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Method for scattering equations
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A method is proposed for calculating fully ofF-shell t matrix elements w'hich are solutions of Lippmann-

Schwinger-type equations. This is a generalization of the Kowalski version of the Sasakawa theory of,
scattering. The method relies on the Fredholm reduction of an integral equation whose kernel has a
singularity at a fixed point. The method yields a t matrix which satisfies the conditions of on-shell unitarity
and can be readily generalized to the case of multichannel scattering problems.

NUCLEAR HZACTIONS: Singular scattering equations, off-sheQ t-matrix ele-
ments, multichannel scattering theory.

I. INTRODUCTION

Integral equations in scattering theory usually
have kernels with a fixed-point singularity. Sasa-
kama' proposed a new method for solving these
scattering integral equations. He showed that the
solutions of these equations —especially the phase
shifts —can be related to the solutions of some
auxiliary nonsingular integral equations. The
early discussions" on the Sasakawa theory of
scattering used the wave function description of
scattering. Austern' has used the Sasakawa ap-
proach in the problem of inelastic scattering and
rearrangement collisions. Coester' studied the
convergence properties of the Sasakawa equation
for a wide class of potentials. Kowalski~ ha, s
shown that the Sasakawa approach can be reformu-
lated to yield a practical method for computing
half-off-shell t-matrix elements. Blasczak and
Fuda' used the method of Kowalski to compute
half-off-shell two-body $-matrix elements for lo-
cal potentials.

Here we propose a method for solving fully off-
shell Lippmann-Schwinger-type equations. The
method, as in Ref. 4, relies on solving an auxi-
liary equation whose kernel is free from singu-
larities. The solution of the original equation is
related to the solution of the auxiliary equation.
This method is a generalization of the method of
Ref. 4 to the case of fully off-shell t-matrix ele-
ments. The auxiliary nonsingular equation we get
is just the off-shell extension of the same equation
in Ref. 4. Hence the conclusions of Coester' for
the existence of iterative solution of this equation
holds and we can employ iterative solutions of the
auxiliary equation. A recently proposed method
by Bolsterli' is also a special case of the present
method. This is obvious from the work of Ref. 7.

It is also shown that the present method can be
easily extended to the case of multichannel prob-

lems. This can be used to study the three-body
problem under the breakup threshold.

In Sec. II we describe the method. In Sec. III
we apply the method to the case of multichannel
scattering. Finally in Sec. IV we give a brief .

summary and some concluding remarks.

II. THE METHOD

+ X dqq'V Pq k' —q'+iq 't qr'E,
(3)

where the integration limits here and throughout
the rest of the article are from 0 to ~. X is a
constant whose value depends on the normaliza-
tion convention used in the partial wave decom-
position.

Following Kowalski' we introduce a function
y(k, q) such that

y(k, k) = 1. (4)

It should be noted that this definition differs from
that in Ref. 3 by an interchange of k and q.

Now Eq. (3) can be rewritten as

The Lippmann-Schwinger equation at an energy
E in. a particular partial wave L, can be written as

8(E) = V '+ V'G, (E)t '(E)
= V ~+ t i(E)G (E)V i

Here V refer to the potential and g is the t matrix.
Throughout the rest of the article we shall not
show the partial wave index L explicitly. Here
G, has the explicit form (taking the reduced mass
to be —,')

G, (p, q; E)=(t' q'+ie) 'f(p -q), —

where E=k'. In explicit notations the fully off-
shell matrix element of Eq. (1) can be written as

t(p, &;E)= v(p, r)
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t(p, r; E) = V(p, r)+ X V(p, k) q'dq(k' —q'+i&) ' y(k, q) t(q, r; E)+ A. dqq'A(p, q; E)t(q, r; E),

where

A(P, q; E)= [V(p, q) V(P, k)y(k, q)]
x(k' q'+ ie) ' (6)

