]_n $\div \frac{5}{2}$ [523]_p from ²⁴²Np, and the favored γ -ray transition from the 2331.3-keV state, which for one of the nucleons, again involves no change in asymptotic quantum numbers. In an analogous way the decay of the 1401.0-keV state by a single 620.6-keV γ -ray transition to the 1⁻ $(K = 0)$ octupole band head suggests a zero spin for the 1401.0-keV level. Log ft arguments cannot establish the parity of this state.

A few comments on the character of the vibra- $\frac{1}{2}$ if the comments on the enaracter of the vibra-
tional structure of 242 Pu seem appropriate. It is noteworthy that our present β -decay results do not indicate either well developed $\beta-(K=0)$ or $\gamma-(K=2)$ wibrational bands in 242 Pu. Population of the octupole vibration in 242 Pu as well as in other eveneven actinide nuclei is, however, a dominant feature of the β decay. Why the negative parity collective vibration is well developed in 242 Pu in preference to either of the positive parity vibrations is a puzzle. The combination of a 1^+ spin-parity for ²⁴²Np and the β -decay selection rule of $\Delta K = 0, 1$ makes the 242 Np decay an excellent place to look for the relative importance of the various vibrational modes of excitation. The known $I^{\pi} = 0^+$ "collective" level' at 956 keV was not observed in the β decay of ²⁴²Np. Population of the 992.5-keV, I^{π} $=2^+$, $K=0$ level is questionable because in our work this level is introduced only on the basis of the weak 948.0-keV γ ray which concomitantly sets a high $\log ft$ of 8.3 to the 992.5-keV level. While Table IV indicates the presence of a high-lying K $= 2$ band head, its excitation energy clearly rules it out as a γ vibration. These features and the fact that the collective octupole band head is relatively strongly populated by a first forbidden β -ray transition in preference to allowed β decays to positive parity vibrations indicates that the collectivity of these vibrations is relatively weak. In this case matrix elements of β - and γ -ray transitions are mostly of quasiparticle origin, and therefore they are regulated by the usual asymptotic Nilsson selection rules, and these transitions are usually retarded.

Negative parity collective states (octupole vibrations) are known to be strongly collective in heavy nuclei $[B(E3)]$ is large from Coulomb excitation] and therefore quasiparticle selection rules for β and γ transitions to these states (or from these states) are expected to be not so effective, and retardation of these transitions is smaller. Therefore we observe usual values for $\log ft$'s. Additional evidence for this type of collective behavior is to be found in the pattern of the electron capture decay²⁰ of 238 Am to levels in 238 Pu. The ground state of 238 Am has been assigned as 1⁺ and expect for 242 Np it is the only other actinide nuclide with this spin-parity. One again observes very heavy feeding of the odd-parity collective states by first forbidden transitions in preference to allowed decays to the even parity collective states.

It is important to note that following β decay to other low spin ($I \le 2$) levels no γ transitions to the $I^{\pi}=0^{+}$ ground state were observed. If their spin is $I=2$, it is more natural to expect that they have negative parity, $I^{\pi} = 2^{-}$. It is also interesting to compare groups of 2 levels in 2^{42} Pu: 1401.0 (I=0) and 1427.8 keV $(I=2)$ and in ²⁴⁰Pu: 1410.8 $(I=0)$ and 1438.5 keV $(I=2)$. These levels in ²⁴⁰Pu were considered as members of a rotational band with $K^{\pi}\!=0^{\ast}$ and an octupole two phonon state of K^{π} =0⁻ origin. However, in ²⁴⁰Pu some doubt about parity came from the (n, γ) data, which showed negative parity for these levels. Further support for negative parity comes from the β -de-

cay data of ²⁴²Np because in ²⁴²Pu the *I* = 2, 1427.8 keV level γ decays only to 2⁺, but not to the 0⁺ ground state. Viewed as levels with $I^* = 0^-$ and 2^- , they may be considered as members of a rotational band with $K^{\pi} = 0^{-}$. The moment of inertia of this band β is significantly larger than β for the ground state rotational band $(\mathcal{G}_{K=0} -/\mathcal{G}_{K=0^+} = 1.67)$. This is typical for two particle configurations because unpaired nucleons in orbitals with large i tend to increase sharply the effective moment of inertia. One of the lowest possible configurations for such a $K^{\pi} = 0^{-}$ state is $\frac{7}{2}^{-}$ [743]_n, $\frac{7}{2}^{+}$ [624]_n, where both unpaired neutrons are in the orbitals with large *i* and therefore strongly involved in Coriolis coupling which determines the effective moment of inertia. .

