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Using non-perturbative, field-theoretic techniques based on a generalization of the Low equation, an

inhomogeneous, coupled, linear, integral equation is developed for the reaction matrix for md~2@, The
inhomogeneous term in this equation consists of a truncated, multiple-scattering expansion of the breakup
process. The integral terms couple the reaction to elastic nucleon-nucleon and elastic pion-deuteron

scattering. The inhomogeneous term is evaluated at the reaction threshold, with relativistic forms for the

absorption and rescattering vertices. P-wave pion-nucleon rescattering is found to make a non-negligible

contribution to the s-wave absorption process at threshold.

NUCLEAR REACTIONS d(n', PP), generalized Low equation; pion crossing, cal-
culated threshold a.

.'I. INTRODUCTION

The pion-deuteron absorption process has been
of considerable theoretical interest for over twenty
years. In addition to its intrinsic interest as the
simplest |.'xample of an inelastic pion-nucleus
reaction, studies have indicated that the two-
nucleon absorption process is the dominant mecha-
nism for pion absorption by more complex nuclei.
This reaction then plays a central role in the
understanding of elastic and inelastic pion-nucleus
scattering. It has also recently been suggested'
that this reaction might be sensitive to the off-
shell behavior of the pion-nucleon elastic scatter-
ing amplitude and thus serve as a testing place
for our knowledge of the underlying pion-nucleon
dynamics. Continued interest in this reaction
seems ensured.

It is well understood that at least two basic
mechanisms are needed for the description of this
reaction: direct absorption, in which the pion is
absorbed in a one-nucleon process, and two-
nucleon absorption, in which the pion is first
scattered from one nucleon, either forward or
backward in time, and then absorbed by the
second nucleon. In addition, however, the roles
of the initial- and final-state interactions and the
possible double counting of meson exchanges must
be resolved before a reasonably complete under-
standing of the problem is achieved.

Problems involving the absorption and emission
of mesons are best suited to the techniques of
relativistic quantum field theory. Since perturba-
tion theory is almost guaranteed not to converge
for strong interactions, a nonperturbative approach
such as that embodied in the Low equation seems
more suitable. However, there are other dif-
ficulties with the Low equation (see Sec. IIA):

(i) The seagull terms which appear in this equa-
tion are not known in general, and (2) the equa-
tion itself is not manifestly antisymmetric with
respect to the two nucleons.

Another alternative to a strict perturbative
procedure is to construct an effective Hamiltonian
which uses two-body scattering vertices in con-
junction with absorption vertices rather than ele-
mentary' couplings. %bile this procedure may
obviate the convergence problems, it suffers
from at least two other defects. The first is the
difficulty in resolving the double. -counting of
meson exchanges mentioned above. The second
is more fundamental and involves the rescattering
and absorption vertices themselves. While it is
true that any nonperturbative field-theoretic
approach will ultimately make connection with the
elementary three- and four-point functions of
quantum field theory, it is necessary that the
formalism itself uniquely specify these functions
in order that the whole procedure make sense.
There is simply too much latitude involved in the
construction of the effective Hamiltonian.

In the present paper, we generalize the Low
equation to a more suitable form. In Sec. II, we
develop an operator identity for the two asymp-
totic, final-state, nucleon annihilation operators
and the pion current. The matrix element of this
operator identity provides the foundation for the
generalization of the Law equation. The resulting
expression is completely antisymmetric with
respect to the two nucleons and contains terms
which result from crossing the external pion leg
separately with each external nucleon leg. This
last feature is important since these crossing
terms lead to the backward rescattering graphs
which were earlier characterized as being an
essential part of the two-nucleon absorption
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mechanism. In the final form, all seagull terms
present are identifiable parts of two-body pro
cess es.

Ip Sec. III, we show that consideration of the
low-lying intermediate state contributions leads
naturally to an inhomogeneous, linear, integral
equation for the reaction process. The driving
term consists of a direct absorption term and
both a forward and a backward rescattering term.
The integral terms couple the breakup reaction
to the elastic nucleon-nucleon and elastic pion
deuteron scattering channels. The relation of
the potential to multiple-scattering approches
ss dr scussed.

In Sec. IV, we numerically invests. gate the po-
tential at the reaction threshold. The reasoning
which suggests the sensitivity of this reaction to
the unphysical behavior of the pion-nucleon scat-
tering amplitude also emphasizes the importance
of nucleon recoil. In order to properly incorpo-
rate recoil, we do not make the static nucleon
approximation, but begin with the fully rela-
tivistic form for the absorption and rescattering
vertices. Recoil considerations manifest them
selves, in two ways: in the mixing of the pion-
nucleon partial waves and in the kinematic fea
tures of the partial-wave amplitudes themselves.
While many authors have dealt with the mixing
of the pion-nucleon partial waves due to the nu

clear form factors, the recoil mixing seems
largely to have been ignored. This mixing, how-
ever, is significant at the reaction threshold.
The important feature is that as the intermediate-
state pion momentum q' changes, the Lorentz
transformation from the pion-deuteron c.m. to
the pion-nucleon c.m. changes. Consequently,
both the initial and the final pion-nucleon relative
momenta vary with q' ~ Owing to this dependency
on q' and the large momentum of the outgoing
nucleons, the s -wave and P -wave pion-nucleon
partial-wave amplitudes are comparable through-
out much of the range of integration (over (l').
Thus P -wave rescattering cannot be ignored, even
at the reaction threshold. Nucleon recoil also
tends to decrease the sensitivity of the res catte r-
ing mechanism to the off-shell behavior of T,„

In Sec. V, we briefly conclude, comparing the
content of our approach with that of other forma-
lisms.

II. DEVELOPMENT OF THE BASIC THEORY

A. Introductory discussion

%e consider the pion-deuteron absorption pro-
cess

22'(q) + d(pd) -p(pl) +p(p2)

where q and p„are the four-momenta of the pion
and the deuteron respectively and p, and p, are
the four-momenta of the final-state protons. In
the following, we suppress spin and isospin in-
dices other than where they are essential to the
argument. The asymptotic pion creation operators
a, (q, „'"„()t are related by

a, (q, out)t —a, (q, in)t = —i d'z e "'j„(z),

with j,(z) the pion current. Applying Eq. (1) to
the initial-state pion in the S matrix, we obtain
the reaction matrix

..V,p.I4' );„=(»)'25 (p, +p —q p)-
& .„,&p,p.lj.(o)l p.& .

