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0

I develop a formalism to calculate electric dipole transitions in the a particle, expanding both initial and
final states in nine-dimensional hyperspherical harmonics. I calculate results using Ballot s ground state wave
function for the Volkov potential and three different exchange mixtures, giving different potentials acting in
the final state. %'igner exchange giveg most of the .absorption in a single line: The harmonic osciHator
approximation is surprisingly good for this case. An exchange force gives a satisfactory value of the
integrated photoeffect cross section {120 MeV mb) and a photoeffect curve in fair agreemeent with
Gorbunov, and Balestra et al. Extreme Born approximation is quite poor.

' f NUCLEAR REACTIONS Photodisintegration of alpha, hyperspherical harmonies. ]

I. INTRODUCTION

Several years ago Ballot, Beiner, and Fabre'
(BBF) calculated the wave function of the ground
state of the e particle using expansions in nine-
dimensional hyperspherical harmonics (h. h. ).
Demin, Pokrovsky, and Efros' extended the cal-
culation to treat tensor two-body forces. More
recently Tjon' has used separable approximations
to calculate the e particle. See Fiarman and
Meyerhof' for a review of earlier work on the
properties of the n particle.

The main problem in photoeffect calculations for
the n particle lies then in finding good continuum
wave functions. Recently Delsanto et al.' used
their improved version of particle-hole calcula-
tions to find continuum wave functions and the
cross section for electric dipole transitions. They
limit their work to two-body breakup for photon
energy up to 36 MeV.

Electric dipole transitions give continuum states
with total orbital angular momentum of 1, negative
parity, and isospin 1. These states can disinte-
grate by two-body, three-body, or four-body
breakup. Gorbunov' and Balestra et al.' find ex-
perimentally that four-body breakup is a rather
rare process. Nevertheless, I choose to empha-
size the four-body character of the final state by
expanding it also in nine-dimensional h. h. The
presence of two-body (and three-body) breakup at
a lower threshold is taken into account by evaluat-
ing the photon energy as the sum of the kinetic en-
ergy of the four-body system and the threshold
energy for two-body breakup. I treated' a. similar
problem of competing two-body and three-body
breakup for the trinucleon photoeffect with some
success by a corresponding ansatz.

We are concerned with the serious problem of
h. h. expansions for "mixed boundary conditions. "
In my earlier paper, ' and in this paper, I assume

that at small hyperradius the nucleon-nucleon in-
teractions are strong enough to 'wash out" any
two-body (or three-body) structure that appears
at large hyperradius. An alternative method of
calculation would be to start with the wave func-
tions for two-body or three-body breakup and use
them (as is, or modified in some appropriate
manner) to find the overlap integral and the photo-
effect cross section. (This simplified model has
been used successfully by Ballot and Fabre' for
trinucleon breakup into a. deuteron and a nucleon. )

Levinger and Fitzgibbon' state that their pur-
pose is to extend the approximation of a truncated
expansion of the trinucleon wave function in h. h.
as far as they can, to see where it breaks down.
In this paper I extend the h. h. method still further,
to find out whether it will work for this case. It
is clear' that my approximation will not give a
complete solution to the problem of mixed bound-
ary conditions, since I am unable to calculate the
branching ratio for different decay modes. I wish
to determine w'hether the h, h. method gives a
reasonable result for the total cross section for
photo absorption. The result will be tested in two
different ways: (i) Comparison with experiments"
and (ii) tests for internal consistency by compari-
son with sum rules. (See Myers et al."and
Maleki and I evinger" for analogous tests for the
h. h. expansion for the trinucleon photoeffect. )

In the following section I introduce the formalism
for h. h. in nine-dimensional space, appropriate
for treatment of the ground or continuum states of
the e particle. In Sec. III I calculate the-cross
section for electric dipole transitions using a
single term in the h. h. expansion of the continuum
wave function. Integrals over eight angles are
evaluated analytically; the cross section is given
in terms of a squared radial matrix element. In
Sec. IV I present numerical results for a spin-
independent Volkov" potential with three choices
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for its exchange character: Pure Wigner force,
zero potential (an extreme Born approximation),
and an exchange mixture (approximately a Serber
force). In the last section, I compare the cross
sections with an experiment and with sum rules
and I discuss possible improvements in this ap-
proach.

