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The perturbational approach to the Faddeev equation proposed by us is applied to the 'H bound state. The
'

perturbation iteration is found to converge beautifully, leaving no question about its usefulness. Using the
Reid soft-core potential, we obtain the 'H binding energy at 6.62 MeV, P(S) = 90.28%, P(S') = 1.70%%uo,

and P(D) = 8.02%, for the three-body state consisting of the two-body pair in the 'So and the 'S, + 'D,
state with the third particle in the s-state relative to the center-of-mass of the pair. The contribution from
the third particle in the d-state adds to the binding energy only a small fraction ( —0.05 MeV). The one-

body charge form factor of 'He has a dip at q
'- 16 fm ', and the height of the second peak is about an

order of magnitude too low compared to the data. Each Faddeev component of the triton wave function as a
function of the relative distance of a pair has a node near the core radius in its 'So and 'S& components, but
no node is found in the 'D, component, The wave function as a function of the spectator coordinate extends
over quite large distances without a node in any component, The nodes are attributed to the strong soft-core
and the particle exchange effects, .

NUCLEAR STRUCTURE Triton bound state. Exact solution of the Faddeev
equation by a perturbative approach. Binding energy; 6,62 MeV. Node of the

wave function near the core radius.

I. INTRODUCTION

It h3s long been a problem in nuclear physics to
know to what extent the effect of three-body forces
and the off-shell properti'es of a two-body potential
influence nuclear properties of three- and more-
than-three-body systems. Obviously, the triton is
the most suited object to study these questions.
The first step, of course, is to solve the three-
body problem assuming that the interaction Ham-
iltonian is given by a sum of realistic two-body
potentials to see if we get the correct binding en-
ergy of the triton, the charge form factor, etc.

After a long history of calculating the wave func-
tion and the binding energy of the triton by varia-
tional methods, "people began to calculate these
quantities on the b3,sis of the Faddeev integral
equation. ' In general, the variational method is
an effort to approach the correct wave function by
making the detour of not solving the Schrodinger
equation directly. This is in contrast to solving
the Schrodinger equation expressed in the form of
an integral equation, in which we impose correct
boundary conditions and make our effort to obtain
an exact solution if the integral equation is amen-
able to numerical calculations.

At an early stage of the studies of a three-body
problem, it was felt that solving a Faddeev equa-
tion that is a two-dimensional coupled set of inte-

gral equations was impossible on existing compu-
ters. As a result, various separable approxima-
tions of the two-body t matrix were introduced
with the purpose of reducing the Faddeev integral
equation to a set of coupled integral equations
of one variable. However, since a local potential
is not a Hilbert-Schmidt operator, the t matrix
for a local potential can not exactly be expressed
as a sum of separable terms. ' In this context, we
introduce the work "exact" meaning "without re-
course to a separable expansion of the t matrix. "
In view of the importance of solving the three-body
system exactly, we report the result of an exact
calculation of a three-nucleon bound state based on
a method quite different from other authors. We
use the Reid soft-core (RSC) potential as a typical
two-nucleon potential. '

So far, the Faddeev equation for the three-nu-
cleon bound state with the RSC potential has been
solved exactly by two methods; the Pade approxi-
mant" and the partial differential equations. '

In Refs. 6 and 7, the problem was handled in mo-
mentum space. In this case we must calculate a
great number of matrix elements. This situation
seriously restricts the number of mesh points. In
Ref. 7, for example, ten and sixteen points are
chosen for the spectator and the relative motion
in momentum space, respectively. If the number
of the coupled integral equation is five as in Ref. 7,
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this means that we are handling a 800X2 matrix
for each step. We want to avoid this difficulty.
Furthermore, we have the problem of reproducing
faithfully the detailed feature of the sophisticated
RSC potential, which has originally been given in
coordinate space. Thus, we choose to calculate
the relative motion of a pair of particles in coor-
dinate space. In fact, in our calculations, we use
30 uneven x-mesh points from x = 0 to 6 fm with
the mesh size ranging from x=0.0270 fm at x= 0
to 0.725 fm at x = 6 fm, and an analytical formula
beyond 6 fm. This procedure yields wave functions
which are so accurate that further improvement in
numerical procedure is unnecessary for calcula-
tions of the relative mohon. We may say that our
calculation of the relative motion is exact. For
the spectator, we use the momentum space repre-
sentation with twelve mesh points.

Details about the formulas have been given in
other technical reports. ' " Here we write the
background and the outline of our method. Our
primary concern in the formulation is to have an
accurate and practical method of calculation easily
accessible to anybody. For that purpose, we must
make the size of the matrix as smaD as possible,
so that we can use the computer memory 2nd time
for accurate calculations of matrix elements. - Fur-
ther, we must avoid expansion in a complete set of
orthonormal functions, whether in the hyperspheri-
cal functions, "in the Sturm- Liouville functions, '3

in the Kapur-Peierls states, "or in the harmonic
oscillator functions. " These expansions may be
correct in principle, but are always troubled by
the question of convergence in practice. ' " For
instance, suppose that for the t matrix at negative
energies (E& 0}we use the Sturm-Liouville func-
tions up to a very large ~E~. If ~E( becomes large,
the convergence of matrix elements mhich appear-
ed in the three-body calculation becomes very
slow due to the increase in the normalization fac-
tor."'" Furthermore, since the Sturm-Liouville
function of order n has (n —1) nodes inside the
force range and hence oscillates violently and
peaks sharply as n increases, the three-body cal-
culations become less and less accurate with in-
creasing ri. This difficulty and the difficulty due
to increasing dimensionality of the matrix prevent
us from employing the Sturm-Liouville functions
up to a large n. Jn practice, we are forced to trun-
cate the expansion at n =3 or less.

