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We comment on the relation between the two standard approaches to chiral symmetry-namely, the
current algebra/partially conserved axial-vector current approach and the chiral Lagrangian method-in a
manner intended to clarify recent and probable future applications of this symmetry in nuclear physics.
Specifically, we show that in explicit chiral field theories the canonical 7N scattering amplitude does not
have the famed “Adler zero” unless partial conservation of axial-vector current holds as an operator
equation. This implies that there are a number of familiar chiral - models in which the “Adler self-
consistency” condition does not apply to the canonical pion field. Among the problems of current interest for
which our remarks are relevant are the studies of the pion-nucleus optical potential, pion condensation, and
the attempts to formulate a model field theory having both reasonable nuclear saturation and good low

energy pion phenomenology.

current in field theories of nuclear matter.

I:NUCLEAR STRUCTURE Comparison of relation of pion field to axial-vector ]

The role of chiral symmetry in nuclear physics
has recently been the subject of considerable
study,'"° particularly in analyses of the pion op-
tical potential in the contexts of both pion-nucleus
scattering® and pion condensation.?*® As in the
earlier particle physics applications, the conse-
quences of chiral symmetry for nuclear physics
problems have been examined by two basic
approaches,!! one'%!° based on current algebra
and the partially conserved axial-vector current
(PCAC) relation of the divergence of the axial-
vector current to the pion field'?

9vAL(x) = m (%), 1)

and the other 7 based on chiral symmetric Lag-
rangians modified by small explicit symmetry
breaking terms. Both approaches have been use-
ful historically and currently both are actively
being pursued. Recently, for example, the current
algebra/PCAC approach was applied to suggest that
- deep inelastic lepton processes could be used to
measure, over certain kinematic ranges, the
pion-nucleus optical potential,® and the chiral Lag-
rangian approach was used to clarify some subtle-
ties involved in applying the ideas of chiral sym-
metry to pion condensation.5®

Given these two different approaches, it is
natural to study the extent to which they can be
applied in combination consistently: that is, to
answer the question: “Can one use PCAC and
current algebra at one stage of a calculation and
an explicit chiral model at another ?” Such a
combined approach could be especially useful in
the study of the currently unsolved problem of
constructing a model field theory of nuclear

physics which has both saturation by a realistic
mechanism!® and reasonable low energy mN
phenomenology.'*

The present note provides a pedogogical explica-
tion of the answer to the above question, which
answer, although obvious in retrospect, seems
not to have been sufficiently appreciated. Briefly
stated, the answer is as follows: In a given chiral
model field theory with a specific choice of canoni-
cal fields, unless (1) holds as an operator equation,
certain familiar results of PCAC will simply not
be true, and attempting to enforce them “by hand”
will lead to inconsistencies. In other words, if one
has chosen an explicit model field theory, one
cannot consistently add to it the conclusions of
PCAC unless PCAC holds as a canonical equation,
in which case the results can be derived directly
from the theory anyway.

To illustrate this result we shall consider two
familiar theorems of chiral symmetry or PCAC/
current algebra. To state these theorems pre-
cisely, we begin by defining the quantities involved.
First, the “pion-nucleon = term” (¢), which is
an important measure of chiral symmetry break-
ing, is defined by'!:®

2= 3 3N PQ'0), F@H®), O} N(p), (2)
i=1

where 3¢(0) is the Hamiltonian density and
Q)= [ Alnasx &)

is the axial-vector charge. Second, a particular
combination of the standard 7N invariant scatter-
ing amplitudes is defined by'>"*?
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D(+) EA(*) + VB('I') _ (A(+) + VB“))PV Born
- + +)
=D )-(D( )PV Born * )

The amplitude D'* corresponds to the forward,
spin-averaged, isospin even'® scattering ampli-
tude and D** has the pseudovector Born contribu-
tion subtracted. With ¢ (¢’) the initial (final) pion
four-momentum and p (p’) the initial (final) nucleon
four-momentum and defining the kinematic invar-
iants

(g+q')- (p+p') _s-u
aM 4M

V=

and

11

, _q.ql=(t_‘q2_qlz>
B 2M aM ’
one has*1?

(D) =& _Vh (5)
PV Born Jr V‘j’s — e

We can now give the heuristic statements and
precise forms of the two theorems:

(1) The value of the pion nucleon scattering am-
plitude at the (on mass shell) Cheng-Dashen
point' %1 _py=0, v, =0, ¢®= q'2=m,?, so
t=2m,*—1is equal, to first order in the chiral
symmetry breaking, to the pion-nucleon Z term.
Explicitly,

D(t=2m2)=f D=0, vy;=0; m>2, m2)+....
(6)

(2) The pion nucleon scattering amplitudés 'should
vanish at the (off mass shell) Adler point!!»15,20_
v=0, vp=0, ¢*=m,?, ¢'*=0 so t=m,*—as a con-
sequence of the Adler consistency condition.
Explicitly,

0=D"(v=0, v,=0; ¢*=m,?, ¢'*=0). (7

We shall now show, by explicit calculation in
chiral models with different forms of symmetry
breaking, that the first theorem is true indepen-
dent of the symmetry breaking,? whereas the
second theorem is true only when the symmetry
breaking is such that PCAC holds as a canonical
operator equation.

