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Excitation energy dependence of the level density for fissionable nuclei
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Starting from a realistic set of single-particle levels, a microscopic calculation of nuclear level densities is
performed. The washing out of the shells and the blocking of the pairing interaction with increasing
excitation energy are shown for ' Pu and ' "Hg at different deformations. For ' Po the variation with the
parameters of the nuclear potential is also discussed. Theoretical values at different deformations and
excitation energies are compared with the existing experimental information on level density in ' "Hg, ' 'Hg,
' 'Au, and ' Pt.
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I. FOREWORD

In the last decade, numerous studies of nuclear
deexcitation following heavy-ion reactions have
considerably increased the energy and angular
momentum limits for which experimental evidence
on level density can be obtained. This new experi-
mental information, combined with rigorous cal-
culations, can lead to a better understanding of
the variation of the nuclear level density as a func-
tion of deformation, excitation energy, and angular
momentum, and thus entirely justifies any new
theoretical investigation of this problem.

In the rich literature on nuclear level densities, '
two general attitudes in treating this subject stand
out."

One is to fit the existing experimental data with
simple analytical expressions"' with a view to fur-
nishing mass- and energy-independent parameters
for subsequent statistical analyses of nuclear pro-
cesses. Modified Bethe expressions have been
employed allowing for shell and pairing effects
and, recently, ' also for the washing out of the
shell effect with increasing excitation energy.

The other approach is to compare the spacing
of the levels in a realistic model with the experi-
mental level spacings for the final purpose —not
yet attained —of deciding what kind of correlations
should be included in the actual nuclear models to
describe the high-energy spectra. But even in this
approach one is sometimes tempted to arbitrarily
adjust the model, e.g. , the pairing strength, "in
order to reproduce the experimental data.

In adopting the second attitude, two fundamentally
different methods have been used to obtain the
theoretical level density of a many-particle sys-
tem.

Most often the level density is calculated by the

Laplace inversion of the grand partition function. "'
'This function can be evaluated only if the total en-
ergy of the system can be expressed as a sum of
single-particle or - quasiparticle" energies' and
the method is essentially combinatorial. In this
case the levels with a given spin and energy can
also be directly counted, ' 3nd this arithmetical
approach represents an excellent test for the more
economical statistical mechanics approach.

'The second method for obtaining the theoretical
level density, insufficiently explored until now, is
the so-called spectral distribution method. '"" It
can take into account exactly any realistic residual
interaction by exploiting gross properties of the
distribution of levels for interacting particles in
shell-model spaces with certain symmetries. The
total level density is then obtained as a superposition
of partial densities in these subspaces. The draw-
back of this method is that it can reproduce only
general average trends of nuclei from a certain
(Z, N) region, and not a peculiarity of a selected
nucleus.

In the present paper, the results of the partition
function method for. '"Hg and neighboring nuclei
are compared with those extracted from the analy-
ses of the slow-neutron resonances' and of the
fission excitation function of "4Hg produced in the
reaction '82W+ "C (Ref. 12).

Before treating this particular case (Sec. IV),
the formalism employed in obtaining the numerical
results will be outlined (Sec. II) and checked for
nuclei with well-known shell effects (Sec. III).

II. MODE OF CALCULATION

In statistical mechanics, nuclei can be described
in terms of a generalized Gibbsian canonical en-
semble of systems represented by points distri-
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buted with a certain probability in the phase
spaces. The normalization condition of this prob-
ability,

is the basic relation for the evaluation of the nu-
clear level density p(E, A); 0 is the generalized
potential, X is the chemical potential, P is the in-
verse of the temperature, and p(&, A) is defined
as the number of points which correspond to a
given total energy E, in the phase space of A nu-
cleons.

The level density can be obtained through the
inversion of Eq. (1), regarded as a Laplace trans-
form, if the generalized partition function e ~" can
be calculated.