Let f(x) be the interpolating nucleon field op-
erator and

~( ) =u(p)(-2x'6+m)0(x).

where u(P) is a, four-component Dirac spinor.
We introduce the interpolating nucleon annihila-
tion operator a(t)

lim a(t) =a(',"„')
t~ &c)o

with'
tl

a(f') —a(t) = i dx, 8(x,),
t

(5a)

(x,) = d'xe'~'"u(p)(-iy 8+m)q(x) . (5b)

To illustrate a technique which will prove useful
in the following, consider the operator product
a(out) j„(0) in which only a single asymptotic nu-
cleon operator is involved. Using Eq. (5a), we
have

a(aai)j (0) =a(0)j, (O)+i J dr, 8(a )j ~ (O)
0

= [a(0) j (0)]+j (0)a(0)+2 Jf dx g(x )j„(0)
0

= j„(0)a(in)+ [a(0),j„(0)]

0

dx, 8(x,)j,(0)+i dx, j,(0)g(x,),

(6)

which may be rewritten in the more standard form
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a(out)j„(0) =j„(0)a(in)
+ i d'x e'r'*u(p)(-iy ~ s+rn)

& T'(4(xb. (o)). (7)

be obtained by taking the matrix element of Eq.
(7) between the one-nucleon and deuteron states
and inserting a complete set of intermediate
states into the time-ordered product. The result
ls

The Low equation for the reaction matrix may

-(&i ip. l j.(o)IP.& =&&,ll'(P2)IP. &
—(»)' Q P,p' P,",, &P, l&, (o) ln&..( ..(&nl j.(0) IP.&

+(»)' Q, ' " '. &P, l j.(0)ln&..( ..(&nl~. (0)IP.&, (&a)

where

~(r.) = j~'~"""lp(r, )r.('.(v)j„(o)]r(y,,) (ab)

is the "seagull" term.
Equation (8) could serve as a starting point for

a field-theoretic description of the absorption
process. The Low equation has been used with
considerable success in the study of pion-nucleon
and pion-nucleus elastic scattering. ' However,
there is an important qualitative distinction
between these elastic scattering applications and
the reaction considered in the present paper thai
diminishes the attractiveness of the Low equation
approach. In pion elastic scattering, the Bose
statistics of the pion are the most important sym-
metry consideration and the Low equation pro-
vides a natural vehicle for the expression of this
symmetry (i.e., the Low equation is explicitly

crossing symmetric). In the breakup reaction
md- 2P, the Fermi statistics of the final-state
nucleons are similarly an important considera-
tion. The difficulty with Eq. (8) is that this anti-
symmetry is not apparent, that is, the two nu-
cleons seem to play quite different roles, even
though both are on the mass shell. For example,
the final term in Eq. (&a) results from "crossing"
the external pion and nucleon p(P, ) legs; there
is no corresponding contribution from P(P,), nor
is there any seagull term involving P(p, ) [the
matrix element of the seagull term in Eq. (&a),
in fact, is not known].

In the next section, we generalize Eq. (7) to the
case of two asymptotically free nucleons, obtain-
ing a result which is explicitly antisymmetric
with respect to the roles of the final-state nu-
cleons.

B. The basic operator identity

In the following, we shaU, make repeated use of Eqs. (5) and (6). In addition, formal tricks involvi"g
the change of the order and range of the integrations are involved. These techniques are demonstrated in
Appendix A.

Consider the operator product

a,(out)a, (out)j,(0) = a,(out)j, (0)a,(in)

OO 0
+ a, (out) [a,(0),j„(0)]+ i dyoa, (out)dl, (yo)j, (0) + i dy,a, (out)j„(0)$,(y,) .

0 ~ OO

Using (see Appendix A)

a,(out)j „(0)a~(in) =j,(0)a,(in)a, (in) + [a,(0),j,(0)]a,(in)

00 0
+i dx, g, (xo)j, (0)a,(in)+i dx, j (0)J,(x )a,(in),

0 ~oo
(IOa)
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a,(out) [a,(0),j,(0)] = ja,(0), [a,(0),j,(0)]j—[a,(0),j,(0)]a,(in)

+ l dxpcfy xp a, O, g, 0 —It (tbip a, O, g71 0 8y xp (10b)

(the curly brackets denote anticommutators)

dyoa, («t) &2(y0)i. (o) = - i dy082(y0)j. (0)a,(in) —i dy0&2(y0) [a,(o),j,(o)]

oo 0 oo

dy0 dx.&2(yo)j.(0)&l(x0)+ i dyOJia, (y0),82(y0)lj. (0)
~ CO 0

OO

0
dy.8,(x0)8.(y.)j,(o) + yo dx.&2(y.)&,(x0)i.(o), (10c)

0

i dyoa, (out)j„(0)82(y0) = —i dye. (0)$2(y0)a, (in) + i dy() [a,(0),j„(0)]82(yo)
w oo

0

dy. g, (x0)j.(0)&2(y0)+ i dy.i.(0)(a,(y.)»2(y.)]

find

/$0 ~pg ~ 0 gag Xp GI2 $0 +
10

0 dx()j,(0)8 2(y0)g, (x0),

a, (out)a, (out)j,(0) =j,(0)a,(in)a, (in) + fa, (0), [a,(0),j(0)]]

CO 0'

dy.(a {yo)» {y.)b.{o)+ '
dy.i.(0)(a.(y.)».(yo)'i

+ a, O, j, O +i dx08, (x0)j,(0) + i On, ),(O)O, (n, ))n, (in)

a, O,j, 0 +i
oo 0

&n.o.().b, (o) + i &n i (o) O (& )) (. n.)(n*.
oo X p 0

+( &*.&,(n.) (n. (o),j.(o)j + i o(n )oi (n )+.ioo.n.i (o)O.(n)).
0 0 ~ OO

OO ~0

dy, g, (y,) [a,(0),j,(0)]+i dx, p, (x,)j,(0)+ i
0 '

dx, [a,(0),j,(0)]8,{x0)+ dx,j,{0)82{y0)g,{x,)

0 0 X0
+i dy [a,(0),j (0)]8 (y ) — dx dy j „(0)),(n)xone (y ) .

In E(I. (11), the antisymmetry of the two nucleons is,apparent. However, some rearrangement of terms
is still required. Kith

X 0
dy, 8,(x.) i.(y.)j.(o) =

oo OO oo 90
dx0 d30 J l(xo)& 2(3 Ob. (0) — d3. dxo& 1(xo)&2(yo)j.(o),

0 0 0

the fifth and sixth lines may be written in the form
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dx04, xo i d'ye' ''u p, -iy ~ -- -+rn T y j 0 + dgo C4'081 Xo g2 go j~ 0

Similarly, for the final two lines, we use

—i dxoa20, j, 0 Qxo +
0 ~o

dy, dx,j,(0)8,(y,)9,(x,)

dx, a, 0,j, 0 J, x, —
0 0 00

dy, dx,j,(0)8,(y,)$,(x,)+ dx dy j,(0)g, (y,)8,(x )

duo s d'ye"&'u P, -sy. — +~ T, y j, 0 g, x,Bp

dy() g, (y0)j,(0)g,(x0) + dxo dy0j „(0)82(y0)8,(x0) .

The result is Eq. (15):
a, (out)a, (out)j, (0) =j„(0)a,(in) a, (in) +]a,(0), [a,(0),j (0)]]

m 00

+ & d3'0 &i &0 ~~2 &0 +
0

yo d 0&,(x0)&.(yo)-
Oo '0

dx, dy. d (y.)0,(x
)).j(0). ,

0

OO

dx08, (x,) j d'y e'P&'u(P2) —iy —+m T(g, (y)j, (0))
Bp

dy, d, (y) i d'xe' '*u(p, )(-jy ~ —+m)T(p, (x)j, (il))
)m

8d'ye'x'"u(P, ) -e'y +m)T(P, (y)j, (0))(-i

—i d'x e'e''*u(P, ) (-e —
+m) T(P, (x)j„(0)I(

i'-d*,d,(..))
dy. d. (v.))