II. HYPERSPHERICAL HARMONICS

Internal Co ord. (' ('P

XI

~X3

B
'X

Q= proton

o -neutron

I follow Fabre's' and Zickendraht's" notation
for h. h. in the nine-dimensional space. I define
three vectors (each in three dimensions) for the
internal coordinates of the system

= —(xt + x4 —xg —xt,) .
Here (i,j,k) are a cyclic permutation of (1,2, 3),
and the vectors x„.. . , x4 refer to nucleon coor-
dinates.

Our hyperspherical coordinates have one length,
the hyperradius ~, and eight angles, collectively
designated by Q. Six of these eight angles are
given by the unit vectors f„$„(,. We use 'spheri-
cal polar coordinates" $, 8, and Q to express the
three lengths $„$„and $,:

&, = $ cos8/v 2,
$, = $ sin8cosg/v 2,
$, = $ sin8sing/M2.

Equations (1) and (2) are illustrated in Fig. 1.
The internal kinetic energy of the system is given

by14

Dipole = (', =
~ {X,+ X~) —

~ (X~+ X~)=A —8

permute (l, 2, 3) for $, and g

Hyper spherical Co ord (', 8, $

=—cose etc.5

FIG. 1. Top: Internal coordinates, illustrating Eq. (1)
for j,&

and the dipole oper'ator, Eq. (17). Bottom: Hyper-
spherical coordinates (, 0, P.

ll = 8'/88'+ (5 cote —2 tan8)a/88

I

-l, ( l, + 1)/cos'8+ 8'/8 p'+ 4 cot2 p ——l,(l, + 1)/cos'p —l,(l, + 1)/sin'p /sin'8.1 1 (4)

Here V, ,
' is the Laplacian for the three-vector $t (i = 1, 2, 3). The last expression in Eq. (3) gives the

kinetic energy in terms of hyperspherical coordinates, where A is an operator that involves the eight
angles in Q. The quantum number l, (i= 1,2, 3) gives the orbital angular momenta associated with three
vectors &,

Hyperspherical harmonics Ht»(Q) are eigenfunctions of the operator A, with eigenvalues L(L + 7), -
where I is the "grand orbital":

AH[gt (0): L (L + 7)H[r t (0) &

L = 2(n, +n, ) + l, + l, + l, .
(5)

(6)

Here n, and n, are non-negative integers. We see that the parity is (—1) . The symbol IL] stands for the
eight quantum numbers associated with the eight angular coordinates: L, L» l; and tn; (i=1,2, 3). Here

(7)

(8)
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The Y", ,~($, ) are the standard spherical harmonics. The function "'P~, (&f&) is that used for h. h. in six di-
mensions. They are tabulated, for example, by Fang. " The function

"'P~&~ "(8)=f(L+-')(n, +L, +2)!(2n, +2L+2l, +5)!|2 ~"'(n, !) '[(2n, +2I, +1)!t] ']'

x [(L,+ 2)!] '(cos 8)'&(sin&)~ ', F,(-n» n, +L, + I, + —,', L, + 3; sin' 0) . (9)

In general, one needs to follow the standard pro-
cedure' of finding appropriate linear combinations

. of h. h. to give (i) a specified total orbital angular
momentum and its projection, (ii) a specified sym-
metry of the system on interchange of nucleonic
spatial coordinates, and (iii) the optimal subset
for a specified form of the nucleon-nucleon poten-
tial. In our work, using a single h. h. for the
ground state and another single h. h. for the con-
tinuum, we can stop with H&»(&).

The hyperradial function g~ for a given grand
orbital is conveniently written in terms of the
hyperradial function uz($) as follows:

q. (&)=u. (&)H...(&)& ', (10)

The factor $
' is chosen to eliminate the first de-

rivative term in Eq. (3). For example, consider-
ing a free system with positive total energy E
= k'k'/M, the Schrodinger equation has the form

—d'u /d$ +(L+3)(I +4)$ 'u =k'u . (11)

[The coefficient ( L+)3( L4+) comes from the sum
of L(L+ 7)$ ' from Eq. (5) and 12( ' from the
transformation, Eq. (10).] We recognize the regu-
lar solution of the hyperradial Eq. (11) as a spher-
ical Bessel function:

u, (~)= k~j„,(k~) .
We shall use this normalization.

