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We discuss the relationship between the Green’s function and the Brueckner expansions for the binding
energy of nuclear matter. The origin of spurious-looking graphs which appear in the Green’s function
expansion is elucidated. Numerical values are given in the case of the Hamman-Ho-Kim nucleon-nucleon
interaction. We point out the existence of a striking analogy between the Green’s function and the correlated

basis functions approaches.

[-N"UCLEAR STRUCTURE Formal and numerical comparison between the Brueck-
L ner and Green’s function theories of nuclear matter.

I. INTRODUCTION

The calculation of the average binding energy
per nucleon of nuclear matter is currently subject
to detailed scrutiny.'”> The main reason is that a
discrepancy has repeatedly been exhibited between
the two main available approaches: The standard
version® of the Brueckner-Hartree-Fock (BHF)
approximation yields an energy which is larger
than the estimates of an upper bound obtained from
various variational techniques.»?**°® This lends
some support to proposals to modify®-'° the stan-
dard BHF approximation, by attaching to the
particle state with momentum b an “auxiliary”
potential energy U(b) which joins smoothly to that
of the hole states at the Fermi momentum k.
This reduces the so-called dispersion correction
as compared to the standard BHF approximation.
One of these proposals, namely, the continuous
choice (3.2),'°'" is based on a third approach, the
Green’s function theory of nuclear matter.'* The
latter is also interesting because it shares several
features with the two other ones.

The main purpose of the present paper is three-
fold. Firstly, we discuss the formal relationship
between the hole line expansions used in the Bethe-
Brueckner theory® on the one hand, and in the
Green’s function theory® on the other hand. We
devote special attention to the role of the auxiliary
potential U. In particular, we elucidate the role
of graph (C) of Fig. 1 which looks redundant (two
consecutive g matrices in a particle-particle
ladder) but which appears in the Green’s function
theory. Secondly, we illustrate the discussion
with numerical calculations performed in the case
of the semirealistic nucleon-nucleon interaction
of Hamman and Ho-Kim.*''* Finally, we point out
the existence of a striking analogy between the
Green’s function and the correlated basis function
approaches.'®'®
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II. RELATIONSHIP BETWEEN THE BETHE-BRUECKNER
AND THE GREEN’S FUNCTION APPROACHES

A. Basic equations

The Hamiltonian H of nuclear matter is the sum
of the kinetic energy operator T = Z#(z) and of the
two-body operator V =Zv(,). It is usually con-
venient to introduce an auxiliary single-particle
potential U(z):

H=H, +H, , (2.1)
HO=Z @) +U@E))=T+U, (2.2)
H1=Ev[v(i,j)—U(i)]=V—U. (2.3)

i<

The potential U(¢) can be chosen in such a way as
to optimize the rate of convergence of the various
expansions, for instance that of the average bind-
ing energy per nucleon B, For simplicity, we
usually shall not distinguish between binding ener-
gy and average binding energy per nucleon.

In the Bethe-Brueckner approach, one expands
the quantity AE defined by

B=T,+AE

=T, + <q> l 2 VI(E, - Hy)H, ]

‘1>>c , (2.4)

where T, is the free kinetic energy, while E, is the
energy in the ground state l@) of the model Ham-
iltonian H,. The subscript C means that only con-
nected graphs should be retained in the expansion
of AE.

In contradistinction, the Green’s function theory
leads to separate expansions for the kinetic ener-
gy (T) of the correlated system with wave function
]\Il) on the one hand, and for its interaction energy
E,,, on the other hand'"-'°:

B=(T)+E,, (2.5)
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FIG. 1. Two-hole line contributions to the binding
energy in the Green’s function approach. The exchange
graphs are not represented (see Appendix B of Ref. 19).
A wiggly line corresponds to a Brueckner g matrix,
and a square to a kinetic-energy insertion. All dia-
grams are to be computed with the AE rules, i.e.,
without any extra weighting factor (see Sec. II).
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The expressions of (T') and of E, , can be written
in terms of the Green’s function G(k,%,).2° One
has for symmetric nuclear matter (spin and isos-
pin summations carried out),

<T>__— f LS

(T)= (2.6)

G(k k), (2.8)

i 2EP\ -
Bt 3 [ (it -G )0k k), @)
k

where the integration contour consists of the real
k, axis and of a semicircle in the upper halfplane.