0 0 OO

+j (0)(j dy,(e (V ) 0,(y))+ dx, j dy 0 (y )0 (x)—
~ ()0 ~ ()0 x

dy. dx. d, (x.)d.(v.))
90

+i d'xe' ' u(p, )(—iy ~ —+ )T(m(x)jP() (0i ))e,n

d' ye' '"u(P, ) (-iy —+m) T(P, (y)j,(0))i,(in)

0

dy, dx.@2(y.)j.(0)&i(xo)— dy() g )(x())j,(0)g, (y0), (15)

where T denotes the anti-time-ordered product.
Equation (15) is the operator identity which

serves as the basis for our treatment of the break-
up reaction. %ith the exception of the seagull
terms fa, (t),g, (f)], this ex. pres. sion is manifestly
antisymmetric with respect to the final-state nu-.
cleons and contributions from crossing each ex-
ternal nucleon leg separately with the external

pion leg are present. The equal-time commutators
which break the antisymmetry of Eq. (15) involve
the interaction of the two nucleons at the same
space-time point and are presumed to vanish.
This is true of any reasonable Lagrangian model.

Our derivation is far from unique. An alternate
approach would involve the time-ordered product
which results from contracting the two final-state
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nucleons with the pion current in the Lehmann-
Symanzik-Zimmermann (LSZ) formalism

~ ~ 8 8d'xd'ye" "~" -~y, +m -gy, . +ng
By Bg

x T ((I', (y)pi(x)j it(0)) .

Operating on the time-ordered product with the
derivatives yields a result identical to ours. The
virtue of the derivation presented in this section
is that it allows a more direct connection to be
made with-the Low equation.

C. Analysis of intermediate-state contributions

%e are now ready to develop an integral equation for the reaction matrix by considering intermediate
state contributions to the matrix elements of E&l. (15). The result will take a more transparent form,
however, if we first notice that

ln&,„, ,„, n i d'x e'P *a(p)(-iy 8+m)T($(x)j, (0)) P~ = g ln&, « „., &nla(out)j„(0)IP~&
n ff

= 2 a(o«)ln'&. .t ..t&n'I j.(0)I&.& (16)

where In' &,„,= In+i(t&o t Takin. g the matrix elements of E(l. (15) between the vacuum and the deuteron state,
introducing a complete set of intermediate states, and utilizing E(l. (16), we have

..&P,P.I j„(O)IP,& =&01(a,(O), Ia, (0),j.(O)]/IP, &

+ Q t) t anp(n)a(o, ut,) -,if, ay„,(y,)a,(out) +tf ay,(a, (y,),J,(y.)}
8 0 0 0

Xp

dyp d paid(xp)ttip(yp) dxp 'ay, P,(y,) t, (n,)):n)..., &nl j.(t)) I p, )

—t Z &P, lj, (tt)(ln):.. .., n an, P, (n, ) Pt)

0 I

+~ g &p, l j,(o)ln)!..., n: ay.p, (y.) p.)n ~ 00

+ Q &0Ij.(0) ln).«p«n i dyu, (a, (yp), g, (y )]
n ~Oo

0 0

dy() dx()g, (yp)g, (xp) +
~ oo

0 1

ay. t,(n.)t.(y.) P.)Xo

OO 0

dy dx &Ol,'), (y,) lm&, „, „&m I j,(0) In&o„, (&nil, (x,) I p~&

OO 0
+ Q d . dy.&0I j,(x.) lm&.....,&ml j.(o) In&.....&nl&.(y.)IP.&,

m, tt 0 ~ OO

(1Va)
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=&011"(p1,p2)lp&&+(»)'g p" p' p". &0IT&~(p„p2)'ln&-t -(&nlj.(0)lp. &

-(»)'g, '" ' '„&p.l j.(0)ln&:„, .„,&nl~, (0)lp, &

tl Ptg ~ 10 ~4

+ (»)' Q p, p"
p

',, &P, l j.(o) ln&.'.. ..i&nl&2(0) IP.&

g (3)
+(2.) p '"'"" ' (0Ij„(0)ln&„„,.„,(nlT„- N(p„p )2'I p. &

10 20 n0 40

t)(3) ~
) ()(3)

—(»)'p p p'. p" p' p'. &0lz, (0)lm&....., &ml j.(0)ln&... ..t &nl&, (0)I p. &

m, n&m, -&2, '~ &40 &i0 &~0

+(»)'Q p ~ "'p' '. &0I&,(0)lm&....., &mlj. (0)ln&-~ ..1&nl&2(0)lpa&.
m n mp 1p 3p 2p np

(17b)

In the second step of E(I. (1V) we have translated the operators and integrated. The superscript c on a
matrix element denotes a connected matrix element. The operators T» and I' appearing above are de-
fined by

I"(p„p ) =(a,(0), [a (o),j.(0)]]

d'xd ye' '"' " —su p, y, —iu p2 /2 fix Q2 y J& 0 ~ ~0 ~ y0

and

T„'„)(P„P,)t = J2(0)a,(out) —J,(0)a2(out)

+i d'ye'~"J 0 J, y 0 y0 —i d'xe'~~ "J2 0 Jy 6 x0

The operator T„„ is obtained from T~'„by the
replacements J,—J„and by neglecting the
a;(out). T('„) can be shown to result from a care-
ful application of the LSZ reduction technique
to the product a, (in)a, (in) (see Appendix B). The
matrix elements &Ol T )(('„) (P „P2)

~
ln&, „, and

,„,(nlT(„) (p„p,)t I p~& are therefore related to
the processes p(p, )+p(p, )-n and D(p,)-p(p, )
+p(p, ) + n.

In obtaining E(I. (17b) from (1Va), we have
dropped the seagull terms (a, (0),g, (0)), as dis-
cussed in Sec. IB. In the following, we likewise
neglect the matrix element of I"(P„P,). This
corresponds to diagrams where the pion and both
final-state nucleons interact at the same space-
time point. There is no evidence that either of
the processes xepresented by these seagull terms
contributes.