Our calculations will be performed in the tree
approximation®? to the linear sigma model. The
symmetric part of the Lagrangian is??

£, = Nliys - glo + 7 - Tyg)|N
+3((8,0) + (0, M) - N/4(o2 + 72 =%,  (8)

where ¢, 7;, and N are the sigma, pion, and nu-
cleon fields and v is a positive constant. The non-
symmetric part of £, £y, contains three different

types of explicit chiral symmetry breaking,
Lp = + €,0 — &T+T —€;NN, 9

where ¢;>0. The term ¢,0 is usually referred to
as the “standard” symmetry breaking, but there
is at present no conclusive experimental evidence
indicating that it should be preferred to the other
terms. An accurate measurement of the 7w
scattering lengths could distinguish between ¢,¢

‘and €, 2 breaking,?*2* and a careful analysis of

the Goldberger-Treiman relation can place limits
on the € ,NN term.,

The full Lagrangian £ is equal to £+ £55. £,
is invariant under chiral SU(2) X SU(2) transfor-
mations, which we display explicitly to establish
our conventions. The (infinitesimal) transforma-
tions include isospin rotations with parameters
al, j=1,2,8,

o—~o' =0,

mieqi = qi 4 elibqingk, (10a)
Tt

N-N'=N-iTN,

and axial isospin rotations with parameters g/,
i=1,2,3,

o—0o' =0+ Birt,

rieg¥ =gt -gly, (10b)
Feint
N»N'=N+’TZB 7N

The vector and axial-vector currents, which are
derivable from £ and Eq. (10) by standard tech-
niques,!? are

Vi=ﬁ7uéTiN+ qijk,n-lauﬂ»k (113,)

and
Aft=ﬁysyu%T1N+wi8uo—o’aun’i. (11p)

By direct use of the canonical commutation rela-
tions — anticommutation relations for N— one can
verify that these currents satisfy the usual

SU(2) X SU(2) current algebra,? and that the
charges 5Q*(¢) and Q*(t)= [Vid3x do indeed gener-
ate the transformations (10b) and (10a), respec-
tively.

When all the ¢; are zero, the axial-vector cur-
rent is conserved. For nonzero ¢;, a standard
calculation’? gives )

9“Aj= € mi+ 2¢,0m' —i€ Ny, N. 12)
Note that only when €, = 0= ¢, does PCAC obtain
as a canonical operator equation.

In the symmetric limit, minimizing the meson
effective potential terms in (8) establishes explic-
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itly that the SU(2) xSU(2) symmetry of £, is real-
ized in the Nambu-Goldstone mode:2® the vacuum
expectation value of ¢, (o) = v is nonzero, giving
rise to a nucleon mass M, = gv, and the pion is a
Goldstone boson, m,2=0. When €;#0, the mini-
mum of the meson effective potential occurs at
(o) =f, where

M(fE=17)=¢,. 13)

Thus, for small ¢,,

s+ 4., '
f VEgast . (14)

Shifting the o field by 0 =& +f, so that G has no
~vacuum expectation value, one finds the Lagran-
gian

£=N[iy-d-(gf+e€) -G +iT-T )N
+2[(0,8)° - (V/2) (3f% -v*)52]
+:{(6,m? =[(V/2) (2 -v?) + €, ]7%
—Afolo?2+72) = (\/4) (02 + 72?2, (15)

Thus, the masses of the particles are, for the
nucleon,

€
M=gf+€3ﬁgv+§gx—v"§+-"+<s, (162)
for the o,
m§=x<3f2-v2)u2>w2+3—f}+-“, (16b)

and for the pion
m2 = AMf2 =% + 2¢,= €, /f + 2,
~g, /v+ee +2€,. (16c)

The final approximate equalities in (16) hold to
first order in the parameters ¢,.

The full Lagrangian in (15) is described by six
independent parameters, three of which are non-
vanishing in the symmetric limit and three of
which describe the symmetry breaking. For our
later purposes it will be most useful to choose
M, g, and m, as the former set, and m,?, €,, and
€, (Ref. 26) as the latter.