For an infinitely large nucleus described by a,

pairing force Hamiltonian, this function assumes
the following form

a)0

ton and neutron energies &, .and is expected to de-
pend strongly on the distribution of these energies
[see also Eq. (5) below]. One should therefore
choose the single-particle sets of levels as well as
possible. In the present paper, the energies of a
nucleon moving independently in a Cassinoidal-
shape diffuse potential have been numerically ob-
tained by the method described in Ref. 16. It can
treat any nuclear shape appearing in symmetrical
fission with only, one deformation paramater E.
Besides, for the spherical case &=0, the nuclear
potential assumes the Woods-Saxon form. Thus,
one can use the nuclear parameters already re-
ported which most accurately reproduce the ex-
perimental single-particle and hole energies [in
the (Z, N) region of interest] and which are the most,
suitable for our purpose. For the lead region,
there are such parameters" and they have been
employed in the present calculations. Of course,
the direct use of the experimental single-particle
spectra, when possible, is recommended. "

For a given excitation energy U, the usual Bethe
expression

+2+ in[1+ exp(-Pe, )] —Pa'/ G
0f &0

(2)
p(U) =

12
—~,(, exp[2(aU)'~']

if the generalized (for P finite) gap equation

2/~G
~

= g tanh( .'Pc. )/-e. ,
e&o

which relates the gap parameter & to P and X, is
fulfilled. 6 is the pairing strength and e is the
single-quasiparticle energy,

Of course, the formalism can be extended to nu-
clei with two different kinds of nucleons. The nu-

clear level density is then given by

1
p(E, N, Z) = . , I ~ exp[P(E —0„—Qz)

(2mi)' J . „,„

x tg dQ~l&g, (4)

where &= pA. . 'The triple integration can be per-
formed, to a, good approximation, by the saddle-
point method. 'The application of this method to
Eq. (4) was presented in detail in Appendix B of
Ref. 15 a,nd will not be repeated here.

When this formalism is used to describe finite
nuclei, one should remember that it represents
only a first-order approximation (the heavier the
nucleus, the better the approximation), the accu-
racy of which is difficult to predict.

The total level density of a nucleus —seen as a
(Z+N) nucleon system —is then built on single pro-

relates the many-particle level density p to the
local (at the Fermi surface) single-particle level
density g, = (6a/m'). Because of the shell effects,
this average g, (or the related quantity a) of the
density of levels with average occupation numbers
n, different f rom one or zero, should vary both
with deformation and with excitation energy. One
can therefore treat a as a parameter and use Eq.
(5) to fit the numerical results, obtained as de-
scribed above.

'The excitation energy is determined by

(6)

where E(0) =Z n, (0)a is the true (shell-affected)
ground state. There is no obvious reason to choose
the liquid-drop energy as zero energy. The shells
in the single-particle spectrum do not change sub-
stantially with nuclear temperature. " The shell
structure is therefore preserved in highly excited
nuclei; it is only less noticeable (i.e. , washed-
out") since one averages over a wider energy in-
terval. One can take, of course, any origin for U

but only one is consistent with the interpretation of
a as (m'/6)g, .

For highly deformed nuclei, the well-known
monotonic increase of the shell-model total energy
with deformation is unrealistic. Therefore, the
validity of any equation containing she11-model en-
ergies should be questioned, e.g. , Eqs. (2), (6), . . . .
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To clear up this problem, a consistent Strutin-
sky-type renormalization of both E and Q has been
attempted. " The results show only a small change
in the variation of the total level density with de-
formation, as compared to the unrenormalized
results. Therefore the general conclusions of a
traditional calculation, such as those discussed
here, are still valid.

III. TYPICAL NUCLEI V/1TH STRONG SHELL EFFECTS:
~4~ AND»OPO

To follow more clearly the physics behind the
variation of a with & and U, and to provide an ini-
tial verifica, tion of the computational procedures
used, two cases expected to exhibit strong varia-
tions of shell effects with deformation and nucleon
number have been selected in this section.

In Fig. 1 are plotted the results for the main de-
formation states of '40Pu: spherical shape (e
=0.00), ground state (e = 0.21), first saddle point
(e =0.40), second ground state (a =0.53), and sec-
ond saddle point (e =0.69). The pairing interaction
was neglected (&=0) in this example. The propor-
tionality between g, and a at low excitation energy
can be noticed.