. The Green’s function is related to the mass oper-
ator M(k, k,) by the Dyson equation

G(K, k) = Gy(k, k,)

+Gy(E, k) (M(E, b -2 U(k))G(E, k),
(2.10)

where G, is the Green’s function of the unper-
turbed system described by H,. A low-density
(hole line) expansion for M was developed in Ref.
9. When substituted in Eqgs. (2.8)-(2.10), this
leads to an expansion for the binding energy B.
The two-hole line contribution to this expansion
derived in Ref. 9 is represented by graphs (4) to
(E) of Fig. 1, where a square corresponds to the
insertion of the kinetic energy 7%k?/2m and a wig-
gly line to the reaction matrix g of Brueckner’s
theory. Following Ref. 19, we do not draw the ex-
change graphs. Graph (A) yields the unperturbed
energy T,. Graphs (4)+(B) give the BHF approx-
imation B, [=(a)+ (b) in Fig. 2] for B. Graphs

OM@
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FIG. 2. Some graphs of the Bethe-Brueckner theory
expansion for AE which are discussed in the text.
Graphs (a) and () yield the two-hole line (BHF) con-
tribution B, to the kinetic energy. Graphical conven-
tions as in Fig. 1; a cross corresponds to a U insertion.

(D) and (E) give the leading contribution to the dif-
ference between the kinetic energy (T') of the cor-
related system and that, T, of the free Fermi
gas,

(T)~ T, ~(D)+(E)

i~

1a,blglj, 1), 12
2 @ e®) -0 =0T

n2a® nfl?
x<_2m —_2—;;'7)’
where the index A refers to antisymmetrization:
|7,2~1,7=j,1),. Here and below, a,b,... and

j,1, ... refer to particle and to hole states, re-
spectively.

(2.11)

B. Origin of spurious-looking graphs

Graph (C) has a spurious appearance since it
involves two consecutive g interactions in a par-
ticle-particle ladder. Its expression reads (a
factor 3 is missing in Ref. 9)

1 1{a,blgljl),|?
(©=3 2 v et e(af—e)’ (2.122)
with
e(k) =K /2m+ U(E) . (2.12b)

The existence of this graph (C) can be understood
in the following way. Consider the linked cluster
expansion'® of E, ,,

2‘[111(&, ~H) PV

Eint=<‘1’

x 2: [(E, - H)) H, ]

By comparing this expression with the correspond-
ing one [see Eq. (2.4)] for AE, it can be checked
that a Goldstone diagram N for E, , will be com-
puted by using the same rules as those for E ex-
cept for an extra weighting factor equal to the

<1>>C . (2.13)
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number =, of v interactions contained in N.
Indeed, consider for instance a diagram N; for
AE “generated” by the term

V(E, = H))  UEo - Ho) ™V (Eo - Ho) 'V

in (2.4). This term appears n,=3 times in the ex-
pansion (2.13), namely, for p=0, ¢g=3 and p =2,
g=1and p=3, ¢=0. This example illustrates that
any v interaction in a diagram for AE can be used
as a separator between the sums over p and ¢ in
(2.13), whence the extra factor =, for the E,,;_
diagrams.

Consider now the Brueckner ladder summation
which leads to the contribution to AE respresented
by graph (b) of Fig. 2. This ladder summation
yields graphs (B) and (C) for E,;,. This is demon-
strated in a picturesque way in Fig. 3. All dia-
grams shown there should be computed with the
AE rules: The n, factor is explicitly written in
Fig. 3 in front of each diagram.