Our basic idea in the present paper is a pertur-
bative approach. "" There are two crucial points
for any perturbation method. Firstly, the perturb-
ed part must be chosen so that it converges after
some successive iterations. Secondly, the unper-
turbed part must easily be calculated. In the three-
body problem, there are many possibilities in

choosing the unperturbed part; the Tamaguchi in-
teraction, "the first Sturm-Liouville function, "
the unitary pole approximation, "and so forth.
Anyway, it is almost evident that the contribution
from the poles of the two-body system must be in-
cluded in the unperturbed part. Then all the rest
may be treated as the perturbation. To get an ex-
3ct result, the perturbational calculations must
converge in such a way that no question about the
convergence and the accuracy is left. Our prelim-
inary calculation shows that in the region where
the Sturm-Liouville expansion becomes impracti-
cable, the perturbation iteration converges rather
quickly.

More specifically, we start from the Faddeev
equation for the three-body wave function in coor-
dinate space. In the present calculation, the H, SC
potential acting on the 'S, and the 'S, + .0, tmo-body
state js used. The spectator particle is then re-
stricted to l =0 and 2 relative to the center-of-
mass of the pair. We shall report on the results
with L=O mostly, but the result of the binding en-
ergy including l= 2 will also be given. First we
expand the three-body Faddeev equation by the
plane wave states of the spectator particle. To
each momentum P of the spectator particle corre-
sponds momentum j of the pair through the rela-
tion

where ~E~ denotes the trial triton binding energy.
Henceforth, we use the notation q in place of Iql~
for simplicity. For each q, we have the Faddeev
equation which we treat in coordinate space. For
the momentum q ranging from (m ~E j/h')' ' to an
appropriately chosen value q„, we calculate the
first Sturm-Liouville functions of the 'S, and the
'8, +'D, two-body states. These functions are
used to make the Faddeev equation for these two
states in this range of q separable. This part
alone constitutes the three-body problem of one
variable and is treated as the unperturbed part in
the whole problem. The contribution from all the
rest, the 'S, and the 'S, + 0, states in the range be-
yond q„, as weQ as all other two-body states in the
the entire range q & (m ~E~/h')'~', is treated as the
perturbation. We take the maximum value of p as
1.95 fm ', which is shown to be sufficient (see,
Fig. 11). As mentioned above, the basis set of
functions need not be the first Sturm-Liouville
functions. However, this set makes the formula-
tion sinipler than any other choice. The formula-
tion is done in the form of integral equations,
while numerical calculations are performed by
means of equivalent ordinary differential equations
with inhomogeneous terms.

By the present method, when the Faddeev equa-
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II. DEFINITIONS AND BASIC FORMULAS

Vfe use the set of coordinates and momenta

X=r2 —r~) y= I'3 —(r)+I'2)/2

(I=g(k, -k, ), p= ';[4, —(k, +k2)/2j. (2)

we denote by ~a& and ~(I& the normalized spin-iso-
spin-angular function of a two-body and a three-
body state, respectively. For a given q and a,
where a is the 'S, or the 'S, +'0, state, we define
the first Sturm-I iouviile function (i),(q, x) by the
solution of the equation

tion is expressed .a. a matrix form, the dimension-
ality of the matrix is rather small. It is mN&&mN,

where m is the number of the two-body state (m = 2
for 'So and 'S, +'D,}, and X is the number of mesh
in momentum for q «q„. (In Sec. 11 and thereafter,
the number mÃ is called the number of the basic
states. ) We choose N= 6 for "the standard P
mesh, " which is defined in Sec. VI. This small-
ness of the dimensionality of our matrix enables
us to perform the calculation of each matrix ele-
ment to sufficient accuracy. As will be seen, the
perturbation converges beautifully within a few
steps regardless of the choice of q„, thus leaving
no question about the convergence and the accur-
acy,

In Sec. II, we summarize our basic formulas.
Since the detailed formulation has already been
given, ' """we shall present it as brief as pos-
sible. In Sec. III, we discuss the details of the
calculation. In Sec. pf, we demonstrate, using 'S
and 'S central potentials, that the perturbation con-
verges regardless of q„. The results of the ealeu-
lation for the RSC potential a,re presented in Sec.
V. Discussions and conclusions are given in Sec.
VI.

origin. In terms of the function („ we can express
the Qreen's function as

Go', Ãq) = —[I—&gq) j I t.&(g. I+ggq) (6)

e =C(12„,3}+C(23,1)+ C(31, 2),

This equation defines the new Qreen's function
g,(q). Of course, we can write out a more general
formula in which any number of Sturm-Liouville
functions are involved. However, we use E(I. (6)
in the present paper. The reason is explained in
Sec. IV, In the usual perturbation methods, the
potential is divided into an unperturbed part and
the remainder which is treated as the perturbation.
In our approach, the Green's function is divided
into an unperturbed part and the remainder which
is treated as the pertgrbation. This division of
the Qreen's function is essential for achieving con-
vergence in successive iterations irrespective of
the strength of the potential. "'"

Associated with the Green'. s function ggq}, we de-
fine the wave matrix e, (q) by

~.(q) = I+a.(q)&.~.(q)

Then we 'can show that"

G.",.)(q)&.(q) = —
I C.(q)&(().(q) I &. +I:~.(q) —Il. (8)

This decomposition will be used for the 'S, +'D
and the 'S, states when q is in the region (m~E t}' '/
@-q - q„. These will be called the basic states. For
the 'S, + 'D, and the 'S, states in the region q & q „,
as well as for higher partial waves for all values
of q, we will use G(o)(q)t, as a whole without the
decomposition of E(I. (8). In treating the three-
body problem, we consider the first term on the
right-hand side of E (I. (8) as the unperturbed part,
and all the rest as the perturbation.