In Fig. 1, we depict the leading intermediate-

state contributions to E(I. (17b). As a first ap-
proximation, we neglect nucleon-antinucleon
pairs and multimeson intermediate states. Thus,
of the first sum [Fig. 1(a)], we retain the two-
nucleon, pion'-two-nucleon, and pion-deuteron
contributions (the deuteron does not contribute),
while of the second and third sums [Fig. 1(b)], we

retain the single-nucleon and pion-nucleon con-
tributions. We neglect the fourth term in Eq.
(17b) completely since the first contributing inter-
mediate state in the sum is a nucleon-antinucleon
pair [Fig. 1(c)]. In the remaining two terms
[Fig. 1(d)], we examine only the m =pion-nucleon
and n = single-nucleon contribution. The justifica-
tion for the neglect of the m =n= pion-nucleon
contribution will be discussed later. Additional
graphs will arise fram disconnected diagrams
involving the deuteron (Fig. 2), but these will
all involve nucleon-antinucleon pairs and we do
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not consider them further here.
Equation (17), with the approximations outlined

above, defines a linear, coupled, inhomogeneous,
integral equation for the reaction matrix. The
couplings of the reaction to the nucleon-nucleon
and pion-deuteron elastic scattering channels
involve integrals linear in the off-shell reaction
matrix; the remaining contributions define the
inhomogeneous part of this equation. It is to
the further definition of this inhomogeneous term

that we now address ourselves. In the following,
we consider the single-nucleon, pion-two-nu-
cleon, and pion-nucleon contributions in turn, re-
serving our discussion of the double intermediate-
state sums in Eq. (17) until last. For brevity,
we consider only those terms corresponding to
absorption by P(P,), where possible. The re-
maining graphs follow from the antisymmetry
of our result.

l. One-nucleon state

Inserting the single-nucleon phaS'e space, we find

(2v)'Q "' ' '. &P, l j, (0)IPN&:.. ..&P~l ~, (0)lp, & =&P, l j, (o)IP& (20)

p =pg —
p~

In Eq. (20), & p, l j,(0}lp& is the pion-nucleon-nucleon vertex with the pion off the mass shell and &pl J,(0)lp~&
is the neutron-proton-deuteron vertex with one nucleon off the mass shell. Thus, Eq. (20) is the direct
absorption term (Fig. 3) in which the pion is absorbed in a single-nucleon process.

2. Pion-two-nucleon state

Consider the matrix element

& ol T';.'(P„p, )'I q'p.'p,'&..
An important feature of 7.'~„ is the possibility of disconnected contributions where, in this case, one nu-
cleon propagates freely and the other emits a pion. When the four-momentum constraints of physical pion
production are imposed, such processes a.re not possible. In Eq. (17), however, only three-momentum
conservation is required and these disconnected contributions are the lowest order approximation to the
production process NN-NNn. Accordingly, we take

&ol T'N~ (P„P )I q'P'P, '&:~ =&ol~(0)lq'P'&. ..&P, IP,'&-&oI~ (0)lq'p, '&-I &P Ip,'& —(I—2] (21)

The other matrix element involved in this contribution, „,(q'p,'p,'
I j, (0)l p, &, we evaluate in the single-

scattering approximation (see Appendix C) obtaining

(22)

p=pa 5x~

where .„,'(q'P,'Ij, (0)IP& is the rescattering vertex. Combining Eqs. (21) and (22), we find

1
(2w)'

d'q' m m &ol~„(0)lq'p,'&... .„,&q'p, lj, (0)lp& (pl ~,'(o)lp„&

i
(2v)'

d'q' m m & ol z, (0)I q'p,'&... ..t&q'p,'I j „(0)lp& &Pl ~, (0)l p. &

2a 0 P Po P2 Co P2 +i e Pa Pz &o+
(23)

The first term in Eq. (23} is the "forward rescattering" contribution I Fig. 4(b)], the first order correction
to the direct absorption term in a multiple-scattering series expansion of the absorption process. The
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second term [Fig. 4(a}], in which the pion is first scattered and then absorbed by the same nucleon, is
canceled by the m =pion-nucleon, & =nucleon intermediate-state contribution from the final two terms in

Eq. (1'I).

3. Pion-nucleon stupe

Inserting the appropriate phase-space elements, we have

(2,) p ', ,
q 'p"p -p. -(p, l j, (0)le'p', &...„,&q p, lz, (0)Ip, &

p =p„—p —
Q

In Appendix 0, we show that to lowest order

&~'p'l~ (o)Ip & =&~'l~'(o)I*'& ' ' —&~'I~ (o)I*&
po —Co-pp —&e po

' p p p&e p—
(25)

where

When inserted into Eq. (24), Eq. (25} leads to two terms

1
(2m)'

d'q' ~ ~ &p,li, (0)I e'p,'&,„,&e'I z, (0)l p& (pl z'(0)lp, )

T

(2x}'
d'c' ~ ~ &P,li. (0)le'P!&..t&e'I~,'(o)IP'& &P'I~, (o)IPg&

The first term [Fig. 5(b)] is the "crossed" ver-
sion of the first order rescattering correction
mentioned in conjunction with Eq. (23). The sec-
ond term [Fig. 5(a}]constitutes a correction to
the direct absorption vertex. For a physical nu-

cleon, graphs in which the pion is rescattered
backward (or forward) and then absorbed (by the
same nucleon) are included in the definition of
the absorption vertex. Indeed, if we replace the
deuteron by two asymptotically free "in" nu-

cleons in Eq. (24) there is no disconnected part
where P(P, }propagates freely. In this context,
we also note the cancellation of such terms as
mentioned in our discussion of Eq. (23) to the
order of approximation considered there. In Eq.

(24), however, we are probing the pion cloud of
the deuteron, not the nucleon, and it should not
be surprising that this cloud requires a modifi-
cation of the direct absorption vertex. For re-
actions with small momentum transfer,

f' p

P&, —P2, —P, deuteron binding energy
ko —$0 —p2 pion mass

and this correction will be relatively unimportant.
For the large momentum transfer involved in the

breakup reaction considered here, the ratio is
much closer to 1 and this correction cannot be
automatically disregarded.



4. Double intermedkrte-state sums

—(2v)' Z ' "' ' '—«I J.(o)lm&- -~(~li. (o)ln&- -t(nl~, (o)lp &.
tI &p 2p 4 g p fop

(2'I)

As mentioned previously, the m = pion-nucleon, n =nucleon contribution to Eq. (2V) cancels the forward
rescattering graph in Eq. (23) in which the pion is first scattered and then absorbed by the same nucleon.
The m =& =pion-nucleon contribution is of the same order as inelastic effects neglected in the single-
scattering evaluation of vd- wNN [Eq. (22)j . We therefore neglect this contribution here as well.

Collecting the results of the foregoing analysis, our approximation to the inhomogeneous term V be-
comes

1
(2 v)'

&p,li. (o)I q'p!&- &e'I~,'(0)lp& &pl J, (0)lp. &

& ol ~, (o)lq'p, '&- - &q'P, ii. (o)Ip&

d'q' ~ ~ &p, li. (0)I e'pl&-t&~'I z.(0)lp& &pl z,'(0)IP, &

(28)

where it is to be understood that three-momentum
is conserved at each vertex.

Equation (28), exclusive of the correction to
the direct absorption vertex, resembles the
standard, truncated, multiple-scattering expan-
sion of the absorption process obtained by a num-
ber of authors (to within the neglect of the final-
state interaction). ~ ' However, there are a num-
ber of subtle differences between our result and
that obtained by others. For example, in the
multiple-scattering approach, the intermediate-
state pion is taken to be unphysical. In Eq. (28),
the intermediate-state pion is a physical pion; it
is the mass-shell constraint associated w'ith the
pion current j, which must be relaxed in order to
satisfy the kinematical constraints of the rescat-
tering vertex. These are two distinctly different
methods of relating the rescattering vertex to the
mN scattering amplitude. There is also a definite
prescription for obtaining the pion absorption
vertex; for the direct absorption term, it is the
pion which is off its mass shell, while for the
rescattering corrections, the nucleon is off the
mass shell. Other approaches have not differen-
tiated between these possibilities.