In general, we have a noncentral potential V($),
which couples together states of different grand
orbital. If we approximate V(() by its lowest
hypermultipole V,(f), then the system of coupled
differential equations reduces to Eq. (11) with an
additional term involving V,((),

1
x v(u]),F,( K, K+ --'; -', ;u')(1 -u')'u'du.

p

For a short range nucleon-nucleon potential, any
hypermultipole does in fact fall off as $

' at large
hyperradius, thus justifying our use of spherical
Bessel functions in Eq. (14).

III. ELECTRIC DIPOLE TRANSITIONS

The cross section 0',.z for electric dipole absorp-
tion (integrated over the "line" ) from initial state
i to final discrete state f is

o,= (4H/k c)Z,(i!D ~f)'. (16)

We choose particles 1 and 4 as protons, and we
'

choose the photon polarization along the z direc-
tion. The dipole operator D is given by

D= $„=(47t'/3v' 105)e$H„,(Q) .
The h. h.

H„,(Q) = (3v'210/8m')sin8cosg cos8, (18)

[see Eqs. (1), (2), (8), and (9)]. Here [1] stands
for eight quantum numbers with the following val-
ues:
L= 1, L,=/, =1, I, =l, =m, =m, =m, =0, (19)

The initial wave function

three-body scattering.
The multipole V,r($).can be found from the spin-

independent two-body force v(x, ~) from the expres-
sion"

V„(~)= (48/&)I ( ) r(K+,')[r (K+ 3)]-'

-d'u /d$'+(L+3)(L+4)( u

+ (i!f/a') V,(~)u, = k'u, . (i3)

If at large hyperradius +p decreases faster than

$ ', then at large $ the solution of (13) must be a
linear combination of regular and irregular spheri-
cal Bessel functions:

q,. (~, n}=u, (~ }~-'H,(n),

where

H, (n) = (105/2)' ~'/(4 m') .
The final wave function for quantum numbers

given by (19) is

(20)

(2i)

u, ($) = k)[cos6,j„,(k$) —sinh, n„,(k$)]. (14)

The phase shift 6z, (k) is for a continuum state of .

specified grand orbital L and specified wave num-
ber k. It could be used to find the. cross section
for four-body to four-body scattering, as a gen-
eralization. of Fang's work" on three-body to

(22)

(23)

the radial overlap integral

q,(~, &)= u, (~)~-'H„, (n) .
We substitute (17), (18), (20), (21), and (22) in
(16) and use the fact that H, »(A) is normalized to
give

c„=(2~'nZ„/9)(~ „)',
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(;, f=((.)("((,)d(.
0

(24)

For transitions to the continuum, we use Eq. (16)
with the additional factor p& for the density of final
states. Consider a plane wave in nine dimensions,
exp(ik ' $), with

p„= ', (M/a')k'dk/(2~)'dfl„. (25)

Here the radial Born overlap integral

(28)

We find the total Born cross section by integrating
over the eight angles in Q„and using the property
that H, »(&,) is normalized:

n (E,) = (27)/9)n(E„/k)(M/I')((, ~)'. (29)

If we have a potential V,(() acting in the final
state, we change the final hyperradial wave func-
tions I,(() and therefore the radial overlap integral
to $;~. We choose u, (f) as the regular solution of
Kq. (13) with grand orbital unity and normalized
according to Eq. (14). [If 5=0, and I, = 1, this
gives kQ, (kf) as in (28).] The differential cross
section is given by the analog of (27), the total
cross section by the analog of (29):

The final state wave function with quantum num-
bers (19) is found by expanding this plane wave in
h. h." I select the relevant term

py($ 0):f(2)l))/'2 /1)'$4(k()(k $) H[~) (Qi)H(» (0)))

(26)

Substituting in (16) we find a differential cross
section

do/dQ = (2))/9)n(E, /k)(M/k')((, .~)'IH„, (Q,)]'.
(27)

For a Wigner force, the same in initial and final
states, the integrated cross section is given by the
Thomas-Heiche-Kuhn sum rule"

o, = (2))') n(I '/M) = 59. 7 Me V mb . (33)

If we choose potentials for initial and final states
that differ by 4 V, the integrated cross section is
changed by an amount proportional to the ground
state expectation value of 4~V)' F.or instance, if
we use potential V, ($) for the initial state and, in
the Born approximation, zero potential for the
final state, the integrated Born cross section is

cr, = (2)r')n(k'/M) —(4m'/27)n(z~ V q'~f) . (34)

o(x„)= 144. 86 expt -(x, , /0. 82)']

-83.4 exp[-(x„./l. 60)'] . (s5)

I substitute in Eq. (15) to find the lowest hyper-
multipole.