C. Role of spurious-looking graphs

We now show that the spurious-looking graphs,
of which graph (C) of Fig. 1 is an example, cor-
respond to the inclusion, in the n-hole line term
of the Green’s function expansion of (T)+E,, of
some dispersion-diagrams which appear in higher-
order terms of the Bethe-Brueckner expansion
for AE.,

The sum of the graphs (4) to (E) in Fig. 1 takes
the following simple form:

— 1 |<a,blg'],l>Alz
(A)+°°°+(E)—Bz+zz [e(a)+e(b)_e(j)_e(l)12

x [UQ)-U(@)]. (2.14)

Let us denote by AU the second term on the right-
hand side of Eq. (2.14). It is a negative quantity
for any sensible choice of U(k), i.e., one which is
such that U (particles)>U (holes). It is a “disper-
sion term” in the sense that it vanishes if U(k) is
independent of k.

It thus appears from Eq. (2.14) that at the two-
hole line level the Green’s function theory yields
a smaller energy (more binding) than the BHF
approximation B,, where thé difference is the
dispersion term. This reminds us of a very sim-
ilar difference that exists between the BHF ap-
proximation B, on the one hand and the two-body
cluster estimate E,, of (¥ |H|¥)/{ |¥) on the
other hand: One has? -

Ep,,=B,+AU, (2.15)

for a suitable choice of the correlation operator
F defined by ¥ =F¢. The BHF approximation B,
thus lies above the approximate upper bound E,,,
which leads to the discrepancy alluded to at the
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FIG. 3. A graphical computation of the two-hole line
contribution E{2) to the interaction energy in nuclear
matter. A horizontal dashed line represents a v inter-
action, a wiggly line denotes a g matrix. All diagrams
are to be computed with the AE rules (Ref. 27), the n,
weighting factors are written explicitly.

beginning of this paper. The problem consists of
determining whether AU is a “spurious” contribu-
tion to the Brueckner-Hartree-Fock or to the
two-body cluster approximation to the upper bound.
The truth probably lies somewhere between these
two extremes and depends on the choice of U(k).
The same problem arises when comparing the
two-hole line approximations of the Green’s func-
tion and of the Bethe-Brueckner expansions. We
now discuss it in some detail.

Let us go back to expression (2.14). It can be
seen by direction computation that AU, i.e., the
sum of diagrams (C)~(E) of Fig. 1, is precisely
equal to the AE graphs (c) and (d) of Fig. 2,

(A)+(B)+(C)+(D)+(E) =(a)+(D)+(c)+(d). (2.16)

This suggests that the Green’s function approach
is “some” dispersion diagrams ahead of the Bethe-
Brueckner theory. We now show that this is a gen-
eral feature of the Green’s function approach.

D. Generalization

Consider the sum of the diagrams (@) and (b) of
Fig. 4. Diagram (a) is to be computed with the
AE rules; diagram (b) is a sum over the diagrams
obtained from (a) by making a kinetic energy in-
sertion in every fermionic line encountered by
the horizontal bar. No redundancy problem arises
if one counts the pairs of equivalent lines in (b)
in the same way as in (a), i.e., disregarding the
square insertions. Let us call M the expression
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(a) (b) (c)

FIG. 4. Elimination of () diagrams by E,,; diagrams.
Graphs (b) and (c) are sums over the diagrams obtained
by making square (kinetic energy) and cross (potential
energy) insertions in every fermionic line encountered
by the horizontal bar. Diagrams (a) and (c) are com-
puted with the AE rules.

common to diagrams (@), (b), and (c). Using the
conventions of Ref. 19, one finds

M
(a)+(b) =z m(}:q— Ze,+Zt, - It,)

- [E—(ZM_—E—% (U, - Z)U>)]

= diagram (c) of Fig. 4. (2.17)

Here, the subscripts < and > refer to holes and
to particles, respectively; the summations within

the square brackets run over the lines encountered '

by the horizontal bars of diagrams (b) and (c¢) while
the outer summation is the familiar one over mo-
menta, spin, and isospin. The redundancy prob-
lems in diagram (c) are taken care of as in dia-
gram (b). The weighting factors associated with
each diagram must be discussed in some detail.

