Mass and excited states of ¹⁰⁰Nb

F. Ajzenberg-Selove*

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

E. R. Flynn, D.L. Hanson, and S. Orbesen

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87545 (Received 6 February 1979)

The ¹⁰⁰Mo(t,³He)¹⁰⁰Nb reaction has been used to determine the mass and the energy levels of ¹⁰⁰Nb. A mass excess of -79480 ± 30 keV is obtained for ¹⁰⁰Nb, in substantial disagreement with β -decay results. Twenty-two excited states of ¹⁰⁰Nb with $E_x < 1.3$ MeV have been observed.

NUCLEAR REACTION ¹⁰⁰Mo(t, ³He), E = 23.0 MeV; measured $\sigma(E_{3_{\text{He}}}, \theta)$. ¹⁰⁰Nb deduced levels. New mass of ¹⁰⁰Nb.

¹⁰⁰Nb has previously¹ been observed in studies of the ¹⁰⁰Mo(n, p) ¹⁰⁰Nb reaction, in the β^{-} decay of ¹⁰⁰Zr and as a fission by-product. Two isomers of ¹⁰⁰Nb have been identified: Their half-lives² are 1.5 ± 0.2 s and 3.1 ± 0.3 s. Studies²⁻⁴ of the γ rays in ¹⁰⁰Mo, formed in the β^- decay of these two isomers, show that the 1.5-s isomer should have a low spin since it decays to 0^+ and 2^+ states of 100 Mo. This is confirmed by the fact that it is the only one of the two isomeric states populated in the decay of 100 Zr($J^{\pi} = 0^+$). The decay of the 3.5-s isomeric state is poorly known but its population in fission, the fact that it is not populated in the 100 Zr β^{-} decay, and its probable² β^{-} decay to a 4⁺ state in ¹⁰⁰Mo at 1135 keV suggest a large spin. $Q_{B^{-}}$ = 6240 ± 100 keV from the decay³ of the 1.5-s isomeric state. Wapstra and Bos^5 adopt 6230 ± 130 keV. It is not known which of the two isomeric states is the ground state or what their separation is. No other states of ¹⁰⁰Nb have previously been observed.

The masses and the low-lying states of ¹⁰⁰Nb have been studied by the $(t, {}^{3}\text{He})$ reaction on ${}^{100}\text{Mo}$. A 23-MeV triton beam from the LASL three-stage Van de Graaff facility and a magnetic spectrometer of the quadrupole- dipole-dipole (Q3D) type which has a focal plane detector consisting of a 1m long helix detector with 0.8-mm spatial resolution⁶ were used.

A self-supporting target⁷ of molybdenum enriched⁸ to 95.9% ¹⁰⁰Mo (also containing 1.7% ⁹⁸Mo) was oriented at 20° to the incident triton beam. The target was 338 μ g/cm² thick. Data were taken with the ¹⁰⁰Mo target at θ = 25°, 30°, and 35° and total integrated beam currents of 3.16 to 4.32 mC. Runs were also made with an enriched ²⁴Mg target under identical conditions preceding and following each run to calibrate⁹ the channel number versus the energy of the outgoing ³He ions.

Figure 1 shows spectra obtained at $\theta_{\rm lab} = 25^{\circ}$ and 35°, and a partial spectrum of the results at 30°. The numbered groups correspond to states in ¹⁰⁰Nb: See Table I. The resolution of single groups (full width at half maximum ≈ 25 keV) observed under similar conditions in other experiments^{9,10} is clearly not sufficient to resolve the many states of ¹⁰⁰Nb with $E_x < 1.4$ MeV. The 23 groups displayed in Table I are a lower limit to the states of ¹⁰⁰Nb in that range. States ≤ 20 keV apart would not be resolved, nor could we resolve

FIG. 1. Spectra of the ³He ions from the ¹⁰⁰Mo(t, ³He) ¹⁰⁰Nb reaction at $E_t = 23.0$ MeV, $\theta_{\rm lab} = 25^{\circ}$ and 35°, B = 5.4532 kG. The ordinate shows the total number of counts recorded in a 5-channel bin. The abscissa shows the channel number. The inset shows the region corresponding to $-6.0 < E_x < -6.8$ MeV at 30°. For a discussion of the regions labeled Q_m see the text. The numbered groups are due to states in ¹⁰⁰Nb: See Table I.