There is a well-established connection between
the local single-particle level density g, and the
shell correction to the total energy. " One imme-
diately notices it here: To (unstable) stable nu-
clear deformations always correspond (large)
small values of the pa,rameter a. As a conse-
quence, in the energy region where the different
curves are well separated, the shell effects are

not completely washed out. At 100 MeV, for in-
stance, the differences between the distributions
of the single-particle energies at various e are
still readily noticeable, but it has often been
stressed" that this result is related to the choice
of zero energy in Eq. (6). In the so-called back-
shifted" Fermi-gas model, the excitation energy
at high nuclear temperature is measured from the
liquid-drop energy E(8) —6,„„„andin this case
the curves of Fig. 1 bunch closer together (as in-
dicated by the circles).

The back-shifted model is based on a supposed
asymptotic behavior of the type"

p(U) - exp(2[a(U+6, „,»)]' '},
although it has not yet been possible to find the
asymptotic parameters a and 5,„,». 'The values
one tries to extract always depend on the excita-
tion energy U."".'

As the relative distribution of the single-particle
levels around the Fermi surface depends on e, the
washing out of the shells does not proceed identi-
cal.ly for all deformations. This can be noticed
more easily for the lower two curves which inter-
sect (see also Fig. 5). Therefore a universal func-
tion f(U), independent of N, Z, and e, which re-
produces this effect cannot be found, although it
has been looked for in phenomenological ap-
proaches. ' If such a function is considered to be
indispensable, it should also include, as can be
seen further on, the disappearance of the pairing
interaction with U, which is quite another type of
effect.

Figure 2 shows, for the same cases a,s in Fig. 1,
the strong influence of the residual interactions on
the level density: The appearance of the energy
gap reduces considerably the number of levels in
th6 low energy part of the spectrum. The effect
is, of course, dependent on the value of the pair-
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FIG. 1. Excitation energy dependence of the parameter
a which fits the total level density for independent nucle-
ons I,

'6= 0) in Pu at different deformations & ~ pp is
the number of levels per MeV, counted in the single-
particle spectrum around the Fermi energy. The circles
correspond to the choice of the liquid-drop energy as
zero energy for e= 0.00 and &= 0.53,
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FIG. 2. The same as in Fig. 1, but with the inclusion
of the pairing interaction between nucleons. The arrows
indicate the excitation at which the pairing cancels.
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ing strength 6 used, "but a. more quantitative
study is not attempted here.

With increasing excitation energy, the single-
particle orbits eligible for mixing'through pairing
forces are gradually occupied by quasiparticles,
which make them unavailable to the interacting
pairs. "' This blocking effect reduces both the
depression of the ground state and the energy of
the first excited state. In this way, at some criti-
cal excitation, the pairing vanishes. '

As discussed in the previous section, a depen-
dence of the results on the set of single-particle
levels, and implicitly on the parametrization of
the nuclear potential, is expected. 'The overall
trend of this dependence is easy to guess: The
parameter a should diminish with the depth Vp,

and grow both with the radius r„and with the
diffuseness d. Consequently, the study of these
variations presents no a priori interest, except to
see to what extent the uncertainties in the nuclear
parameters influence the resulting level densities.
It is for this reason that such calculations have

been performed for the ground state of '"Po.
A detailed analysis (Fig. 3) reveals, however, a

more complex influence of the nuclear parameters
on the local density of the single-particle levels.
At low excitation energies, a small variation of the
nuclear parameters from their experimental val-
ues" always yields an increase of the parameter
a, irrespective of the sense of the variation.
Therefore, in the case of '"Po, the hypersurface
a(V„e„d) has a local minimum for the real
(ground-state) values of V, , r„and d, just as it
does for the collective deformations which define
the-stable nuclear shapes. " At high excitation
energies, this minimum is washed out and the ex-
pected overall dependence of a with nuclear param-
eters is found.

In view of the close connection already mentioned
between parameter a and nuclear stability, this re-
sult has a natural explanation. It is the conse-
quence of a variational principle which determines
the geometry of the average nuclear field by mini-
mizing the total energy with respect to V, (Ref.
28), r„d, and deformation parameters, as in the
Hartree- Fock method.