No previous information concerning the level $\frac{1}{N}$ are previous information concerning the level structure of $\frac{242}{N}$ is available and our experimental data are not sufficient to establish an unambiguous decay scheme for 242 U. However, some amorguous decay scheme for σ . However, so levels of γ ray energy loops and γ -ray intensities. A proposed decay scheme is shown in Fig. 6 where 10 of the 14 γ rays are accounted for.

 β -ray and γ -ray intensities were related to those which were measured for the 242 Np daughter in secular equilibrium. The values in parentheses associated with each γ ray are estimated γ -ray intensities per 100 decays, except for the 67.6 and 55.6-keV γ rays, where transition intensities are given. The latter transitions are almost certainly $E1$, and appropriate corrections were made for internal conversion. Higher multipole orders are excluded because the transitions would be so highly converted that the γ rays would be too weak to be observed. The total absolute γ -ray abundances account for about 30% of the total decay, and thus there must be a strong β branch to the ground state or there are some highly converted unobserved transitions in the 242 U decay. The percent of β^- feeding to various levels and the log ft values given in Fig. 6 were calculated on the basis of 76% to the ground state and an estimated Q_{β} value of 1.19 MeV (see below).

Some of the major features of the level scheme can be interpreted from Nilsson orbital systematics. From the 0^+ ground state of ^{242}U , the large β branch to the ²⁴²Np 1⁺ ground state is indicative of both the favorable energetics and the allowed nature of the decay. The low-lying negative parity states at 55.6 and 67.6 keV, which decay by $E1$ transitions to the 242 Np ground state are interpreted as odd proton and odd neutron configurations which involve the next available proton orbital, $\frac{5}{2}$ [523], and either the same neutron configuration as the ground state or a neutron hole from the $\frac{5}{2}$ ^{\dagger}[622] orbital. Decay of the 640.6-keV level through the

55.6- and 67.6-keV levels rather than directly to the ground state indicates a large structural difference between the 640.6-keV level and the ground state. Log ft arguments suggest positive parity for this level. Coupling a $\frac{7}{2}$ [743] neutron hole to the $\frac{5}{2}$ [523] proton, which is responsible for the 55.6- and 67.6 -keV states, results in a 1^+ assignment for the 640.6-keV level. The 585.0- and 572.9-keV γ rays are then seen as allowed E1 transitions involving either $\frac{7}{2}$ [743]_n $\div \frac{5}{2}$ [622]_n or $\frac{7}{5}$ [743]_n - $\frac{7}{5}$ [624]_n transformations. The absence of the 640.6-keV ground state γ ray points to a considerable degree of forbiddenness for the simultaneous transitions of both neutron and proton configurations from this state to those of the ground state.

It is instructive to compare the measured Q_{β} - of It is instructive to compare the measured Q_{β} - of 242 Np of 2.7+0.2 MeV with predictions from severa
currently available mass calculations, $^{16-18,21,22}$ currently available mass calculations, $16 - 18, 21, 22$ which are summarized in Table V. Within the experimental error, agreement is good with most of the predicted values; the first three listed are low by 0.4-0.⁵ MeV. Since we do not have an experimental value for Q_{β} - of ²⁴²U it was estimated by taking an average of the predicted values (omitting the first three). This gives 1.19 MeV and it was used to compute $\log ft$ values in the ²⁴²U decay (Fig. 6). The calculated value of $Q_8 = 0.24$ MeV for 242 U shown in Table V is clearly much too low since γ rays up to 0.585 MeV were observed in the 242 U decay.

TABLE V. Comparison of experimental and predicted Q_8 - values for the ²⁴²Np and ²⁴²U decays.

 a Not measured; 1.19 MeV used in the decay scheme was obtained by averaging the last six predicted values.

 b Reference 21.</sup>

^c Reference 22.