IV. RESULTS FOR THE VOLKOV POTENTIAL

BBF' used Volkov's" spin-independent potential
to calculate the ground state of the & particle by
an h. h. expansion. . The expansion converges ra-
pidly: (i) A single term gives the energy to within
2 MeV; (ii) the lowest term contains 99 jo of the
probability for the ground state wave function.

In this section I use BBF's ground state wave
function uo($) for the Volkov potential together
with three different choices of the potential for the
final state: (i) The potential V,($), which is the
dominant term in the ground state potential;
(ii) zero potential, or extreme Born approxima-
tion; (iii) an exchange mixture for the two-body
force that gives a potential -', (V, + V, ) for the final
state.

The Volkov potential V(x;&) in MeV for a pair of
nucleons separated by a distance x;& in fm is given
by the sum of two Gaussians

o(E„)= (2~/9)n(E„/k)(M/a ')(~„)', (so)
V, (g) = 11410f(x)—6570f(x'),

4,=f ~.(()(",(o&(.
0

(sl)

I check my photoeffect calculations by compari-
son with sum rule values for the moments a', and
o,: the bremsstrahlung-weighted and int grated
cross sections, respectively.

Using closure for Eq. (23), the bremsstrahlung-
weighted cross section is

o,= (2w'/9)n&f
~
('~i) . (32)

This expression agrees with the relation between
o', and the root-mean-squareradius of the n." The
value of o, is independent of the potential chosen
for the final state, just as in our trinucleon work."
I calculate it only to check numerical accuracy.

(M/k ') V„o($) = 0.070 $' —3. 1 . (37)

The two curves agree reasonably well in the range

f(x) = (1/42 —15/8x') exp(-x')

+ ' ~"'(I/2x' —S/2x'+ 15/8x')erf(x),
(s6)

x = $/0. 82, x' = $/1. 60 .
For grand orbital of zero, (M/I') times the

nuclear potential (36) is combined with the "centri-
fugal potential, " 12/$ of Eq. (13). The sum of
these two terms is plotted as a solid curve against
hyperradius in Fig. 2. I compare with the dashed
curve for the (nine-dimensional) simple harmonic
osciilator (HO) approximation replacing V,(().
Here
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Potential, (including l2/( ) nume rica i

—numerical
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FIG. 3. Hyperradial wave functions ul, ($) vs hyperra-
dius (, in fm, for grand orbit L=0 (ground state) and
L =1 (dipole state). The solid curves are for the Volkov
potential Vp($); the dashed curves are for the harmonic
oscillator approximation.

FIG. 2. Potential in fm vs hyperradius in fm. The
solid curve shows the Volkov and centrifugal potentials
Vp (()+12/( [see Eqs. (13) and (36)]; the dashed curve
shows the oscillator approximation, Eq. (37). The hori-
zontal dashed line shows the ground state energy of the
& particle.

Eo= -3.1(0'/M) +9@m= -30 MeV. (38)

Equation (38) agrees well with either numerical
calculation using the uncoupled Eq. (13) or with
their result for seven coupled differential equa-
tions. (The former gives E,= -28. 582 MeV, the
latter -30.376 MeV. )

In the harmonic oscillator approximation, the
dipole oscillator strength is localized in a 6,func-
tion at energy E= 2h~, or 22 MeV, using our fit
(37). We would then anticipate a discrete excited
state with grand orbital one, some 22 MeV higher
than the ground state. The cross section inte-
grated over the line is calculated using Eq. (23)
and compared with the TRK sum rule (SS).

of hyperradius from 3 to 6 fm. (Of course, they
differ radically at small hyperradius and at large
hyperradius. The difference of nuclear potentials
at small hyperradius is 'masked" by the very
large centrifugal potential. ) The coefficient of the
quadratic term in (37) gives I &u= 11 MeV, in
Fabre's" notation. Fabre earlier estimated 8&
= 10 MeV from his harmonic oscillator fit to the
experimental & particle form factor. The energy
of the ground state in the oscillator approximation
is