Since the results obtained from a, fit to single-
particle spectra by a phenomenological potential
are consistent with those obtained from a varia-
tional principle, it proves that the Woods-Saxon
parametrization used is realistic. It also suggests
that, for the determination of nuclear parameters,
simple phenomenological approaches could replace
laborious self- consistent calculations.

In this section, the values of & have been chosen
in accordance with the provisions of Strutinsky's
method" and correspond to zero excitation energy.
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Excited nuclei are in principle expected to be
characterized by a distribution of deformation
parameters rather than by a single value" and this
changes the absolute value of their level density.
However, the broadening of the distribution (as
well as the shift of its most probable value towards
zero), with increasing excitation energy, occurs
at a rate inversely proportional to the magnitude
of the shell effects involved"; hence, the level den-
sity at E = 0 still represents a good approximation
of the actual level density for a strongly bound
spherical nucleus and moderate excitation ener-
gies, as in Fig. 3. 'This is probably no longer true
for "'Pu at high excitation energies, but the above
discussion on this case did not concern the absolute
value of the density of nuclear levels.

Ori the contrary, for comparison to experiments
(next section) we need absolute values of level

10 20 30 40 50
U (MeV)

FIG. 3. Influence of the parametrization of the nuclear
potential on the single-particle level density near the
Fermi surface for the ground state (a=0.00) of ~ Po
The solid curve corresponds to Woods-Saxon potential
parameters which reproduce the experimental single-
particle spectra in the lead region (Bef. 17): Vp

Vp[ 1+ 0 .862 (N-Z)/A 1, Vp = 49.65 MeV, rp P =- 1.2 75
fm, rp'"'= 1.347 fm, d= 0.700 fm. The dashed curves
result from a decrease of the values of these parameters
(one at a time) and the dotted curves from an increase of
these values. The dot-dash curve corresponds to the
two-center shell™model (Bef. 29).
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density that are as realistic as possible. Thenthe
dependence of the nuclear shape on the excitation
energy has to be taken into account.

Iv. "4HI

Here, the experimental evidence on the density
of levels in '"Hg and in the products of its n, P,
and n decay has also been used to test the validity
of the formalism presented in Sec. II. Such evi-
dence exists at about 7 MeV excitation energy for
the ground-state deformation and at about 90 MeV
for both ground-state and saddlepoint deformations.
Data coxne from slow-neutron resonances' and
from heavy-ion induced fission excitation func-
tions, " respectively.

Figure 4 shows the oscillations of the single-
particle level density with deformation at the
Fermi surface of '"Hg. In comparison with '"Pu,
they are less pronounced and shifted by about 0.1
towards smaller defogmations. Since the liquid-
drop fission barrier is, in turn, shifted by about
0.2 towards larger deformations, "the resulting
shell-corrected barrier is almost single-humped
and the ground state is slightly deformed. & =0.1
was taken as the ground-state deformation of the
four nuclei treated in this section: '"Hg, "'Hg,

u and" Pt
In Table I, experimental and calculated (pure

shell-model) values of the parameter a are given.
The agreement is remarkably good for ground-
state deformations and excitations equal to the
neutron binding energies.

This shows that, in this region, the nuclei are
deformed. (For a spherical shape the parameter
a would have had'to be 30% larger. ) It also indi-
cates that the critical energies at which the pair-
ing cancels are close to the neutron binding ener-
gies. This last fact is supported to some extent
by present calculations which predict critical ex-
citations around 9 MeV for this nuclear region.

One should remember that the contribution of

I I 1 I ) i I i,
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FIG. 4. Parameter a which fits the total ].evel density

for independent nucleons in ~94Hg at different deforma-
tions c and excitation energies U. The calculated values
are represented by closed circles.

collective rotations" was not included in Table I.
Hence, the good agreement with experiment ap-
parently suggests that, in this nuclear region, such
levels are not populated in slow-neutron capture
reactions. However, one should be careful because
a small missing contribution from rotational states
could be compensated by the persistence of a weak
pairing inte raction.