The physical nature of the intermediate-state
pions in Eq. (2S) has yet another consequence. In

the multiple-scattering formalism, the "back-
ward rescattering" graph is obtained through the
insertion of negative energy pions into the, inter-
mediate-state sum and the rescattering vertex is
interpreted in terms of v'P —v'P and w'n - n'P 'In.
Eq. (28), this graph occurs as a natural conse-
quence of the crossing relations between the pion
and a final-state nucleon. This leads to the inter-
pretation of the rescattering vertex in terms of
the Hermitic conjugate of the amplitudes for'wPyi.- n p and m p - w p. Consequently the isospin com-
bination of T,„which appear are different in the
two formalisms. We also note in this context that
the relative phase of the forward and backward re-
scattering'integrals is Sized by these crossing re'-
quirements.

In summary, our intermediate-state analysis of
the absorption process yields a linear, inhomo-
geneous, i.ntegral equation

f T(NN N N ) Ttwd-N'N')-'''
E(NN) —E(N'N'), + f&

1

T(NN - v d )'T(vd- v d )
E(NN) —E(w'd' )+ie.
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~ ~ ~

(a)

FIG. 2. The lowest order graphs from Eq. (17) in-
volving disconnected contributions from the deuteron.

~ ~ +

+

A. Discussion of elementary vertices

Consider first the rescattering vertex. Argu-
ments based on I orentz covariance and trans-
lation invariance require that the matrix element

,„„(k'p'
~j,(0) ~p) define a half-off-mass-shell am-

plitude. associated with the elastic scattering pro-
cess

v(n)+X(p) -v(a')+N(p'),

P =Pl P

y" = rn,', 0' =-(p'+ k'- p)' .
FIG. . 1. The diagrammatic representation of Eq. (17);

(a) the first intermediate-state sum, (b) the second (or
third) intermediate-state sum, (c) the fourth intermedi-
ate-state sum, and (d) the double intermediate-state
sums.

for the reaction matrix. The potential V', which is
essentially a multiple-scattering expansion of the
absorption process, involves the complete neglect
of both the final-state interaction and the distortion
of the incident pion wave. Our basic philosophy is
that the integral terms in Eq. (29) provide the ap-
propriate vehicle for the introduction of these in-
teractions. In the present paper, we shall neglect
these integral contributions. In the next section,
we deal with the further development of the in-
homogeneous term and its analysis at the reaction
threshold.

In the 7' c.m. frame, where

u =(I„T;), a;=(m,'+I, )'i~,

P'=(P', -1 ), P'=(m'+I ')'~'

p=(p -1) p =("+1')'"
W= &0+$0,

this matrix element may be expressed in terms of
the half-off-mass-shell partial-wave amplitudes

f„(I,, I,), where

g 82i6p
f v(l, ),) =

22

in the normal fashion. In Eq. (28), however, we

are in the md c.m. , not the mN c.m. In fact the

III. EVALUATION OF THE POTENTIAL

In Sec. IDB, we present the results of a thres-
hold calculation of V. However, some further
elucidation of the details of the matrix elements
in Eq. (28) is first required. FIG. 3. The direct absorption graph.
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FIG. 4. The graphical representation of Eq. (23). The
second graph is the forward rescattering contribution
and the first is a part of the direct absorption graph.

FIG. 5. The graphical representation of Eq. (26).
The first diagram represents the modification of the
direct absorption graph due to the pionic cloud of the
deuteron and the second, the backward rescattering
graph.

wN c.m. system changes with the intermediate-
state pion momentum q'. To effect the transform-
ation from the mN to the ~rd c.m. system we first
write the rescattering vertex in terms of the I.or-
entz scalars A and 8:

...(t 'p li.(0) lp}=.(p')(&.~ &'ll) (p).

ll, l

= [-,'s —,'(m'+—m ')+ (m' —m ')'/4s j"i'

l 1, l
= [(3m'+ m, ' —t —u)'/4s —m' j' "

1, ~ 1, = t —m'+ {m'+1 ')'~'(m'+1, ')'/'
(35)

A and B may then be expressed in terms of quan-
tities which are most easily calculated in the mN

c.m. system [i.e., f„(l„l, ) J:

4w(W+ m)

[(p, + m)(p,'+ m)P"

The above remarks obtain equally for all re-
scattering vertices. However, a few additional
remarks are in order regarding the backward re-
scattering graphs. The backward rescattering
term in Eq. (28) implicitly contains the 5 function,
energy-denominator combination [see Eq. 17(b)]

W -m (p, +m)(p, +m)
W+ m l~l~

4m

[(p, +m)(p,'+m) j" /'

f, = Q f„.(l„l,)P,'„(1,~ l, )

(33)

where the equality holds only if all external par-
ticles in the reaction process are on the mass
shell. Notice that the four-momentum a,ssociated
with the pion current in the rescattering vertex is
not q', the four-momentum of the incident pion in
the absorption process. All that Eq. (36) requires
is three-momentum conservation —there is no
prescription for inserting a negative energy for
either pion associated with the rescattering ver-
tex. In general, the fourth component of the mo-
mentum of the unphysical pion in Eq. (32),

f„(l„l,)P; „(l, .l, ), f~o = ko+ po —po, (37)

&2= g (»-(12 ll) -&"(12 ll))pl«2 11»
v=1

completing the transformation. The magnitudes of
the relative momenta ll, I

and ll, land their scalar
product l, ~ l, may be related to quantities in the
md c.m. system through the use of the Lorentz
8calars

s =-(p'+t )',
t=(p -p)',

u =(0' —p)'.

may take on either positive or negative values
dependent of course on the relative size of ll,
and 1, l. In this detail, we differ with most work-
ers in the field.

In the present work, we use the s-wave pion-nu. -
cleon amplitudes of Banerjee and Cammarata' and
the classic Chew-Low P-wave amplitudes as de-
termined by Salzman and 3alzman. " Higher par-
tial waves are ignored.

Consider the pion absorption vertices in Eq.
(28). For the matrix element of the pion current
between nucleon sta,tes, we take

(p'li, (o) lp& = -(p') [ .((p"' —P)')y.,1, (p) ~ (38)

This choice is the most general form consistent
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with the requirements of Lorentz covarimsce.
For the matrix element of the nucleon current

between the vacuum and the pion-nucleon state,
Lorentz covariance is not quite so limiting. %'e

have
by

0( ) =(x(0)x x(4)(iF, kaa, 4 —
~) X,(4)

2 2

u(p')(0 l(-fy ~ 8+m)$'(0) lqP&, „,
=fu(P')[ ((q+P)')y, +g ((q+P)')y Py, ]»&(P),

P =P'-P —q .
'The possibility of the second form factor g, when
the nucleon is off the mass shell seems to have
first been mentioned by Banerjee and Levinson
Little is known of g„and for the present we take
g, =0. There have been several theoretical anal-
yses of -~y

"unfortunate ly they are mode l depen-
dent and in contradiction with each other. In the
present paper, we shall ignore the distinction be-
tween g, and g„ that is, we take

V l~«)lp, & . . . Vl~(0)l~.&

1/2

0(I
)aaa 0 0a0a

)j%2

&&(-,', —,'-;m, m'l y( (p p')}l 1, X&, (44)

where
l
l, X& is the spin state of the deuteron, and

l
—,', —,';m, m') represents the Pauli spinors of the

two nucleons. For the deuteron wave function,
we choose the convenient analytic parametriza-
tion of Gourdi. n et gl. ,"

gI. =g'» ~

Applying a similar logic, we choose

(q'lJ'(0) lp&=2F7(p )[. ((p —q ) )y ]'7 u(p).