If diagram (a) of Fig. 4 contains # interactions,
it can be matched with n—1 diagrams of type (b).
In the E, , expansion, diagram (@) is multiplied
by a factor n,, where », is the number of two-
body interactions that it contains. If we call »,
the number of U interactions in diagram (a), this
means that n—1-#n,=n,-1, diagrams of type (a)
are lacking to use up all the (b) diagrams as de-
scribed in Eq. (2.17). However, the procedure
depicted in Fig. 4 can be applied to the n; diagrams
(a’) of order n—1 which are obtained from (@) by
suppressing each U interaction in turn. By match-
ing 7y, — 1 of these (a’) diagrams with the ad hoc
(b’) diagrams, one generates ny,— 1 (¢’) diagrams
which coincide with the (@) diagrams. Hence, all
(b) diagrams will be used up. One will remain
with only one (@) diagram computed with the AE
rules and a series of (¢) diagrams which can
easily be written out explicitly in each particular
case.

We conclude that a given subset Z of graphs in
the Bethe-Brueckner theory will formally be
identical to the corresponding subset in the Green’s
function theory (i.e., the subset of E,, and (T")

diagrams with the same topology as the AE dia-
grams in Z) only if Z contains along with any dia-
gram N, the diagrams obtained by making a
selected number of U insertions in N.

The cancellation represented in Fig. 4 gener-
ates (c) graphs with U insertions in hole as well
as in particle lines. This may raise some ambi-
guity as far as counting the number of hole lines
in the expansions is concerned, since a U inser-
tion should normally be counted as a hole line.
We already encountered this feature when we
pointed out that the two-hole line E;,, diagrams
(C)+ (D)+(E) (see Fig. 1) generates the AE dia-
grams (c) and (d) of Fig. 2. Diagram (c) of Fig. 2
is customarily included in the class of three-hole
line diagrams since it cancels diagram (e) (Fig. 2)
when U is chosen self-consistently for hole states.
When the self-consistency is extended to particle
states, diagram (d) (Fig. 2) should also formally
be considered as a three-hole line diagram while
if one adopts Brandow’s prescription,'®* it
should rather be included in the class of four-hole
line diagrams. In the standard prescription® (3.1),
graph (d) vanishes identically.

E. U insertions in the Green’s function expansion

Equation (2.16) shows that the sum of all the
one- and two-hole line graphs in the Green’s func-
tion expansion for B=(T)+E, , is equal to the sum
(a) +(b) (Fig. 2) of the one- and two-hole line
graphs (c) and (d) (Fig. 2), which are usually
counted as three-hole line graphs. This raises
two problems. The first one consists of finding
out whether this anticipation of dispersive correc-
rections is an advantage or a drawback of the
Green’s function expansion. We discuss this point
in Sec. III. The second problem is that one may
wonder whether a double-counting problem does
not occur in the Green’s function expansion, since
graphs analogous to (¢} and (d) (Fig. 2) will also
exist there, in addition to being hidden in graphs
(A) to (E). We now demonstrate, with the help of
an example, that the weighting factors automati-
cally take care of this apparent double-counting.

Let us consider the subset Z of AE diagrams
represented by the diagrams (a), .(b), (c), and (e)
of Fig. 2. With the self-consistent choice for the
hole potential, one has

(a)+ (D) +(c)+(e)=(a)+ (D). (2.18)
The corresponding subset Z’ of Green’s function
theory diagrams includes the graphs shown in Fig.
1 plus all the diagrams of Fig. 5 where we have
explicitly written the weighting factors. These
diagrams correspond to the three-hole line graphs
included in Z. Notice the spurious-looking dia-
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FIG. 5. Three hole line (7) and E,;, diagrams which
correspond to the AE diagrams (c) and (e) of Fig. 2,
i.e., which are obtained by making a U or a bubble
insertion in a hole line of a two-hole line diagram. The
meaning of the horizontal bar is explained in Fig. 4.

grams (G), (H), (J) and (K).
If one uses a self-consistent auxiliary potential
for hole states, one has

(F)+ D) =(e) (Fig. 2), (2.19)

while all other diagrams cancel in pairs, for in-
stance,

(G)+()=0. (2.20)
Hence, it follows that
[A)+...+(B)] (Fig. )+ [(F)+ ...+(9)] (Fig. 5)
=[(@)+...+(e)] (Fig. 2). (2.21)

This shows that the addition of (c)- and (e)-type
diagrams to both expansions changes their differ-
ence from (c)+(d) (Fig. 2) to (d) (Fig. 2). The
latter vanishes for the standard auxiliary poten-
tial (3.1) (U =0 for particle states).