Note that the vacuum expectation value of o,
‘called f above, is equal to f;, the pion decay con-
stant. To see this in the tree approximation, re-
call that the definition of f, %23

(0|AL|m¥(q)) =iq,f,0%, an
J

implies that
OloALli(q) =q"q,f,0" = mf,5%. |  (18)

Using the explicit form of 3*A % in (12) and
shifting the o field yields

(O (e, + 2¢, 1) + (2€,5m% — i€, Ny, T, N) | 79(q))
= f,m,?6% . (19)

In the tree approximation, only the terms in the
first bracket contribute— the others give rise to
loops — and thus, one immediately obtains

(€, + 2€, F)8% = (e, /f + 2¢,)6%
=m,2f, 64, (20)
Recalling the expression for m,2 in (16c), we see
that f = f,, as asserted.

With these preliminaries aside, we turn to the
explicit evaluation of first the = term and then the
amplitude D*. Since 5Q(f) commutes with the
symmetric part of the Hamiltonian density, the
double commutator in (2) is, with 3 = —£g5,

[sQi(t)s [an(t) ,JC] ] = [5Qi(t), [sQi(t)!ZCSB] ]
= [SQi(t): [sQi(t)) - €10
+e,m?+¢,NN]].
(21)
Inserting A} from (11b) into (3), we obtain the ex-
plicit expression for °Q(f) in terms of the funda-
mental fields. Then by straightforward application

of the appropriate canonical commutation/anti-
commutation relations, we find

PRI, [P (1), ¥ s (x)] ] = - €,0(x)0*
- 2¢,[02(%)8% —mi(x)mi(x)]
+ €, N(x) N(x)0% . (22)

To evaluate the Z term in the tree approxima-
tion, it is easiest to use crossing to write'*»?’

2O=33" ©|FQ 0, FeiD, %x 1| N-p) N,
(23)
and to rewrite the double commutator in (22) in

terms of the field ¢, since this has no vacuum ex-
pectation value. It then follows that

D=3 3" (0] (me5 —4e, £5 + €, NN + {=¢, /= 26,[( /2 + 5904 —w'n']} | N (=) N (p)). (24)
i=0
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FIG. 1. The Feynman diagrams contributing to the =
term in the tree approximation. The solid lines are
nucleons and the wiggly line is a o.

Either from Feynman diagrams?? (see Fig. 1) or
from a dispersion calculation?” based on inserting
a complete set of states between the operators and
the state [ﬁ(—p')N(p)), one can see that in the
tree approximation, the contributions to Z(f) come
only from the operators in the first bracket in
(24). Evaluating the Feynman diagrams in Fig. 1
leads to the result

s =8 tias) 25)

2
my —~t

for the Z term in the tree approximation. In
terms of g,M,m? and m,2,€,,€,, using = f,,
this becomes

o@) = mng’_ ; (€./f, + 265+ 2¢,) + €,
[
M~
== m 4 26) t ey (26)
. lro ._

For t= 2m,?, to first order in the symmetry
breaking parameters, this gives

BN %
\\ // q\\ /q'
N\ /
P p'
/ a\ /7q'
3 P \. ./
~ -
\\// +
+ // \\
/ . 1\
P P P ‘ p'

FIG. 2. The Feynman diagrams contributing to ™V
scattering in the tree approximation to the o model.
The solid lines are nucleons, the dashed lines are pions,
and the wiggly line is a o.

T(t=2m,2) ~ M(Z”—ﬂf-”—ffl)+ €t e @7)
mo
To compare this result to D'+ at the Cheng-
Dashen point, we must evaluate the tree approx-
imation to 7N scattering in the ¢ model.2®> The
three contributing Feynman graphs are shown in
Fig. 2. Recalling that the pion has pseudoscalar
coupling in the o0 model, we see that the diagrams
in Figs. 2(a) and 2(b) yield the standard pseudo -
scalar Born pole'®23
-8 v
(D(*))(a)# w M VBZ -vE' (28a)

2

The diagram in Fig. 2(c) contributes

2 fg
+) —
(D )‘C’"mf-t' (28b)

Using f=f, and

1
2 fr=+ (m02 —mfrz + 262)
T

1
== (m2-t+t-m?+2¢,)

fe
allows us to rewrite (28b) as

2 2 2
(D(+))(c)= g . £ <t m; +2€2)' (28¢)

M-e;, M-¢,4 my =t

Thus,

D(+)_ g2 + 2 (t-mw2+2€2)
M-¢e; M-¢, my -t
v gt vy
M -v? M vgt-v?