(40) u(u) =(2/~)'"XQC, (I '+~, ') ',

W(k) =- 2(2/7(') 2 QC)k (k +c(; )
Q)

(41)

For the form factor g„we use an expression
similar to that of Banerjee and Cammarata. "
They take

where N is the normalization, p is the asymptotic
ratio of the radial s- and d-wave pa, rts of the deu-
teron wave function, and the n, and C,. have been
obtained from a fit to photodisintegration data.

, ,(x)=,(0)(1+ . . . x-0x(x - 4m')
Ul ~Q

x —4w. '
a((x) =X(4m') (1+, , x-0

Vl p

(42)

B. Threshold absorption

We present here the results of an analysis of
the potential V(p„)))2;p~) at the reaction threshold.
We first define the angular momentum decomposi-
tion of Vwith

where g,(0) =12.7, g, (4m ) = 11.7, and m, =8.6 )n, .
In the second of Eqs. (42), the quantity (x —4m')/4
is the relative momentum of the pion molecule in
the rest frame of the molecule. '~ Thus, for the
form factor g, defined in Eq. (39), we replace this
expression with

[(P q)' —m'm, '] x
P+q) (39a)

the relative momentum of the pion-nucleon mol-
ecule in its rest frame. For the form factor de-
fined in Eq. (41), we simply take q--q in Eq.
(39a). For 0&x ~4m', we use a linear extrapo-
lation between g,(0) and g,(4m'). This parametri-
sation ignores the fact that g, (x) may be complex
for x ~ 0. We note in this context that the analysis
of Epstein's" suggests that g, has only a small
imaginary part and is approximately constant for
some range of its argument. Thus, our ansatz,
Eq. (40), may not be as inappropriate as it at
first seems, given our parametrization of g, .

The deuteron-two-nucleon vertex may be related
to the nonrelativistic wave function

where A~,~ is the angular momentum projection
operator, L and L' the initial and final orbital
angular momentum respectively, J the total
angular momentum, and where p& and q, are the
final and initial relative momenta in the gd c.m. .

The use of proper relativistic kinematics at
the absorption and the rescattering vertices com-
plicates the evaluation of V~~,~ considerably.
However, both the coefficients of f„, and the rela-
tive momenta 1& and 12 themselves have a strong
angular (p q) dependence (see Table I and the
discussion later in this section). Thus, any
treatment which is to accurately reflect the un-

physical content of T,~ must deal with this angular
variation. In Appendix E, we outline the method
of calculation. Our result may be written

~~() =2(f '.+fy, +f ',)

where fz„, f»„, and f~(, are the contributions from

(47)

aa(0a 0 0,)=(.''a; Em0a'ma((aa aaa))a' (0ax) 1,1), '
I t (46)
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q'' = 10m,
l~ lg

q''= 2m,
C(Cp

TABLZ I. The relative momenta ~l~( and ~l&~ and the pion-nucleon partial-wave coefficients
Isee Eq. (48)] as functions of P~' q' at the reaction threshold in units of m, =1.

=2m q' = 20m~
p q

'
Ez l~ l~ lg C~

1
' 0.6
0.2

-0.2
-0.6

2.2
2.0
1.8
1.6
1.3
1.0

0.2
0.6
0.7
0.8
0.8
0.7

6.4
5.9
5.5
5.1
4.6
4.0

3.6
3.8
3.8
3.7
3.6
3.3

9.4
8.7
8.2
7.6
7.0
6.2

7.2
7.0
6.8
6.5
6.1
5.5

2.91
2.77
2.65
2.53
2.41
2.30

4.68
2.31
0.20

-1.66
-3.29
-4.68

3.32
0.57

-1.65
-3.39
-4.65
-5.44

forward rescattering, backward rescattering, and
the direct absorption correction defined in Appen-
dix E, respectively. The combinations of the
pion-nucleon isospin amplitudes which enter into
the calculation are (- 4f ~,'~'+f~, '~')/3 (forward
rescattering), f „=,'~ (backward rescattering), and

f~=, ' ' (direct absorption correction). The inte-
grals were numerically evaluated using Gaussian
quadrature. The individual contributions are
given in Table II. The total, in units of m, =1, is

for f„(f„f,) could change our results significantly.
The origin of P-wave rescattering in the s-wave

absorption process lies in the consideration of
nucleon recoil. This may be conveniently illus-
trated by rewriting Eq. (32) tn the form

(f, -f„) A.
mfa. +Ci -'

.
-"" + C, - - —m),

I 1 I I l I I 12 I I lq I 2

V(p —7 84 11 62i

The experimental number most often quoted is
n, defined by

lim v(P +P -v' +d) =a Iql
gwp m~

Using detailed balancing and P&& as a first order
approximation to the reaction matrix at thres-
hold, we obtain n =123 i[Lb. Experimental esti-
mates of n range from n =138+15 pb'6 to n
=240+20 p.b." When comparing our estimate
of n with experiment, one should recall that both
the initial- and the final-state interactions have
been ignored and that our crude model for the
absorption vertex with the nucleon off the mass
shell clearly needs improvement. A much more
realistic theoretical estimate of n entails solving
the coupled integral equation, Eq. (29), with an
improved model for g, and g~ [see Eq. (39)]. Work
on this problem is now underway.

From Table II, we see that f~, is considerably
smaller than fz„and f~„. This is due in large
part to the extra energy factor

(2E(0) —p~ }/(E(0) —v' —E(q') —i& },
which occurs in the integrand of f~, [see Eq. (EI5)].
Notice also the important contribution that p-wave,
pion-nucleon rescattering makes to the real part
of V&0. It follows that a more realistic model

TABLE II. Contributions to the potential V(p at the
reaction threshold in units of m, =1.

mN s wave mN p:vrave

Im(f~~. )

Im(f ~)
Im(f ~~)

-0.38

-13 33

5.77

-0.18

1.59

0.72

Re(f~ )

Re(f&~„)

Re(fq~„)

—0.01

-4.45

-0.77

-0.09

9.39

-0.15

(48)

where Cp C& and C2 a.re complicated functions
of pf a dq' Their exact form is unlmporta t
their behavior as a function of p .q' for