(F'ML‘MM'):@‘ +®'
(G')+(N')=@' = (H)+(0)
(I‘)+(P')+(Q')=(f)+@> +@;O

(J)+(R) = =(K') +(S’)

H

FIG. 6. Sums of graphs analogous to the unprimed
ones shown in Fig. 5, except that the U or bubble
insertions are made on particle rather than on hole
lines. The symbol (f) refers to graph (f) of Fig. 2.
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In order to be consistent with the spirit of hole
line expansions, all three-hole line diagrams
should be included in Z. As a formal first step in
this direction, one should include the diagrams
analogous to diagram (f) of Fig. 2 in both expan-
sions. When one adopts the continuous prescrip-
tion (3.2) for the auxiliary potential U, diagrams
of type (d) in Fig. 2 should also be considered as
a three-hole line diagram. These graphs can be
grouped as indicated by the equations depicted in
Fig. 6. There, (F’)-(S’) are diagrams similar to
diagrams (F)-(S) of Fig. 5, with the only differ-
ence that the U and the bubbles are inserted in
particle rather than in hole lines. Equation (2.21)
is now replaced by

[(A)+eoo 4 (BY+[(F) 4000 +(S)] 4 [(F7) 4 050 +(S")]
=[@+---+(N]+R, (2.22)

where R is the sum of all dispersion diagrams
shown in Fig. 6. We note that in the present case
R does not vanish even for the standard auxiliary
potential,

III. CONVERGENCE OF THE EXPANSIONS

We have shown in Sec. II that the hole-line ex-
pansions for the binding energy obtained from the
Green’s function and Brueckner approaches, re-
spectively, are two distinct rearrangements of
the linked-cluster perturbation series. These two
expansions differ by only a small number of graphs
for a given order in the number of hole lines. This
is illustrated by the examples (2.16) and (2.22).
The rates of convergence of the two expansions
should therefore be rather similar. Nevertheless,
the difference may be significant in practice,
since one is limited to the computation of the
leading terms of the expansions.

Let us accordingly concentrate our discussion
on these terms, more specifically on the graphs
shown in Figs. 1 and 2, for which we shall give
numerical values in Sec. IV. The relevant rela-
tions in this context are Eqs. (2.14), (2.16), and
(2.22). They show that the main difference be-
tween the two expansions are very closely con-
nected with the existence of an auxiliary poten-
tial U. If U could be set equal to zero, the
n-hole line spurious-looking graphs of the Green’s
function expansion would cancel the n-hole line
diagrams which represent the difference (T') - T,,
and one would then recover the Bethe-Brueckner
expansion order by order. However, the conver-
gence of the hole-line expansions appear to re-
quire the introduction of a nonvanishing auxiliary
potential, although other expansions have been
proposed which avoid its use.®
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Two choices for the auxiliary potential have been
alluded to above. These are, respectively, the
“standard choice” defined by®

> G,klgli k), for k<kg

j
U(k) = (3.1)
0, for B>k,

and the “continuous choice” defined by®

Uk)=Y (j,k|g|i, k)., forallk. (3.2)
i

In the Green’s function expansion, the two-hole
line approximation is given by the sum of the dia-
grams (A) to (E) in Fig. 1. This is equal to the
sum of the graphs (a) to (d) in Fig. 2. We recall
that B, =(a)+ (b) is the BHF approximation. Graphs
(¢) and (d) are dispersion diagrams whose sum
AU is the second term on the right-hand side of
Eq. (2.14).