19

2068

© 1979 The American Physical Society

Group No. ^a	E_x in ¹⁰⁰ Nb (keV)	$d\sigma/d\Omega^{\rm b}$ (µb/sr)
0	0 c	0.090
1	25 ± 10	0.093
2	$131\pm\!10$	0.080
3	$(210 \pm 15)^{d}$	
4	348 ± 15	0.19
5	410 ± 15	
6	450 ± 20^{e}	
7	520 ± 20^{e}	
8	565 ± 10	
9	$(595 \pm 20)^{e}$	
10	680 ± 20	0.28
11	$(720 \pm 20)^{\text{f}}$	
12	784 ± 20	
13	$820 \pm 20^{\text{f}}$	
14	865 ± 20^{e}	
15	893 ± 20	
16	945 ± 20^{e}	
17	1040 ± 20^{e}	
18	1075 ± 20^{e}	
19	$1136 \pm 20^{\text{ f}}$	
20	$1180 \pm 25^{\text{f}}$	
21	$1260 \pm 30^{\text{g}}$	
22	$1300 \pm 30^{\text{g}}$	

TABLE I. Energy levels of ¹⁰⁰Nb.

^a See Fig. 1.

^b $\theta_{lab} = 25^{\circ}; \pm 40\%.$

 $^{c}Q_{0}$ measured in this experiment is -6.690 ± 0.030 MeV. ^d Observed at only one angle. There is weak structure at all three angles suggesting unresolved states with 200 $< E_{x} < 300$ keV.

^e Not resolved.

^f Resolved at one angle.

^g Kinematically observable at only one angle.

states which are weakly populated if in close proximity to strong groups.

The mass of the ground state of ¹⁰⁰Nb derived from our results is 99.914675 (32) u, using Q_0

 $=-6690\pm30$ keV as measured from our data, the masses of ¹⁰⁰Mo. t and ³He from Wapstra and Bos⁵ as well as the conversion factor 931.5016 (26) MeV/u used by them. The atomic mass excess of ¹⁰⁰Nb is then $-794\,80$ (30) keV, yielding $Q_{\beta}(\max)$ = 6709 ± 30 keV. This is puzzling in view of the fact that Stippler *et al.*³ found Q_{θ} for the 1.5-s, low spin isomeric state of 100 Nb to be 6240 ± 100 keV. We show in Fig. 1 the region at all three angles where a group corresponding to $Q_{\theta}^{-} = 6230$ \pm 130 keV (the Wapstra-Bos value⁵) should be observed. No structure is evident at any of these angles, which is particularly surprising in view of the fact that the 1.5-s isomer is a low spin state. The relatively constant background for the channels above group 0 can be easily understood in several ways and may be in part due to the presence of counts from the ${}^{98}Mo(t, {}^{3}He){}^{98}Nb$ reaction (⁹⁸Mo was a 1.7% contaminant) whose ground state Q value is⁵ -4.566 MeV. However, the more likely explanation is leak-through of α particles into the ³He spectrum since the (t, α) reaction is three orders of magnitude more prolific than is the $(t, {}^{3}\text{He})$ reaction. These counts, from ${}^{100}Mo(t, \alpha){}^{99}Nb$, would appear as a continuum due to the high excitation energy in the residual nucleus ⁹⁹Nb. It would be interesting to see if additional β^{-} decay studies would confirm Q_{β} . Studies of the branching ratios of the decay of both isomeric states would permit limits to be placed on the J^{π} of the two isomers, and might suggest their ordering in ¹⁰⁰Nb in conjunction with the results presented here.

We acknowledge with many thanks the assistance of Judy Gursky, of R. Poore and of the staff of P-9, particularly William Smith. We appreciate very much the support of Dick Woods and H. C. Britt. This work was supported by the U. S. Department of Energy.

*Also at Los Alamos Scientific Laboratory.

¹D. C. Kocher, Nucl. Data Sheets <u>11</u>, 279 (1974).

- ²H. Ahrens, N. Kaffrell, N. Trautmann, and G. Herrmann, Phys. Review C 14, 211 (1976).
- ³R. Stippler, F. Munnich, H. Schrader, J. P. Bocquet, M. Asghar, G. Siegert, R. Deckert, B. Pfeiffer, H. Wollnik, E. Monnand, and F. Schuller, Z. Phys. A284, 95 (1978).
- ⁴T. A. Khan, W. D. Lauppe, H. A. Selic, H. Lawin, G. Sadler, M. Shaanan, and K. Sistemich, Z. Phys. A275, 289 (1975).
- ⁵A. H. Wapstra and K. Bos. At. Nucl. Data Tables <u>19</u>,

⁶E. R. Flynn, S. Orbesen, J. D. Sherman, J. W. Sunier, and R. Woods, Nucl. Instrum. Methods <u>128</u>, 35 (1975); S. Orbesen, J. D. Sherman, and E. R. Flynn, LAMS report, 1976 (unpublished).

⁷Prepared by Micromatter, Seattle, Washington 98112. ⁸The isotopes were prepared by the Stable Isotopes Divi-

- sion of ORNL. ⁹F. Ajzenberg-Selove, E. R. Flynn, S. Orbesen, and J. W. Sunier, Phys. Rev. C 15, 1 (1977).
- ¹⁰E. R. Flynn, J. W. Sunier, and F. Ajzenberg-Selove,

177 (1977).

Phys. Rev. C <u>15</u>, 879 (1977).