~

q'
~

=2m, is given in Table I. Notice that ~C,
~

and

(C,
~

are maximum when nucleon recoil is maxi-
mum and zero near minimum nucleon recoil
(i.e., p.q'=q"), as expected. This behavior is
typical over much of the range of integration,
although the cancellation between C2 and C, (the
total coefficient of f„is C2 —C,) is not so com-
plete as in Table I. We note in this context that
the Lagrangian of Koltun and Reitan, 6 which has
gained widespread acceptance for the description
of threshold absorption, has only an s-wave re-



scattering mechanism. Thus, the non-negligible
character of P-wave rescattering is particularly
noteworthy. It is also instructive to consider the
behavior of the relative momenta Il, I

and Il, I

for large values of Ig'I (see Table I). Notice in
particular that the difference of the average
values of these momenta is never large, even for
Iq'I =20m, . Thus the rescattering mechanism
is not sampling the behavior of the f„,as far
off-shell as one would naively expect, and so it
is far from clear that the threshold absorption
mechanism should display much sensitivity to the
off-shell behavior of f„,.'8 These considerations
should be valid above threshold and may explain
the success of calculations which have ignored
off-shell effects. In view of the above discussion,
it is doubtful that the simple parametrization of
the rescattering vertex in terms of cutoff func-
tions of the form V(q') and V(q' ), which seems
to have become standard practice, has any clear
relationship to the off-shell behavior of the par-
tial- wave amplitudes.

In conclusion, we find that relativistic effects
associated with the rescattering vertex are not
negligible at the reaction threshold. If the, ab-
sorption reaction is to serve as a probe of the
unphysical behavior of pion-nucleon scattering,
these effects must be dealt with realihtieally.

IV, DISCUSSION

%e have ised field-theoretic techniques to
develop a, coupled, linear, inhomogeneous inte-
gral equation for the pion-deuteron absorption
reaction. Our' method is based upon the inter-
mediate-state analysis of the matrix element of
the operator identity Eq. (15) between the vacuum
aM the deuteron state. The virtue of this method
is that it obv'iates the difficulty encountered in
constructing phenomenologieal Lagrangians for
the pion-two-nucleon systems: the need to
differentiate in a unique and consistent way be-
tween the pion-nucleon and the nucleon-nucleon
scattering processes. The pion absorption ver-
tex is an integral part of both the elastic pion-
nucleon and nucleon-nucleon scattering ampli-
tudes and this is a source of considerable diffi-
culty. '9 In our approach, we achieve what we
believe is a clear and consistent separation of
the final-state interaction, the initial-state
interaction, and the reseattering mechanism; we
find no need to subtract the nucleon pole from the
rescattering vertex to avoid double counting of
meson exchanges.

Our approach is closely allied to the Low equa-
tion, although as one can see from Eq. (10b), a

careful treatment of the seagull term is . .equired.
Banerjee, Levinson, Shuster, and Zollman
evaluate I'(P,) in the soft-pion limit using a cur-
rent-field algebra identity. These authors also
consider dispersive corrections to the soft-pion
limit but do not examine rescattering contribu-
tions in any detail. In related work, Banerjee
and Yang" have done considerable work on an
analysis of the disconnected contributions to the
Low equation. In neither case, however, do their
results have the full manifest antisymmetry
exhibited by Eq. (17), due to their incomplete
appreciation of the role of the matrix element
of 1"(P2). We disagree with Alberg, Henley, and
Miller's strict interpretation of the matrix ele-
ment of I'(p2) as the Born graph (see Fig. 3).
This term plays an important role in both the
forward and backward rescattering contributions.
In fact, it is difficult to see how these authors
obtain both forward and both backward rescattering
graphs with their interpretation of I'(p&) and lack
of crossing in p(p, ) [see Eq. (8a)], nor do they
obtain the correction to the direct absorption
vertex. This effect, . which is due to the pionic
cloud of the deuteron, seems to be unique to our
approach.

Another approach based on ideas similar to
those of the Low equation is that of Lazard,
Ballot, and Becker. ~ Our work differs from
theirs in a number of essential details. Their
neglect of pion crossing terms necessitates the
introduction of negative energy intermediate-
state pions (see discussion in Sec. IIC) and their
rescattering vertices seem to require that a nu-
cleon be off the mass shell. It is worth em-
phasizing that the rescattering vertices and ab-
sorption vertices in our approach are all objects
which are currently under theoretical investiga-
tion, and that while partial conservation of axial-
vector current (PCAC) may serve as a guide for
the continuation of T,'„off the pion mass shell,
there is no equivalent dynamical statement for a
continuation in the nucleon four-momenta. This
would seem to be a fundamental difficulty with
Lazard et p/. It is worth noting that the physical
nature of the nucleons involved in the rescattering
vertices does not imply that we are neglecting the
effects of nuclear binding; binding effects are in-
cluded insofar as the deuteron-two-nucleon ver-
tex (p'

I
z(0)

I p~& is known.
In our final result, both dipion exchanges and

nucleon-antinucleon pairs have been neglected.
Brack, Riska, and Weise 3 find that p exchange is
important. %e feel that this point is unclear,
but dipion exchanges may be included. Further
investigations into the role of recoil and channel
couplings are currently underway.
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APPENDIX A

In this appendix, we present an example of the techniques used in deriving Eqs. (10). IvVe consider Eq.
(10c). Using (5a), we have

i dy, a out@, y, j 0 =i dya, y, J, y j o — dy
0 0 0

dx,a(x,)82(y o)j.(o) (A1)

The order of integrations in the second term may be interchanged if the limits of the variables of integra-
tion are also appropriately modified, i.e. ,

oo oo oo x

dyo dxg(xoyy0) = dxo dyo f(xoy yo) ~

0 y 0 0

Utilizing Eq. (A2) and anticommuting a, (y,) and g, (y,) in the first term in Eq. (Al), we find

(A2)

i dy0ai out A yo j„o =i dy0 ax yo A yo dy08 (yo)al(yo) j (0)

Finally, using

OO X0
dy.g, (x.)8.(y.)j,(o) .

0 0

&0

a, (y())j„(0)=a, (0)j„(0)+i de, (xo)j (0)
0

= [a, (0),j„(0)]+j,(0)a, (in) +i dx,j„(0)8,(x,) +i
~o

dx,y, (x,)j,(0),

for the second term in Eq. (A3), we obtain Eq. (10c).

APPENDIX 8

Consider the operator product a, (in)a, (in). Using

a, (in) = a, (out) —i d'y e'~2'" J,(y),

we have

a, (in)a, (in) =a, (in) (a, (out) —i d y e'e 'd, (y))

=a(out)a(out) —i ,f ' ,ed' xVn, (x) (o at)u

+i dtye'e '"d(y)a(out) —fd'xd ye'u "e "'y(d(x))(y)), '

where we have used

(B2)

-i d'y e'~2'(a, (in)J, (y) +J,(y)a, (out)) = — d'xd'ye' +).'" '~2"T(J,(x)J2(y)),
'

(B3)

(we assume fg,.(x),J~(y)j5(x, -y,) =0), and where T denotes the anti-time-ordered product. Taking the ma-
trix elements of Eq. (82) between the vacuum and a general "out" state n, and using
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d xdei" ie ''.e*&(O(y(d(x)d, (y))(n) , =„(2e) 2' '(y, ey, -y.) (fd'y e'e"(Old, (O)d. (y)(n). „e(y )
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we find

d'xe" '*(i)(z,(i))y, (x)ln)... e(x,)), (84)

;.&p2P31~&-( =6g;+ (2~)'i6"'(p. +p. -P.)&ol T "~)(P2,P3)'l~&-(

T~(~) (P„P3)t =73(0)a,(out) —J'2(0)a3(out) + i 'y e')'3'J2(op3(y)8(y, ) —i d'xe'~2'"J3(0)I, (x)8(x,). (B6)

The first term in Eq. (B5) is the totally disconnected part of the S matrix, in which both nucleons propa-
gate freely. The first line in Eq. (B6) corresponds to the "semidisconnected" part of the S matrix in which
one nucleon propagates freely, while the second line in Eq. (86) corresponds to the fully connected part.
The development of T„'~'~ proceeds along similar lines.