Equation (2.16) shows that the Green’s function
expansion “anticipates” the dispersion graphs of
the Bethe-Brueckner expansion. At first sight,
this is not an advantage. Indeed, the dispersion
graph (¢), for instance, is exactly cancelled by
graph (e) in the Bethe-Brueckner expansion. This
is true for the two choices (3.1) and (3.2) of U(k).
Thus it appears undesirable to treat graph (c)
separately from graph (e). Actually, the situation
is more delicate than it seems. In order to ex-
hibit this, we first discuss graph (c) and then turn
to graph (d).

Dispersion effects already exist in a somewhat
hidden form in graph (b) =(B) which corresponds to
the BHF approximation. Indeed, the g matrix
used there is quite sensitive to the fact that the
choices (3.1) and (3.2) increase the energy differ-
ence between particle and hole states, especially
in the case of the standard choice (3.1). It is this
dispersion effect that has been taken to be re-
sponsible for the discrepancy (2.15) between the
standard version of the BHF approximation and
variational calculations.'’?2%25 "The dispersion
graph (c) strongly reduces this dispersion effect
contained in (b). Thus variational calculations
suggest that it is desirable to group graph (c)
with graph (b) rather than with (¢) in the ordering
of the series. However, this point is far from
settled.

A related problem concerns graphs (d) and (f)
(Fig. 2). Graph (d) vanishes for the standard
choice (3.1). It is different from zero for the con-
tinuous choice (3.2), for which it is believed to
cancel a significant fraction of the contribution of
graph (f).*1%! We also note that the sign of (d)

is opposite to that of (c¢) (see Sec. IV). Hence, the .

sum (c)+ (d) is smaller for the continuous choice

than for the standard one. The latter leaves (f)
uncanceled and groups it with the other three-hole
diagrams although this may be inconvenient for
particle momenta close to k,.° The variational ap-
proach suggests that graph (f) is almost as im-
portant as graph (e).2® This is also one of the ar-
guments which underlie the continuous prescrip-
tion (3.2). It has, moreover, been argued that the
latter is such that graph (e) cancels most of the
sum of all three-hole line graphs in the Bethe-
Brueckner expansion.'®

We realize that this discussion becomes cum-
bersome; this reflects the intricacy of the prob-
lem of finding the “best choice” for the auxiliary
potential and of performing the selection of the
dominant graphs. The safest procedure consists
in including enough graphs so that their sum be-
comes almost independent of the choice of the
auxiliary potential U. This appears to be achieved
at the three-hole line level,'’2 but the sum of the
three-hole line graphs is very hard to calculate in
a reliable way in the case of realistic interactions.
Thus it is of great practical interest to find a
choice for U which yields an accurate version of
a lower order approximation. In the absence of
any clear-cut argument, we can only list a few
alternatives, and risk value judgments which are
admittedly somewhat subjective or prejudiced.

We believe that the sum (2.16),

S, =(A)+(B)+(C) + (D)+(E)
=(a)+(b)+(c)+(d), (3.3)

gives a rather good approximation to the binding
energy, for the following reasons. We first notice
that this sum depends only weakly on the choice of
U, because of the large cancellation between the
dispersion effects contained in (b) on the one hand,
and in (c¢) and (d) on the other hand.*® Secondly,
this approximation appears quite naturally in the
framework of the Green’s function ’approach.g
Thirdly, the approximation S, removes the dis-
crepancy between the variational methods and the
hole line expansions [see Eq. (2.15)]. In order to
obtain an accurate result, it is nevertheless ad-
visable to add to S, the graphs (e), (f), and the
sum of all the other three-hole line graphs, as
well as the dominant four-hole line (renormaliza-
tion) diagram. However, we believe that the
three-hole line correction is fairly small because
the repulsive graph (e) approximately cancels the
sum of the other three-hole line graphs.!’?’