The totally antisymmetric three-body bound state
with T =M~ =& is given by"

G.",Lq)&.t.(q) = &.(q)4kq}, (3) where

with the largest eigenvalue X,. We normalize the
function P, by

e(12, 3) = g"(12, 3)q"(12, 3)+g'(12, 3)(i'(12, 3),

In E(I. (3), V, is the two-nucleon potential multi-
plied by m/O'. The two-body Green's function
Go(2/q) is defined by

dm 2 d L(L+1),(~) r, 5(x —x )+ +- Go q)x)x )= r
dk x dx x ' ' ' xx

&s the boundary condition to this Qreen's function,
we require that it be regular at the origin and de-
crease exponentially at large distances from the

and similarly for 4 (23, 1) and 4 (31,2}. Here g
and & denote the three-body isospin function
l(f a)TM,&; &

= -1(I, a)'-a& and r = I(o, '-)22&. A»o,
S(A)

3 '"'(32, 3) = g l(13)&, (1,'-)j; & 31 (12, 3))3„(&3),
(11)

where Q"") stands for the sum over (I
=&LSJ lj(12, 3)j with symmetric (antisymmetric)
spatial-spin states with respect to the pair 12.
~((LS)J, (L2)j;Z,M, (12, 3}& is the normalized spin-
angular wave function in which the state ~(LS)J')
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for the pair 12 and the state I(4'-)j& for the specta-
tor are combined to form the total state !80M/
(d, =,'- for 'JI).

We designate by G,"' the Green's function in the
three-body free space. First, we expand G,"'t in
terms of the complete set of the normalized plane
wave state of the spectator particle. We denote by

lu)(p)&= u&(p, s) =~2/v Pi (Px). (i2)

%e designate by t, the scattering matrix for the
two-body state a. If we use Eqs. (8) and (12),
G,"'t, is expressed as

u, (p, y) the normalized spherical Bessel function,

I
G"'~ =Q' J 4'(I& () )& I~&(- I(.(r»&((.(e)l v. +(~.(rr) —)I&(a((M, (p)

/I OQ

+
'

dp+
"

dp u p nG0'2}qt qn u p,
0

(i3)

Here Q (Q„) is the sum over the basic states
(the sum over states other than the basic states),
and J 'dP (J"dP) is the integration over the region
of p corresponding to the values of q in the region
()~ I& I}"'lff ~ q = qu(q & qu). The relation between
P and q has been given in Sec. I.

The Faddeev equation for a three-body bound
state is given by

where

~ f 4,&lui, (»,» l~,&

x I((l.,(q, )&v, (q, ), (15)

as the unperturbed term and the rest as the per-
turbation, we find

lc»= G."'tA IC»,

where the operator A transforms C (12, 3) into
4 (23, 1)+4 (31, 2). Using E q. (13) into Eq. (14),
thereby treating the term with -lg, (q)&(g.(q)IV,

(14)
v (q) = (g, (q)l V,(n l(u((p)IAIDO}

Here

a=(1- ti)-',

(16)

I

dpA lu, (P)& ln&I~. (q) —I) &n 1&., (P) I

dp+
'

dp A lu) (P)& In&G02!(q)t. (q)&n l&u, (p) I.!
o. 0

Our method of perturbation iteration is to calculate
B by the series expansion in powers of A. For the
rest of this section, we write the perturbation for-
m ula,

Multiplying ((C&, (q}IV,(nl(u, (P}l on both sides of
Eq. (15), and using Eq. (16), we find

M ~ (m)
22' 1 22' 11ps-=0

where

v„(q,) = —Q' dp, M ~ „,v (q, ),
C2

(18)
g 2'2"'(x) =A"&~ g, (q„x)

n1P1 11 I
(20)

with and for m ~1
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x t.(q)x.P™'I
~

The operator A ~~& is defined by

A~~2I (x) = (~.I&M(,(P,) l&l~((P)&lo')+(x),

where F(x) is a function of x.

(21)

(22)

I

x "«,' '"(*)= g' xx«)""(«.(x)- (]x."',l,
" "

dp+ dp p 6',' g

Starting from the ba.sic Sturm-Liouville functions
g„we compute the functions X"2~~2( '(x) by succes-
sive iterations using Eqs. (20} and (21). The ma-
trix elements M',~, „... at each iteration are ob-
tained by Eq. (19). The energy ~E~) where Eq. (18)
has a nontrivial solution, is the binding energy of
'H. If we define a function X

"~~ (x) by

the wave function Q (x, y) in Eq. (11) is given by

I

x.(«x)=- f x(x«(x x)(X(x, «)«)(x+I «( ) x—xi+'
n P1Xn (x x vn qx

II

dPs) (P, y)60',!(q}t.(q)P
'

for n belonging to the basic states, and

I

dP, x".'...(x)(., (q, ), (24)

oo I

(X x)«=- f &)x«:(D, x)G™(x)(.(x)g' x),x.,',,(«l«., .(x,),
CX

g

(24 )

(x «)=xf x( x«) ,xx( x, ),), « (25)

which defines the function X„(P,x).

for n outside the basic states. For the sake of
simplicity, we write these two expressions in a
unlf led IDanne r:

III. PERTURBATION CALCULATION

ln order to per'form the iterations of E q. (21),
we need to compute a function X„~~( '(x) defined by