We evaluate

..«v'pl p, li.(0) I p,&

APPENDIX C

in the single-scattering approximation through the judicious use of Eq. (15). The relevant terms in Eq. (15)
are

8 0

i d e'~2'"u p,' -iy' —+m T 2 y j, 0 -i dx,g,' x, — 1 2 . (C1)

Taking the matrix elements of Eq. (Cl) between the pion and deuteron states and considering only the sin-
gle-nucleon intermediate state, we have

0

dx,d,'(x,) p,)
—(1 —2},

&P (J2(0) IPd&=..&v'P3li. (0)IP
p

p', p'„., x
(2 ), -&1-2),

x N —i

p=p~ —p~.

(2'ylylly (2).(y. ,)= g 2.
' i d y "e*' (2ly)(-(y'e em)y(dl(y)y„(0)) ye)

N

(C2)

APPENDIX D

In this appendix, we express the pion-two-nucleon-deuteron vertex, „(&q'p3IZ2(0) Ipd& in terms of the m»e
elementary two-nucleon-deuteron vertex (pl/2(0)lp, & to lowest order. Using the LSZ reduction formalism,
we have

.„,«p, lz, (o)lp,&=i d'xe'" "« IT@;(x)z,(0))lp„&

(3)
= (»)' g '", ', q,, &q'l~.'(0)I~&... ..,&~If,(0)lp,&

(3) «y

+(2.) p' ', ' '.. « I~, (0)l~&.„,.„,&~p;(0)lp,&, (D1
tj 0 20 tip

where, as mentioned in the main text, we have assumed that the equal-time anticommutator {(t)„J',) van-
ishes. In Eq. (D1), we consider only the single-nucleon intermediate-state contribution. To this order of
approximation,

.„,& p'Iz (o)lp & =& 'Iz (o)lp&
' —+& 'Iz'(0)lp & (D2)

P =Pg —Px
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APPENDIX E
1

In this appendix, we present the method of calculation of the threshold potential. To be specific, we con-
sider the forward rescattering contribution with absorption at the p(p, ) vertex. The computation of the re-
maining terms is similar.

For the following, it is convenient to reduce all matrix elements to two-component form. Let I-2,+ be
the two-component Pauli spinor representing a nucleon with s, =m. At the reaction threshold, we have

10 10
(El)

.«(q'P2li. (0) Ip& = &lm. l(c.fi+ c B)I2 Q, (E2)

(P20+m)(po+m) 'f2 (p', -m)
4m' (p, +m)

1/2

(P2, +m)(p, +m), (p, +P„) q".
4m' ' (p, +m) p, +m

In Eq. (E2), we have neglected terms of order

2pq.
p2 +m

0

(E3)

„x(fi, q,'B3 .
I',p, +m)'

0

Using the above in conjunction with Eq. (44), we rewrite the pertinent rescattering contribution as

I d q'))1 m (0 (Zk(0) )q'pk), «,«(q'P2 (j (0) )p) (p IJ'1(0) IP2)

(2)f) 2qo Po P1 P1 qo P1 +2& P1 +Po P2

=-i ——;mm, d' ep(p~, t(') ir, k'+ P, p~ u((kO+ -, ((S k)' —-*,k') (,k),2, , -, :-, (E(q') —&(0))- .- - 3II'(~k ~) —. 2 2-2
Z 0+m) 2k (E4)

With

&=%(q'), pf-q'),
&(q') = (m'+ (pf -q')')",

P (m
2 +~q)2)1/2

And

g ((0+q')2) P20(E(0)+m) "'f' C,A+ C,B
2))(2 (2w)'(d' E(q')'(E(q')+m) E(0) —(O' —E(q')+is '

(E&)

(E6)

Here we have used the fact that we are in the md c.m. and have defined p&=p, =-p, as the relative momenta
of the final-state nucleons.

With a little effort, Eq. (E4) can be rewritten in the form

(22 )mlm2Iff A10(Pf 'q2)II, »

10(Pfk'q2) 4 (2) Pf y

S =-2((f, +O,)

is the S- I', projection operation and where

(EV)
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f,'i,4=~)'~Hl"' f ~"&z'll IVI~„+lli,~l4.
0

27 Ip~lq &yo+2v lq I(p~ +q &&m 3 451pflq

+l p~'~D. --VIq'14 +. Ip&lq"&D. ]

The quantities 8 in Zq. (Z8) are defined by

1891

(z8)

8' = dZP (Z) (lkl)(t( ')
2 ' ' (E(0) +m)

Ggg= dZI ) Z Q k 6 p)q )-1
(z9)

~Dr =~est +(Ikl) -2
m( ik I) 3

k 2

where Z=p~ P and where P, (Z) is the Legendre polynomial of order f. The relative vN momenta are to be
computed using Zqs. (34) and (35).

The evaluation of the backward rescattering graph is almost identical. To obtain f~, one merely re-
places 8(pz, q') with

-(E(q ) ~ m)(E(0)+m) '~' E(0) —m
4m' E(q') +m

' {E(q')+m)(E(0) +m} ' ', E(0) -m Iq' I' 2p, 'q'
4m' E(q') +m E(q') +m E(0)+m

Now, however, the relative mN momenta are to be computed using

s, = (~'+E(q'))'- p,',
f.= (E(q') —E(0))'-q",
~.=(E(o) —~')'- (p& -q')',

where pz = (m'+ pz')'~', in obvious notation.
For the correction to the direct absorption vertex, we have

OO I

f&. = («&'f(-'-)"' v "df'~' ~(lp&l)+ ~(Ill)
0 2

where

(E(q') —E(o))8=-,'JI dZ -q'P, (Z) ——

( ( ) )
—p~ 8'(p~, q'),

g.(X') P«(E(0)+m)
2& 2 (2w)'(o' E(q')'(E(q') +m)

2E(0) —Pg, C;A'*+ C;B'*
E(0) —(u'- E(q') —ie cu'+E(q')+E(0) —P„—ie '

and X' = (E(0) —(u')' —(pq —q')' .

g (X) P~0(E(0) +m} '~ C;g'*+ C~B'*
2~2 (2v)'(u' i E(q')2(E(q')+m) e'+E(q')+E(0) -p, —ie

where X= (E(q') —(o')' —p~' and
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