Arguments put forward in Refs. 10-12 indicate
that graph (d) cancels a significant portion of the
sum of all three-hole line graphs other than (e)
provided that the continuous choice (3.2) is adopted.
For the latter choice, the BHF expression



S, = (@) +(b) +(c) +(e)
=(a)+ (b) =B, (3.4)

therefore appears to be a reasonable approxima-
tion to the binding energy. It has the important
advantage over S, of being much easier to calcu-
late. We emphasize that the BHF approximation
S, is probably not accurate in the case of the
standard choice (3.1). Then indeed, graph (d)
vanishes and one should add to S, the diagram (f)
and the sum of the other three-hole line graphs.
This is a large negative quantity’ which, as noted
above, is approximately canceled by graph (e).
We conclude that the simple BHF approximation
(3.4) is at least as good as the more complicated
expression (3.3) in the case of the continuous
choice. In contradistinction, expression S, yields
a significant underbinding in the conventional
version of the BHF approximation,® which is based
on the standard choice (3.1).

The sum of all graphs shown in Fig. 2 reads

S, =(a)+(b)+(c)+(d)+(e)+ (F)
=(a)+(b)+(d)+(f), (3.5)

where the last eqality holds for the standard as
well as for the continuous choices (3.1) and (3.2).
Its accuracy seems comparable to that of S,.

In summary, it appears that the approximations
S;, S,, and S; have similar accuracy, provided
that the continuous choice (3.2) is adopted in the
case of S,. We believe that with this choice for U
the BHF approximation S, may even be more ac-
curate than S, or S, while being, moreover,
much simpler from the computational point of
view. In any case, the difference between the
values of S,, S,, and S, (with the continuous choice)

- gives a measure of their accuracy; one should in
addition not forget the existence of at least one
large four-hole line (renormalization) graph.

IV. NUMERICAL VALUES

We computed the value of the graphs shown in
Figs. 1 and 2, except that of (f), in the case of
the semirealistic nucleon-nucleon interaction of
Hamman and Ho-Kim'3''* and of the continuous
choice (3.2). The Fermi momentum %, has been
taken equal to 1.36 fm™,

The results are listed in Table I. They can be
calculated from the quantities calculated in Refs.
28 and 29. Diagram (C) is intimately related to
the rearrangement contribution to the optical po-
tential, diagrams (D) and (E) can be derived

from the momentum distributions given in Ref.
29. Diagram (e) can be obtained from the momen-
tum distribution below %, and from the one-hole
line contribution V®’ to the optical-model poten-
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TABLE I. Contribution to the average binding energy
per nucleon of some diagrams shown in Figs. 1 and 2,
for £p=1.36 fm™! and for the continuous choice of the
auxiliary potential, Antisymmetrization is included.
The nucleon-nucleon interaction is due to Hamman and
Ho-Kim (Ref, 13).

Graph Value (MeV/nucleon)
(@)= (4) 23
(b)=(B) —48.75

(c) -8.15

d) 5.3

(e) 8.15

(C) -7.15

(D) -2.3

(E) 6.6

tial. Indeed, one has

- 1 [(ayb(gljyl> 12
(€=-32. [e(a)+e<b)—e(j)fe(mz

x4, l1gli, 1),

=Y p(VO(), (4.1)

where p{*)(1) is the leading correction to the Fermi
momentum distribution below k. The value of the
diagrams (c¢) and (d) can then be found by using
Edq. (2.16) and the cancellation between diagrams
(c) and (e).

We note that diagram (d) is positive. This can
be understood from the expression

o1 1{a,blglj, 1), 1%
@=-32. [e(j)+e()) - e(a) —Ae(b)]2 ute)

==Y p@ALYUD). (4.2)

Here, the positive quantity p$’(b) is the leading
correction to the Fermi momentum distribution
above k,. In Ref. 29, it is found that p{®*(d) is a
rapidly decreasing function of b, from which it
follows that the main contribution to (4.2) arises
from the domain of values for b where U(b) is
negative [U(k,) ~~"T70 MeV for the Hamman-Ho-
Kim interaction]. Hence, the sign of contribution
(d) will probably be positive for any realistic nu-
cleon-nucleon interaction, for the continuous pre-
scription for the auxiliary potential. With the
prescription of Ref. 18 for U(b), diagram (d)
would be negative and very small in magnitude.
Indeed, the corresponding U(b) is equal to the real
part of the rearrangement contribution to the op-
tical potential, which is equal to approximately