At very high excitation energies the parameter a
is nearly energy independent (Fig. 5). This justi-
fies, a posteriori, the constant values generally
used in the evaporation codes, but only at these
energies. It also facilitates the comparison be-
tween theory and experiment since precise know-
ledge of the excitation energy is not necessary.

In Fig. 6 are plotted the calculated ratios a&/a„,
a /a„, and a~/a„~ a& corresponds to the liquid-drop
saddle point for zero angular momentum:
&=0.900." One could choose the saddle point for
J =45 5: & = 0.800,"or the shell-corrected saddle

TABLE I. Absolute and relative values of the level density parameter a for ~~4Hg.

From the fit of
the slow-neutron

resonance data
(3), i.e. , at
U= 7 MeV

From the fit of the calculated total
level density for independent

nucleons at
U=6 MeV U= 8 MeV

(194Hg)
(i 93Hg)

a&(~ 3Au)
(190pt)

a„/a„
ap/a~
a /a„

19.35
20.26
21.05
22.00
0.96
1.04
1.09

20.11
20.29
21.77
22.22
0.99
1.07
1.10

19.48
19.73
20.91
21.71
0.99
1.06
1.10
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FIG. 5. The same as in Fig. 1, but for ~94Hg.
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point: a =0.700 (Fig. 4), but the differences are not
significant in this energy domain (see Figs. 4 and

5).
With the values of a /a„and a~/a„ from slow-

neutron resonances (first column of Table I), the
best fit to the fission excitation function of '"Hg,
between 70 and 120 MeV, gives a, ratio a&/a„
=1.16." At very high excitation energies, the dif-
ferences between neighboring nuclei are washed
out and a /a„and a&/a„ tend towards one (see Fig.
6). With this limiting value, the same fit gives a
ratio a&/a„= 1.12."

If one assumes that all the incident energy is
used to heat the compound nucleus, the present
calculations predict a value a&/a„= 1.095 [the av-
erage over the interval E*=53-103 MeV (Ref.
33) in Fig. 6]. But the temperature in the com-
pound system does not reflect all this energy,
since a good fraction of the incident energy is

tied up in collective motions. One has to sub-
tract 18 MeV, for instance, the rotational energy
of "'Hg at J = 458," and this leads to a ratio az/a„
=1.110. Finally, this value has to be corrected
for the modification of the ground-state nuclear
shape with excitation energy. As mentioned in the
previous section, one has to average over all pos-
sible deformation states. This can be done with
the help of our Fig. 4 and of Fig. 14 from Ref. 15,
where the deformation probabilities are given for
"'Pt at different excitation energies. In this way,
one obtains a, theoretical ratio a&/a„= 1.065 to be
compared with the experimental values mentioned
above. The difference of a few percent is probably
due to more rotational levels at the saddle point
than in the ground state. Unfortunately, at pres-
ent, these levels cannot be counted at very high
excitation energie s.""

V. SUMMARY AND CONCLUSIONS

The changes occurring in the density of levels
with increasing excitation have been shown to be
dependent on nuclear species and deformation.
As a result, any phenomenological approach should
be used with caution.

For" Po, the variationof the leveldensitywiththe
nuclear parameters was studied and a minimum of
the level density parameter a was found for the ex-
perimental values of these parameters. This result
suggests aconsistency of the procedure and is
worth studying in more detail.

In calculating nuclear level densities, critical
assumptions are introduced only for the treatment
of the residual interactions. If the critical excita-
tion at which the pairing vanishes is exceeded, and
if the basic set of single-particle levels is care-
fully chosen, the partition function approach seems
to be a, reliable method for the calculation of the
total density of nuclear levels. Reasonably good
agreement with relative and absolute level densi-
ties (extracted from different experimental data)
was found for "

Hg and neighboring nuclei, at dif-
ferent deformations and excitation energies. It
appears that in this region of nuclei the contribution
of the collective states is not very important.

To assess definitively the validity of the present
approach, it should be applied also to other nuclei
for which precise experimental information on
level density can be obtained.

40
I

60
I

80 100 120
E ( MeV)

FIG. 6. Hatios between level density parameters ver-
sus excitation energy. in the compound nucleus, Hg,
E*= U+ fission barrier height (or particle binding
energy).
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