Xn )()Il))(
X)

—[~ (q) 1jXn P( ()(Xxxx} (26)

for a known function X" ~~(" "(x). This is done by
solving the following Schrodinger-type differentia. l
equation which is equivalent to Eq. (26)':

—q'+ +-—— . —V.(x) X" '"'(x)(
d' 2 (f L(L+1)

dX' X dx X' ' ~~X

=&( )(«."x"""()+«(xX«) ' xx"" ).1 —A. q
Z (q)

— P. n& &n)) (27)

To solve this equation, we impose the boundary
condition that the function X"„,~~I")(x) is regular at
x-0 and exponentially decreasing at x- . The
term G,",'(q)t, (q} X„,~~(" "(x}in Eq. (21) is calculat-
ed by solving an equation similar to Eq. (27) but
without the term involving g, (q, x} on the right-hand
side. The Sturm-Liouville function r/r, (q, x) is cal-
culated by solving a differential equation that is

equivalent to Eq. (3),

( g + — +———a' 2 d L(L+1)
dX X dX X

—x:(«)/x. (tx)) X.(x, *)= 0.

In solving this equation, we impose the same
boundary conditions that are imposed on Eq. (27}.
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For a given set of a and q, the solution of Eq.
(28} satisfying these boundary conditions exists for
enumerable infinite number of discrete values of
A.,(1f}. The first Sturm-Liouville function that we
use is the solution for the largest &,(q) without
node.

The operator~ "2]2 defined by Eq. (22) is handled

by the following formula ':
7

A 2~2m"1(x)=2p, p, duj~ (Xx)hp~ (n,a„u)
«7

x "dx'j~ (z x')F"'(x').
0

(29)

The notation used in Eq. (29) is

u =cos0
P2X P7

i=p, /2+p„

A.1
= —(p2 +p1/2),

h p,, (n, o.„u)= QC'~3~[(2l, + 1)/4v]' 'Q (L,k L, « ~E, 0+ «)

x(Lp+«, l1, Oil'„k+«)1'~ (A. ~ p, )l"," (p ~ p, )Y~''(X, ~ p, ),

where l.,/, L, 1.71,1.

Cp ' =16mi' '" ~ ~1[(2J2+1)(2J,+1)(2j, +1)(2j,+1)]' ~(28+1) S,23, S, —,'3 Cz'z'. 3.

0 ~7&7~0

(31)

(32)

By the parity requirement, (l, +L,) and (l, +L,) are
both even or both odd. As a result, the phase fac-
tor i" '7' 3 7 is real. The coefficient C 2 ' in

2S7;3
Eq. (32) is given by Table L

The integration over x in Eq. (29) for the asymp-
totic region (i.e. , outside the potential range; x„
& x& ~) is done analytically by making use of the
asymptotic behavior of F"1(x ), as described in
Ref. 18. This is where the long-range nature of
the particle exchange enters. Therefore, it is

TABLE I. The coefficient Ceet'1. e~ 1n Eq. (32}. For
(-), this is the 2 x 2 (4x 4) matrix.

(I, S) (I, , S,) (0, 1)

important to take the contribution of the asymptot-
ic region into account accurately. The numerical
integrations over u and x (for 0 &x & x„) in Eq.
(29) require a careful treatment since they involve
oscillatory functions j~ (Ax) and j~ (A,x ). The in-
tegrations are done with Simpson's method always
using small enough mesh sizes equivalent to hav-
ing at least 12 mesh points in one period of sin(Ax)
or sin(&, x ). Since the rema, inder of the integrands
is a slowly varying function of the arguments, an
accurate interpolation on it at these finer mesh
points is always possible.

IV. RESULT FOR CENTRAL $«WAVE POTENTIALS

(0, 1)

{1,1)

(0, 0)

(0.1)

(1,0)

(1,&)

—W3/4

-M3/4

(r, s) (I„s,) (0, 0)

i
4
3
4

i7
-~3/4

—vY/2

1
2

(1,0)

+vY/4 + M3/4 3
4

+ M3/4

+~3/4
i
4

For the purpose of testing the convergence prop-
erty of our perturbation theory, first, we solve
the bound state problem for purely central poten-
tials. For the 'S interaction, we use a regular-
ized Yukawa potential with a soft core

V('S) =mc[- p, e-'2" +p,e-~~* —(p —p }' '2"]/x

(33)

withic =197 Me7 fm, P, =3.1344, P, =1.5502 fm ',
and P, = 7.4616. In E q. (33), x is given in units of
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TABLE II. The 3S phase shifts and the -deuteron bind-
ing energy obtained by V(3S) of Eq. (33).

Ez,g, (MeV) 25 150 210 330

23.61 12.2378.42 44.15 32.28(degrees)
Deuteron binding energy:

~ E~ ~
=2.229 Mev.

fm. This potential reproduces the two-nucleon 'S,
data as shown in Table IL The potential (33) is
similar to the Malfliet-Tjon potential, 6 but is regu-
lar at the origin, and is thus suitable for the per-
formance of accurate numerical calculations. For
the 'S, interaction V('S) we use the RSC potential'
with a cutoff mass of 30 times the pion mass to
regularize the potential. More specifically, for
V('S), we replace all the Yukawa potential e "'/p
(where p= px with p, =m, cjh), appearing in the
RSC potential, by

Y(n, v, p)= —'e "~-e. ~ 1+ p),
1, „y K -tl
p 2K

(34)

where K =30. This regularization procedure is
introduced by Green" and renders the potential
hi.ghly regularized at the origin. The cutoff mass
of 30m„ is large enough not to affect the 'S, phase
-shifts in any appreciable way, yet sufficient to re-
gular ize the potential.