+ T MeV for b close to k. However, one should
keep in mind that graph (b) is also affected by a
change in the definition of U(a) for particle states,
and that the sum (b) +(c) + (d) probably does not
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depend much on the choice of the auxiliary poten-
tial.?®

We are now in a po sition to compute the approx-
imations S, and S,. The BHF approximation yields

S, =-25.75 MeV/nucleon,, (4.3)

while the two-hole line approximation of the
Green’s function expansion gives

S, =—28.6 MeV/nucleon . (4.4)

As described in Secs. IIC and @I, the difference
between S, and S, is due to the dispersion graphs
(c) and (d) and gives a rough measure of the ac-
curacy of both approximations. This difference
would be much larger in the case of the standard
choice (3.1).

V. ANALOGY BETWEEN THE GREEN’S FUNCTION
AND THE VARIATIONAL APPROACHES

The Bethe-Brueckner theory is based on the ex-
pansion of the matrix element (¢ |[H|¥). The
Green’s function theory deals with the expectation
value (¢ |H|¥). It is in this respect closer to the
variational approach, where the true ground state
¥ is approximated by a trial wave function.

We now briefly point out a striking analogy that
exists between the two-hole line approximation to
the Green’s function expansion on the one hand and
the two-body cluster approximation of the corre-
lated basis function approach*®3° on the other
hand. For the latter, we adopt the notation of
Refs. 16, 31, and 32. There the binding energy is
written in the form

B=~E,,+(3E)® (5.1)
with
E[z]=To+%Z <j’llw2|j’l>A- (5.2)

The quantity w, plays the role of an effective in-
teraction. However, no auxiliary potential is in-
troduced in the variational approach, whence the
difference between E,, and S, =B, expressed by
Eq. (2.15), The latter relation and Eq. (3.3) show
that

S, =Ep,;. (5.3)
In the correlated basis function approach, the

correction (6E)®’ in Eq. (5.1) is evaluated in sec-
ond-order perturbation theory; it then reads

213 8,010, 15,1, + (e, + €= €5 - €)(a, b m1j, 1), 12
(BE)®)=1)" :(j)+e(z)-be(a§—ezb) *

where
K . .
e(k)=_2.;n_+§; (k,i|w, |k, 50, (5.5)

can be identified with e(k) [Eq. (2.12b)]. The sec-
ond term in the square brackets in the numerator
of (5.4) is a nonorthogonality correction which
diminishes the absolute value of the content of the
brackets. The first term in the square brackets
gives rise to the contribution

v~ 1@, blw, 15,0, 12
?z e(j)+<(l)2-<(a§4-€(b)’ (5.6
which is formally identical to the expression
(2.123) of graph (C) in Fig. 1. It appears difficult
to find a correspondence between the nonorthogon-
ality correction and the Green’s function expan-
sion. We note that its sign is such that it helps
cancel the difference AU between (A)+(B) of Fig.
1 and E,, [Eq. (2.15)]. This suggests that the
correlated basis function approximation (5.1)
yields a result close to the sum of the graphs (4),
(B), and (C) of Fig. 1,

) (5.4)

~ VI. CONCLUSIONS

In Sec. II, we have shown that a close relation-
ship exists between the hole-line expansions de-
rived from the Green’s function and from Brueck-
ner’s theories, respectively. We have formally
justified the appearance in the former approach
of spurious-looking graphs, and we have discussed
their physical role. The comparison between the
two expansions sheds some light on the appropri-
ate way of choosing the auxiliary potential U(%),
which appears as a parameter in both approaches
(Sec. mI). ‘

In the two-hole line approximation, the Green’s
function theory yields more binding than the
Bethe-Brueckner approach, especially than the
conventional version of the Brueckner-Hartree-
Fock approximation. The variational approach
indicates that this is a favorable property. Nu-
merical examples are given in Sec. IV.

The Green’s function approach has a striking
formal analogy to the variational approach, to
which it appears closer than the Bethe-Brueckner
expansion (Sec. V). It also indicates the utility
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of treating particle and hole intermediate states
on the same footing.

We thank the authors of Ref. 23 for inspiring the
title of this paper.
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