Reference 18.

Not predicted.

^f Reference 16.

We wish to thank Dr. J. Gilat for helpful discussion and assistance in the early phases of this work when the chemical separations procedures were being developed. We are very grateful to Mrs. D. M. Franck, who assisted with target preparation

*Present address: Center for Naval Analyses, 1401 Wilson Blvd., Arlington, Va. 22209.

- ¹S. Katcoff, J. B. Cumming, J. Godel, V. J. Buchanan, H. Susskind, and C.J. Hsu, Nucl. Instrum. Methods 129, 473 {1975).
- $2\overline{E-M}$. Franz, S. Katcoff, H. A. Smith, Jr., and T. E. Ward, Phys. Bev. C 12, 616 {1975).
- 3P. E. Haustein, E-M. Franz, S. Katcoff, N. A. Morcos, H. A. Smith, Jr., and T. E. Ward, Phys. Rev. C 14, 645 (1976).
- ${}^{4}P$. E. Haustein, E-M. Franz, R. F. Petry, and J. C. Hill, Phys. Rev. C 16, 1559 (1977).
- ⁵J. Gilat and S. Katcoff, J. Inorg. Nucl. Chem. 40, 369 (1978).
- 6A preliminary report was presented at the Washington, D. C. meeting of the American Physics Society, 1978 (unpublished); S. Katcoff, E-M. Franz, P. E. Haustein, R. L. Klobuchar, and H-C. Hseuh, Bull. Am. Phys. Soc. 24, 614 (1978).
- 7 J. V. Maher, J. R. Erskine, A. M. Friedman, R. H. Siemssen, and J.P. Schiffer, Phys. Rev. C 5, 1380 (1972).
- 8 T. W. Elze and J. R. Huizenga, Nucl. Phys. A187, 545 (1972).
- $^{9}Y.$ A. Ellis and R. L. Haese, Nucl. Data Sheets 21, 615 {1977).
- 10 Most of the steps were derived by suitable modification of previous methods: J.E. Grindler, National Academy of Sciences—National Research Council, Nuclear Science Series Report No. NAS-NS-3050, 1962 (un-

and recovery, and with processing of the data. This research was carried out at Brookhaven National Laboratory under contract with the U. S. Department of Energy and supported by its Office of Basic Energy Sciences.

published); K. Wolfsberg, Los Alamos Scientific Laboratory Report No. LA-1721, 1967 (unpublished); P. Van Den Windel, F. DeCorta, and J. Hoste, Anal. Chim. Acta 56, 241 (1971).

- ¹¹J. T. Routti and S. G. Prussin, Nucl. Instrum. Methods 72, 125 (1969).
- ¹²J. B. Cumming, National Academy of Sciences-National Research Council, Nuclear Science Series Report No. NAS-NS-3107, 1962 (unpublished).
- $13\frac{r}{\beta}$ -ray and γ -ray energies and intensities were taken from the compilations in Nuclear Data Sheets.
- 14 M. R. Schmorak, Nucl. Data Sheets 20 , 165 (1977).
- 15 M. R. Schmorak, Nucl. Data Sheets 21 , 91 (1977); D. R. Mackenzie and B.D. Connor, Nucl. Phys. A108, 81 (1968).
- V. E. Viola, Jr., J. A. Swant, and J. Graber, At.
- Data Nucl. Data Tables 13, 35 (1974). 17 A. H. Wapstra and K. Bos, At. Data Nucl. Data Tables
- 17, 474 (1976).
- ¹⁸A. H. Wapstra and K. Bos, At. Data Nucl. Data Tables 19, 175 (1977).
- $19T.$ Yamazaki, Nucl. Data A 1, 453 (1966).
- 20 Y. A. Ellis, Nucl. Data Sheets 21, 549 (1977); I. Ahmad, R. K. Sjoblom, R. F. Barnes, F. Nagner ner, Jr., P. R. Fields, Nucl. Phys. A186, ⁶²⁰ (1972).
- 21 Nine different mass formulas are discussed and compared in a special. issue of At. Data Nucl. Data Tables 17, 411 {1976).
- 22 J. E. Monahan and F. D. Serduke, Phys. Rev. C 17, 1196 (1977).