In order to speed up the calculation, we set up
an uneven x mes& by the following function from
x=0 to x„= 6 fm:

6

x(t) =—t+ loe '"' "
12

4 742 63e-i.2&o- ) 0 007369 1

This function is shown in Fig. 1. The t-mesh size
used is 0.3 fm and the total number of t mesh is
30, ranging from t=0 to 9 fm. We used the Numer-

ov method for the numerical integration of Eqs.
(27) and (28).

For these two-nucleon potentials, the Sturm-.
I iouville functions are obtained by solving the dif-
ferential equation (28). In Table III, we present
the first (n =1) eigenvalues A, (q) for a ='S and 'S.
The value of q where the eigenvalue is equal to 1
corresponds to the deuteron binding energy. In
Table III, we also show the second and the third
(n =2 and 3) eigenvalues for the 'S state.

Since the function P, is normalized as Eq. (4),
it is apparent from Table III that we need to in-
clude only the first Sturm-Liouville function in
the unperturbed term of E q. (6), bringing all other
terms into g, (q) to be treated as the perturbation.
Indeed, our preliminary calculations show that the
inclusion of the second and the third eigenfunctions
in the unperturbed part does not improve the con-
vergence appreciably but merely increases the
consumption of the computer time and the memory
space. Also, it is seen that the value of q„, up to
which the separation (6) is made for G,",'(q), may
be chosen to be 0.8 fm ', for example. These are
rather fortunate situations peculiar to the two-nu-
cleon interaction in general, not just for the parti-
cular potentials we have chosen.

For the basic momentum [i.e. , (m
~

E
~

)'~'/0 ~ q
&q„j, weuse sixeciuidistantp-meshrangingfrom p
= 0 to/„. Here, P„corresponds to q„by the relation
of q and P given in Sec. I. We take 0.750 fm ' as
the value of p„, so that the p-mesh size is 0.125
fm '. (For ~K~=6.70 MeV, 0.75 fm ' for P~ corre-
sponds to 0.7642 fm ' for q~. ) Above p„, we use
six P-mesh points of 0.2 fm ' intervals up to 1.95
fm '. This will be referred to as "the standard P
mesh. "

The method of calculating the three-body bound
state has already been explained. We look for the
energy ~E~ at which Eq. (18) is satisfied. In the
discretized form, it can be written as

v;=- I;,se&v; i=1, 2, . . . , N, (36)

4
E

x 3
q (fm-' (q) n=1

3S& state
n=2

~SO state
n=1

TABLE IG. The eigenvalue &„(q) of the Sturm-Liou-
ville function for the central potentials of Sec. IV.

2 3 4 5 6 7 8 9

t(fm)

FIG. 1. The function x(t) of Eq. (35) used to set up an
uneven x mesh. The equidistant mesh size used for t
is 0.3 fm ranging from t = 0 to 9 fm.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.2344
1.0505
0.9046
0.7868
0.6906
0.6109
0.5442
0.4879
0,4398
0.3986

0.1691
0.1582
0.1484
0.1396
0.1315
0.1242
0.1174
0.1113
0.1056
0.1004

0.063 17
0.060 59
0.058 17
0.055 91
0.053 79
0.05180
0.049 93
0.04816
0,046 50
0.044 92

0.8106
0.7176
0.6408
0.5764
0.5216
0.4745
0.4337
0.3981
0.3667
0.3390
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+
0
X

+ IEI = 9.00
o IEI = 8.75

IE( = 850 2

0.5

0

0 0 n n r

/ /iI(

—0.5
0

I I I I I I I I I

2 4 6 8 lO

FlG. 2. Typical example of convergence for the cen-
tral potentials of Sec. IV. The residual D is plotted at
each order of iteration m for each value of

~ E( shown
in the figure.

where N is the dimensionality of the basic vector
v, which is given by the number of two-body states
times the number of basic P mesh. This is the di-
mensionality of our Faddeev equation written in a
matrix form. Since the singlet and the triplet
two-body states constitute a different basis, the
dimensionality of our problem is 12 (=2x6) for
the "standard P mesh". In Eq. (36), M„ is the ma-
trix element and u, is the weight of the P quadra-
ture. %e use Simpson's method. For a chosen
value of jE~, we compute M„as explained in Sec.
III. Assuming v, =1, we solve Eq. (36) for v;
(i)2). The resulting values of vf (i)2) are put

5 6 7 8 9 lO I t

IE( (MeV}

FIG. 3. The residual D as a function of (E( at each
order of iteration for the central potentials of Sec. IV.
The numbers on the curves indicate the order of itera-
tion. Curves with numbers not enclosed in parentheses
represent the calculated results with the standard p
mesh for which both the left and the right branches are
shown. Curves with numbers inside parentheses repre-
sent the calculated values with 10 equal mesh up to Pz
=1.6 fm ', for which only right branches are illustrated.

back in the first equation (i =1) of Eq. .(36). The.
residual (the difference between the left-hand side
and the right-hand side) of this equation is denot-
ed by D. The value of ~E~ at which D converges to
zero gives 'H binding energy. ln Fig. 2, we show

typical examples of the values of .D computed us-
ing the standard P mesh, where we have chosen as
the number 1 component (i = 1) in E q. (36) 'to be the
'S, component at the first P mesh. As can be seen

TABLE lV. The values of the residual D for the central potentials of Sec. 1V for Pz —-0.75 fm ~ and 0.85 fm ~ as a func-
tion of the order of iteration m and the trial values of

~
E ~.