I solve the differential Eq. (13) numerically for
the two values zero and unity for the grand orbital
and determine eigenvalues and eigenfunctions. I
find Ep 28 4' MeV and Ey 7 8 MeV (The
former result cheeks well with Ballot, providing
confirmation of the accuracy of my numerical
work. ) The difference E, Eo is withi-n 10%%u~ of the
22 MeV value given by the harmonic oscillator ap-
proximation. I compare in Fig. 3 the normalized
wave functions uo(4) and u, (f) found numerically,
with those given by the harmonic oscillator ap-
proximation. ' Again the agreement is satisfac-
tory in the range of hyperradius from 3 to 6 fm
which gives the predominant contribution both to
normalization integrals and to the overlap integral
(24). My numerical wave functions give

o,. f
—55 MeV mb. (39)

That is, the line contains more than 90%%uq of the
integrated cross section of 59. 7 MeV mb.

The remaining cross section is found by calculat-
ing continuum wave functions from (13) with grand
orbital one with normalization (14). The cross
sections found from (30) give a continuum con-
tribution of 0. 1 mb to o, and a contribution of
3 MeV mb to the integrated cross section. The
moments o'

y and 0'p are compared in Table I with
sum rule values (32) and (33). The former gives
a, =2. 9 mb. The moments found from the cross
sections are in satisfactory agreement with sum
rule values.

I turn now to the other extreme of a free particle
wave function for the continuum. I designate this
as the "Born approximation, but the reader will
recognize that the same term is used for other ap-
proximations, e.g. , a product of a triton and a
proton wave function, with no triton-proton inter-
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TABLE I. Moments of & photoeffect.

Brems str ahlung-weighted
From cross section Sum rule

Integrated
Cross section Sum rule

%'igner exchange
Exchange mixture
Born approximation
Experiment

2.8 mb
2.8 mb
2.6 rnb

2.5 mb

2.9 mb
2.9 mb
2.9 mb

58 MeV mb
120 MeV mb
200 MeV mb
100 MeV mb

60 MeV mb

180 MeV mb

UP &(~) = '
I v, (~)+ v, (g)I. (40)

—(V+V )

0

action. The cross section is found from Eq. (29).
I use Ballot's wave function uo(&) in finding the
overlap integral o,z of Eq. (28). My Born cross
section is plotted (dashed curve) against photon
energy in Fig. 5. For this purpose I evaluate the
photon energy as E„=5 'k'/M + 30. 4 MeV, i.e., I
use the threshold for four-body breakup for Bal-
lot's solution of seven coupled differential equa-
tions. Born a.pproximation gives a very slow rise
near the high threshold of 30.4 MeV and a very
slow decrease of the cross section at high photon
energy. The moments ve, =2. 6 mb and cr, =200
MeV mb a,re compared in Table I.with sum rule
results o,= 2. 9 mb and op= 180 MeV mb. The
latter number comes from the evaluation of Eq.
(34).

Finally, I consider an exchange mixture, with
the potentia, l acting in the final state given by

UP'($) replaces V,($) in Eq. (13). [In future work
I plan to derive the potential U',"($) from some as-
sumed Majorana. exchange mixture in the two-body
force. In the absence of this derivation, the ansatz
(40) is made, by analogy to the same result for a
two-body Serber mixture for the trinucleon. "J
The hypermultipole V, ($) is found from Fabre's
formula, (15) for K= l.
V,(]) = 11410g(x) —6570 g(x'),

g(x) = (1/8x + 315/32x')exp( —x')

+ —,
' w' i'(I /4x' —15/8x' + 105/16x'

—315/32x') erf (x); (41)

x and x' are defined in Eq. (36).
At small hyperradius V2 is proportional to t.-'.

At large hyperradius both V, and V, fall off as $ ',
but V, is half as large as Vp. Figure 4 illustrates
V,(r) a,nd —,

' (Vo+ V,).
With the potential given by (40) used in the dif-

ferential Eq. (13) for grand orbital one, there is
no bound state. The numerical solutions are nor-
malized, andused to find the overla. p integra. l &,.&
with BBF's ground state Qp and the cross section
v(E,). Here I follow my ansatz, ' discussed briefly

0
Q

0
CL

E
2

I
/

/
/II

/
I

/
/

FIG. 4. Comparison of potentials in fm 2 vs hyperra-
dius (. The dashed curve is Vp($) Eq (36); the solid
curve is z(Up+V2) used for an exchange force [Eqs. (40)
and (41)].