(_&° gz) g* (t—m,“ 2¢,
= -2 )+
(M—€3 M M-e¢, my =1t - (29)
To verify the first theorem we'must multiply by
.2, set t=2m,?, express the result in terms of g,

M, m? and m,?, €,, €,, and expand to first order
in the symmetry breaking parameters. We obtain

f,zﬁ*(t=2mﬁ)=ng"2< : _1)

M-¢, M
g2 [ mp+ 2,
Sy (m,z ot (30a)

M
2€3+m,2 (m72+ 262)+ ttty
(30b)

which agrees exactly with the £ term in (27).
To study the second theorem, we must define
the amplitude D‘* with the pions off mass shell.
Since we have a definite field theory with an ex-
plicit choice of canonical fields, this off-shell
amplitude is well defined and depends on ¢ and
¢’? in addition to the usual kinematic invariants



P|' P2

P : P2
i\ q,
\//
J p’

FIG. 3. A schematic representation of the off-shell
7N amplitude, D).

s and { or v and vy The off-shell amplitude is
perhaps easiest to picture as the set of all Feyn-
man diagrams contributing to the bubble labeled
“1333)” in Fig. 3. In the tree approximation, only
the three diagrams in Fig. 2 contribute. If we
express the off-shell amplitude in terms of v,
vg, g%, and ¢'2, then it is clear that, independent
of ¢ and ¢'?, the contribution of the diagrams in
Figs. 2(a) and 2(b) is given by (28a). Further, to
take the diagram in Fig. 2(c) off-shell in terms of
these variables we need only replace ¢ by 4mv,
+¢*+q'?. Hence, in the tree approximation,
- 2 2 2
B vt a0 = (5 5 ) e
X(4MVB +q?+q'?-mz2+ 2€2>
my —4Myy —q® —q'? :

(31)

Thus, at the Adler point'+'%2 y=yp, =0, ¢2=0,
q'*=m,?, we have

D =(Mg_2 _&i) +( g 2¢,
05 | Adier -, M (M ~€,) (m?-m,?) )’

point
(32)

which is not zero unless both €, and ¢, are zero,
that is, unless PCAC holds in the theory as a
canonical operator equation. Thus, for example,
if in a chiral model with €,+0+#¢,, one took the
on-shell 7N scattering amplitude, expanded it in
powers of (g% —m,?) and (¢’? —m,?), and enforced
by hand the Adler zero, one would be simply in-
correct; such models do not have 7N amplitudes
which vanish at the Adler point. To clarify one
further possible point of confusion, let me stress
that there is absolutely nothing wrong with the
Adler self-consistency condition.?® Indeed, there
#s an amplitude in all these theories which does
contain the Adler zero: namely, the amplitude for
“8“AL” — N scattering, that is, the nucleon ma-
trix element of the product of two divergences of
the axial current.2® Qur result merely reflects
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the obvious fact that, when ¢, or ¢, is nonzero,
this 8* A% — N scattering amplitude is nof simply
related to the canonical 7-N amplitude, because
canonical PCAC does not hold. Said another way,
the proof that the 7-N amplitude has the Adler
zero breaks down at step one: One cannot replace
mt by 9*A L /(m,2f,).

One final comment should precede our conclu-
sion. One occasionally hears the “folk” theorem
that “the = term. is equal to the shift in the nucleon
mass when chiral symmetry breaking is turned
on.”' Qur calculation shows immediately when
this is actually the case. The nucleon’s mass in
the absence of chiral symmetry breaking is, as
noted above,

My=gv, (33a)
so that the change in the nucleon’s mass when the
symmetry breaking is added is

AM=M-~-M,=gf, +€, -8

€, 8

g Tt e -8, (33b)

~gy+

But €, = m,2f, - 2¢,f,, and, to first order in the
symmetry breaking, gf,~M and 2\®~m 2, so

2

AMzM(‘—*—u'm_zze )+ €. (34)
o

This equals the = term in (27) only if €, = 0.%°

The reason for this is clear. The shift in the

nucleon mass to first order in the symmetry

breaking is just the nucleon matrix element of

sy, whereas the Z term involves the nucleon ma-

trix element of the double commutator [Q%(f),

[(Q#(t), 3gz]]. Thus, unless

[fQi®), [Qi(t), Hgz]]=%gy , (35)

AM+%.2° Our explicit calculations in (22) show
that Eq. (35) holds for €,0 and €, NN symmetry
breaking, but not for €,72. Technically,'+?3 only
if the symmetry breaking belongs to the (3, 3)
representation of SU(2) X SU(2)— as the terms ¢,0
and €, NN do—is AM = 2.

To conclude, we reiterate our central caveat:
One cannot naively combine the results of an ex-
plicit chiral Lagrangian model with the formal
consequences of PCAC and current algebra unless,
within the model, PCAC holds as an operator
equation. Particularly in nuclear physics appli-
cations, such as the search for a model field
theory with both reasonable nuclear saturation and
chiral symmetry or the study of the pion optical
potential, must this caveat be borne in mind.

It is a pleasure to thank Roger Dashen for a
number of valuable discussions. This work was
supported by the Department of Energy.
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