E (MeV)
P~-—0.75 fm ~

8.5 8.75
P~=0.85 fm ~

8.75

0
1
2
3
4

6
7
8
9

10

0.872
0.466

-1.16
52.3

0.893
0.649
0.258

-0.186

0.901
0.703
0.450
0.232
0.105
0.0471
0.0241
0.0155
0,0123
0.0111
0.0106

0.909
0.743
0.567
0.438
0.372
0.343
0.333
0.329

0.828
0.424
0.142
0.0401
0.0076

-0.0016
-0.0041
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from this figure, .0 is quite sensitive to the choice
of ~E~ and converges within five iterations. The
value of ~E~ at which D converges to zero is 8.75
MeV. In Table IV, we give the values of D corre-
sponding to Fig. 2. Since the residualD is so sen-
sitive to the choice of (E(, we consider ~E~
=8.75 MeV to be close enough to be called
the binding energy within the accuracy of our
numerical calculation.

In Fig. 3, we show D as a, function of ~E~ at each
iteration. In general, there occur two branches
in O. Only the right branch can cut the a,bscissa
at the value of ~E ~

where Eq. (18) is satisfied with-
in the order iteration shown on the curve. The
limiting value of ~E~=8.75 MeV is indicated by an
arrow. All these calculations are done with the
standard p mesh.

The result of the perturbationa. l calculation
should not depend on the choice of q„(or, equiva-
lently, P~). To see this is indeed the case, we

next compute D at ~E ~

= 8.75 MeV with 6 equal in-
tervals up to p,~= 0.85 fm ' and 6 equal interva, ls
of 0.2 fm ' beyond that. The results are also
shown in Table IV. Considering the sensitivity of
Oto ~E~, w. e accept the value of 8.75 MeV as the
binding energy in this ease too. To see the behav-
ior of 0 when p„ is drastically different from the
standard case, we repeat the calculation using ten
equal intervals up to P„=1.6 fm '. The results are
shown in Table V, and a,iso in Fig. 3 by the curves
with numbers inside parentheses. (Only the right
bra, nches are drawn for the calculated results wi:th

this p mesh. ) Apparently, again we find ~E ~
=8.75

MeV as the binding energy. We remark that the
perturbation acts attractively (toward stronger
binding compa, red to the 0th order around 5 MeV)
when P„=0.75 fm ', and repulsively (toward less
binding compared. to the 0th order aroung 10 MeV)
When P = 1.6 fm . Despite this and also the dif-
ferent choices of P mesh, it is gratifying to find
the same binding energy.

tern a.nd the s sta, te for the spectator are taken in-
to account.

As the RSC potential has a 1/~ singularity, we
must regularize it to obtain the solutions of Eqs.
(27) and (28) accurately near the origin. (Other-
wise, we have to make a, power se ries expansion
of the wave function in terms of the distance near
the origin. However, this is extremely cumber-
some, " and impractical. ) As in Sec. IV for V('S, ),
the regularization is done by introducing a heavy
cutoff mass (50 times the pion mass), which does
not affect the deuteron properties and the phase
shifts as well as the off-shell properties in any
significant way. Thus in the RSC potential, we re-
place the Yukawa function e "~/p by Y(n, ~, p) of
Eq. (34) everywhere except ln the following 'two

terms in the tensor part. We replace (1+3/p
+3/p')e '/p by

3 3 e~ 3~' —1 3~ 3 ~(~' —1) gg'&
+ + ~ ~ ~+ +~+. —— -pl

p p p
' 2 p p 2 ~ p

—16K(4, ~, p), (38)

which becomes flat at the origin. These are also
the double cutoff procedures of Green. Here z

=50, R= ~/4, and )=4p. As in Eq. (34), p
= (m. c/h)x.

The eigenvalues X,(q) of the first Sturm-i. iou-
ville functions for '8, +'D, and 'S, are shown in

Fig 4 &he va&ue of & = 0 23&40 fm ' for the 'S, +'0,
state at which the eigenvalue is equal to 1 corre-
sponds to the deuteron binding energy

k'
2[E,i

=—4' +41.47q' = 2.221 (MeV). (39)

which vanishes at the origin, and (12/p+3/p')e '~/p

by

(
12 3 e" 3R' —1 3K 3 ~(iP —1) e '~—+— -$6-- +—+—+

V. RESULTS FOR THE RSC POTENTIAL

TABLE V. The value of D for P~=1.60 fm ~ for the
central potentials of Sec. IV.

m Z (Me&) 8.75 9 1110

4.58
-0.159
+0,0461
-0.0034

17.2 -0.121 0.494
0,532

Here, we present the result of the calculation
for the RSC potential. ' In our calculation, only
the 'S, and the 'S, +'9, states for a two-body sys-

In Fig. 4, the second eigenvalue of the 'Sy+ Dg

state are also shown by the dashed curve. As in
Sec. IV, we will not use the second a.nd higher
Sturm-Liouville functions as the unperturbed part.

We use the standard P mesh and the uneven x
mesh explained in Sec, IV. Examples of conver-
gence are shown in Fig. 5, in which the residua. l
D is shown for each order of iteration for a few
values of ~E~ indicated in the figure. Here, we use
as the number 1 component in Eq. (36) the 'S, + 'D,
component at the first p mesh. The value of ~E~
at which D converges to zero is 6.617 Me&. This
is the 'H binding energy. The (unnormalized)
ba.sic vector v is shown in Fig. 6.
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FIG. 4. "She first (n
=1) and the second (In=2)
eigenvalues X of the
Sturm- Liouville func tions
for the BSC potential.