I l

l0020 40
r

0 60
E (MeV)

FIG. 5. Total cross section 0 in mb for'u photoeffect
vs photon energy in MeV. The solid curve is for ex-
change force, the dashed curve for Born approximation,
the dash-dot curve by Delsanto et al. , Ref. 5. The "x"
shows Gorbunov's measurements, Ref. 6.
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above, where the photon energy is given by

E„=h'k'/M + 21.9 Me V . (42)

200—

Here 21.9 is the difference of BBF's binding ener-
gy for the n and for the triton. [Instead of 21.9
MeV in (42), I could use the experimental threshold
for proton-triton breakup but that refinement is an
unimportant detail in the present primitive ealeula-
tion. ] The cross sections are plotted as a solid
curve in Fig. 4. I also show Gorbunav's experi-
mental values' for the n photoeffect cross section
and Delsanto's calculation' (dash-dot) for two-
body (p —'H or n —'He) breakup. (Balestra's' data
lie close to Gorbunov's. )

As a by-product of calculating the normalized
continuum wave function, I obtain the phase shift
5, for four-body to four-body scattering. I show
this phase shift in Fig. 6 for the exchange poten-
tial (40). The phase shift becomes larger than
180, even though there is no bound state.

The cross section for this exchange potential
gives the moment values in Table I: 2.8 mb for
the bremsstrahlung-weighted cross section, as
compared with Gorbunov's value of 2. 5 mb, and
120 MeV mb for the integrated cross section, as
compared with Gorbunov's 100 MeV mb.

V. DISCUSSION

I use two criteria for the success of h. h. ex-
pansions in the calculation of continuum wave func-
tions. First, the calculation needs to be internally
consistent. Second, if we use a reasonable nucle-
on-nucleon potential, we should get satisfactory
agreement with experimental results. As noted
above, I am trying to push the h. h. expansion
farther and farther, to determine the limits of a
useful application of this method. (The limits
cannot be found by fiat, or by a "back of an enve-
lope" calculation. )

In this paper, I test internal consistency
for the choice of a signer exchange nucleon-nucle-
on force, as was done by Myers" for the trinucleon
photoeffect with the same farce. In each case, we
obtain agreement within 10% with the model-inde-
pendent Thomas-Reiche-Kuhn sum rule for the in-
tegrated cross section. See Fang et al."for the
small correction in the trinucleon case due to use
of a second grand orbital in the continuum.

I also explore the good agreement between re-
sults for a two-body Volkov potential with Wigner
exchange and for a harmonic oscillator approxima-
tion. The agreement is remarkably good for wave
functions, for energy of excitation, and for prop-
erties of the photoeffect cross section. This re-
sult is a generalization of the agreement between
the independent particle model and the collective

i60

120

80

40

klfm )

FIG. 6. Phase shift 6& in degrees (for four-body to
four-body scattering) vs wave number A in fm~, for an
exchange mixture: See Eqs. (14) and (40).

model of the giant dipole resonance. But it is
more difficult to calculate for an exchange force
for which the giant dipole resonance moves up to
the continuum.

In the ease of our exchange mixture [Eq. (40],
we are concerned with the second criterion of
agreement with experiment. My sum rule results
are just a bit outside Gorbunov's quoted errors.
My solid curve in Fig. 5 is in fair but not excellent
agreement with experiment. (Delsanto's dash-dot
curve agrees somewhat better with experiment
than my curve. )

The Born approximation, treating the final state
as four free particles, is very poor. This is
shown by Fig. 5 for the cross sections and Fig. 6
for the four-body phase shifts, which are not
small.

The calculations in this paper could be improved
in two different ways. First, the approximations
of this paper could be continued, with certain re-
finements: (i) Use of a specified two-body Major-
ana exchange to give the exchange potential U',"
and the sum rule value for the integrated cross
section; (ii) use of a spin-dependent or a tensor
two-body potential and treatment of Coulomb
forces; (iii) use of two or more coupled partial
waves in the continuum. Second, the problem of
mixed boundary conditions in the continuum needs
further study. Future work might (i) justify the
present ansatz (42), or (ii) replace it by a better
approximate method using h. h. , or (iii) east doubt
on the utility of h. h. expansion for these continuum
calculations.

I am grateful to the National Science Foundation'
for support of this research and to M. Fabre de la
Ripelle for critical comments on my work.
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