'S +'D (n= 2)

O. l 0.2 0.3 0.4 0.5 0.6 0.7 . 0.8 0.9 I.G

p (fm )

The basic vector v thus obtained is used in Kqs.
(24) and (25) to find &&„(xf y), from which we con-
struct the triton wave function as given by E qs.
(9), (10), and (11). In terms of y""' of Eq. (11),
the one-body charge form fatcorEs, „('He) and

E,„('H) are given by the formulas in the appendix. "
As the nucleon charge form factors E~„(q) and

E"„„(c~), (@=the. momentum transfer), we use the
analytic expression given by Janssens et al."
Fig. 7, we show the charge form factors together
with the experimental data from Hefs. 27 and 28.
Our!E,„('He)! has adipatq'-16 fm ' and its second
maximum is approximately an order of magnitude

IEt (Mev)

+ 6.706
6.6 l7
6.500

too low compared to the data. For the basic states
adopted in the present paper, E",. "=E, ('S„I = 0), E,
= E,('S„ I = 0)+E,.('0„/ = 0) for i = 1, 2, 3, and 4, and
I';"'=r', "=-0 for i =I and 2. Also, I,"'=-I","
=E,('8„' S). In Figs. 8 and 9, we show the con-
tr ibution from each component,

In Figs. 10 and ll, we show typical behaviors
of the wave function x}( (P, x) for the three compo-
nents '8„,. 'S„and '9, as functions of x atP =0.25
fm ' and as functions of p at x=1.27 fm (before
the over-all normalization). ! The function g„(P, x)
is defined by Eq. (25).] Figure 10 shows that there
is a node at x- 0.5 fm for each of the '8, and the
'8, components, while there is no node for the '0,
component. Although we have used different formu-
las to compute the function xy„(P, x) for P ~P„and

q (rm- )

G.4I 4 0.454 0.5I 5 0.589 0.625 0.765

8, + D, , 2=0

0

ORDER OF ITERATION

FIG. 5. Typical examples of convergence for the BSC
potential. See the caption of I ig. 2.

I

0 !

0 0.I 0.2 G.B 0.4 G.5 0.6 0.7 0.8

p (rm ')

Flo. S. The basic vector: e (q} of Eq. (16}at ~E~
=-6.617 MeV, before the overall norm. @ization.
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10
0 IO

q(fm )

20

FIG. 7. The one-body charge form factors of 3He

(solid curve). The experimental values are taken from
Hefs. 27 and 28.

FIG. 8. The components I"~ and. F2 appeared in Eq.
{A3) before the overall normalization).

for p&p~, Fig. 11 shows that this function is
smoothly connected at p =p„, as it should be. It
is also seen from Fig. 11 that the maximum value
of the spectator momentum used in the standard p
mesh (P =1.95 fm ') is sufficiently large.

After performing the integration over p in Eq.
(25), the function xyQ„(x, y) is obtained for three
components. The integration over p in Eq. (25)
requires some care since u, (p, y) is an oscillating
function. The contribution from the ith P interval
(from P;, to P;) of the standard P mesh is carried
out by Simpson's method using a finer p-mesh
size hp so chosen that hp ~ y is not greater than
0.5 (which is equivalent to having at least 12 mesh
polllts In oils period of slIIPy). Tllis Ilecessltates
an interpolati on on g (P, x) over P. This is done
quadratically using the values of y„(P;,x) at the
nearest three p, 's, which is accurate enough since

(p, x) is a slowly varying function of p, Then the
contributions from all p intervals from i =1 to 12
thus obtained are added to find xyQ (x y).

3
A

The 8, and. the 'S, components (with l = 0) are
shown in Fig. 12 as functions of x at y =0.5, 2.0,
and 6.0 fm (before the overall normalization). The
node of the function xX„(p, x) at around x = 0.5 fm
still persists in the function xyQ„(x, y). This be-
havior of the radia, l wave function has not been
reported so far. The presence of this node

suggests that it is almost impossible to perform
an accurate numerical calculation of the Faddeev
equation in the manner of expanding it by a com-
plete orthonormal set of functions, say, that of
the harmonic oscillator functions.

The y dependence of xyP„(x, y) is shown in Fig.
13. There is no node as a function of y in any
component. Also, the function xyQ„(x, y) is sur-
prisingly long ranged in the y direction.

In order to get some idea for the origin of the
node in the 'So and the 38, components, we show
by the solid curve of Fi.g. 14, the function
xX "~~"'(x) of E q. (20) for n = u, = (IS„I =0) with p
= 0.125 fm ' and p, = 0.750 fm '. The fact that this
function starts out linearly at x =0 is due to the
spherical Bessel function j„(&x) in Eq. (29). In
Eq. (27), this function multiplied by the potentia, l
V, (x) is used in the inhomogeneous term. The
terms on the right-hand side of Eq. (27) are exact-
ly a consequence of the particle exchange charac-
teristic of the Faddeev equation. In Fig. 14, we
show xV,(x)g"„,~~'"(x) by the dashed curve. The
linear behavior of the function xy"„~~"'(x) near x=.0
multiplied by the strong soft-core yields a very
narrow peak within the core radius. This proper-
ty of the source term in Eq. (27) is reflected to the
solution of this equation. Thus we conclude that
the strong soft core of the RSC potential coupled
with the particle excha, nge effect of the Faddeev
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FIG. 10. xy ~(p, x} defined by Eq.. (26} as a funchon of

x at p = 0.25 fm" ~.
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equation gives rise to the node near the origin of
the radial wave function.

'Throughout the calculation, we have so far used
the cut-off parameter a= 50(-7, 000 MeV) in Eqs.
(37) and (38). The effect of introducing the cut-
off may be judged from the values of the deuteron
binding energy

~

E, j
and the 'H binding energy jE

~

obtained by varying the values of A.", as shown in
'Table VI. Apparently, w= 20 is too small having
a, marked effect on

~
Z, ~, but a= 30 is already

large enough. 'The resulting charge form factors
for ~= 30 are also very close to those of v=-50.

VI. SUMMARY AND CONCLUSION

The perturbation-iteration calculation of the 'H
bound state is carried out on the Faddeev equa-
tion, utilizing the first Sturm-I iouville functions

jo
jo

q (fm )
TABLE VI. The effect of the cut-off variation on the

deuteron and the triton binding energies, )E~~ and ~E),
respectively.

20 30 40 50 70
FIG. 9. TI)(e coGlponents &3 and E4 appeared in Eq.

(A3} (before overall normalization}. The plus and
minus signs indicate the signs of the values of E3
and I 4.

2.468 2.236 2.225 2.222
6.68 6.64 6.62

2.221 2.221
6.62 6.62
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O
X

2.0

p(tm '
}

FIG. 11, ay~(P, x) as a function of p at x = 1.27 fm.

for the 'S, and the '8, +'D, two-body states as the
basis. The calculation is performed exactly in
coordinate space. Using purely central s-wave
potentials for the 'S and the '8 states as an ex-
ample, the convergence property of our pertur-
bation treatment is investigated in detail, and it
is proved to be quite satisfactory.

As an example of the realistic two-nucleon in-
teractions, the RSC potential is used to calculate
the 'H binding energy and the one-body charge
form factors of ~He and 'H. The three-body
states included are the lowest partial waves,
consisting of the 'S~ and the 'S, + 'D, two-body
states with the third particle in the s-state rela-

I.0

0.5 S,

y=2, 0
y =6.0

~t

l9.

0X

-O.5

S

l i I

x (tm)

FIG. 12. ryan~(x, y) of Eq. (26) as a function of x at y =0.5, 2.0, and 6.0 fm.
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FIG. 13. xyg {x,y) as a function of y atx=1.27 fm.
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tive to the center of the two-body pair.
The 'H binding energy is found to be ~E ~

= 6.62
MeV, fairly close to the values obtained by Mal-
fliet and Tjon (6.4+0.5 MeV), Harper, Kim and

Tubis (6.7 MeV), ' Brandenburg, Kim, and Tubis

(6.98 MeV), ' and Gignoux and Lavern (7.0 MeV). '
As the probability of the S, 8' and D states, we

get the following values: P (S) =90.28%, F(S')
=],.70%%uo and P(D) = 8.02%%uo. These values are very
close to the values obtained by other authors. We
also repeated the calculation by adding the com-
ponent in which the spectator particle is in the d-
state. ' However, the binding energy of 'H is in-
creased only as much as 0.05 MeV.

The He charge form factor turns out to have a
dip at q -16 fm with the height of the second
peak an order of magnitude too low.

Each of the Faddeev components for the 'S, and
the 'S, components has a node at around x-0.5 fm
as functions of x. No such node -is found in the
Dy component. A s functions of y, all thes e com-

ponents do not have any node, but extend to large
distances. The nodes in the 'So and the 'S, com-
ponents are attributed to the presence of the strong
soft-core in the RSC potential coupled with the
particle exchange terms in the Faddeev equation.

Note added in Proof The .charge form factors
reported at the Graz conference [Eego Body Sys-
tems and Nuclear Eorces I, edited by H. Zingl
et al. (Springer, Berlin, 1978), p. 159] are in-
correct. The charge form factors in the present
paper are correct.
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APPENDIX

The one-body charge form factors are given by

0 2F,h('He) = F,„(3F,+F,)+2F",„F,&

E,h('H) =E,"h (3F, +F,)+ 2F)„F,&

(Al)

(A2)

x ffm)
FIG. 14. xg~e ~&& {x) of Eq. {20) is given by the solid

curve with 4. right scale for n= n~ = {'So,l = 0) with p
= 0.125 fm and pg= 0.750 fm of the standard p mesh.
xV, (x)y~ f ~ 0~(x) is also shown by the dashed curve with
the left sh e.

+v 3 (eE "—2E —eF ") (A3)

with e = 1. F, is also given by an expression simi-

where E~„(q) and E",„,(q) are the nucleon charge
form factors, q being the momentum transfer. In
Eps. (A1) and (A2), E, is given by"

(q) —F + &LFs 2Fss+ ='Fss+ %(FAA FAA)
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lar to Eq. (AS) but with e = —1 and suffixes S and A
interchanged throughout. In Eq. (AS), there appear
four kinds of form factors defined by F""=F""and F"'=F""

1 2 2 2 (A8)

en by Eq. (11). From the definitions it is obvious
that

F","=
l

e'"' '~ (P'(12, 3) lq"(12, 3))d'x„ (A4)
Also,

Ft4v ~Fllv
4 4 (A9)

F"," = e'~' '3(g "(31,2) lg"(31, 2))d'&;, (A5)

e'q''3 "12 3 "31 2 d~r], (A6)

F4"= e'q '3 "31,2 "23, 1 d'r], (A7)

where u =S or A and v =S or A. P~ and P" are giv-

where a=+1 if u=v and e=-1 if uwv. The last
relation provides a nice check on the numerical
accuracy.

We compute F";" (i=1, 2, 3, 4) by taking the aver'-

age over the magnetic quantum number M, of the
total angular momentum 4,. The detailed expres-
sions for (F,"") and the method of actual calcula-
tion are found in Refs. 10 and 11.
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