& J q 'dq(k' —q'+ ie) 'y(k, q)r (q, r, E)
1—X f q'dq(k' —q'+i&) 'y(k, q)r(q, k;E)

is a nonsingular kernel E.quation (5) still con-
tains a kernel which is singular at q =k. This is
contained in the second term on the right of Eq.
(5). We introduce the following auxiliary equation
with a nonsingular kernel

r(p, y;E)=v(p, ~)

+X dqq'A p, q', E I' q, r,'& . '7

Next we would like to relate the solution of Eq.
(7) to that of Eq. (5). The formal manipulation
needed to do this becomes very transparent in the
operator form. We write Eq. (5) in operator form

Equations (6), (I), (15), and (17) are the funda-
mental equations of the present method. Using
these equations we can calculate the fully off-shell
t-matrix elements through the solution of the non-
singular integral equation for I". It is easy to see
that when r=k the present method reduces to the
method of Ref. 4. So the present method should be
considered as a generalization of the method of
Ref. 4. As in Ref. 4 by virtue of realities of y and
I' and by Eq. (4), t given by Eq. (15) satisfies
half-on-shell unitarity. This holds for all real
values of I'. Thus any real approximation to I'
will yield a unitary on-shell t matrix. For the
sake of completeness we give the following simpler
form for the half-off-shell t matrix:

t(Z) = V+ V(Z)II, (z)t(z)+A(z)t(z),

where V and H, are defined by

v(p, q; z) = v(p, k)

and

(8)

(9)

t(p, k;E)= ' ' t(k, k;E),r(p, k; E)
I' k, k;E

where

(18)

I'(E) = [1 —A(E)] 'V.

Using Eqs. (12) and (13) t(E) can be written as

(13)

t(z) = r(z)+ [i A(z)]-' v(z)II, (z)t(z) . (i4)

With the help of Eqs. (9), (10), and (13) the fully
off-shell matrix element of Eq. (14) can be written
in explicit form as

t(P, r; E) = r (P, r; E) + I"(P, k; E)I (k, r), (15)

where

s(), r) = z f g'ug(a' —q'+(&) '

x y(k, q) t(q, r; E) . (16)

Equations (15) and (16) can be solved for I to give

II,(p, q; Z) = 5(p-q)(k' —q'+i~) 'y(k, q). (-io)

Equation (7) is written in operator form as

r(z) = v+A(z)r(z).
The matrix element of A iS defined by Eq. (6). The
solution of Eq. (8) is formally written as

t(z) = [i -A(E)] 'v+ [1-A(z)]--'

x V(E)Ho(E) t(E)

and that of Eq. (11) is formally written as

x y(k, q)r(q, k;E)

t(k, r; E) = I'(k, r; E)+ I'(k, k; E)I (k, r) . (20)

If the potential V in Eq. (1) is symmetric the exact
t matrix is also symmetric. So Eqs. (18) and (20)
will give the same result for the half-off-shell t-
matrix elements even though the two forms appear
to be different. But in practice approximate solu-
tions for I' will be used in Eqs. (18) and (20). Then
these two forms will lead to different approximate
results. In particular, if iterative solution of Eq.
(I) is used in Eqs. (18) and (20) these two forms
will show different convergence properties. (In
this connection it is to be noted that I" is not sym-
metric. } The arbitrariness in the choice of the
parameter y can and should be exploited to im-
prove the convergence of the iteration scheme.

(19)

Equations (18) and (19) are the fundamental results
of Ref. 4. Equation (18) results if we take r=k in
Eq. (15}. A slightly complicated expression for the
half-off-shell t matrix results if we take p=4 in
Eq. (15). In this case the half-off-shell t-matrix
elements can be written as
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III. MULTICHANNEL SCATTERING

The method of the last section can be easily
extended to the case of multichannel scattering
problems. In operator notation the multichannel
scattering problem has the same form as Eq. (1).
But now the matrix element of the operators will
involve channel indices over and above the mo-
mentum labels. Here 6, has the explicit form

G...(p. , q, ;E)=(E+h, -q, '+i&) '6(p. q,}6.„(21)

where E is the total energy in the center of mass
frame, hz is the channel binding energy, and the
reduced channel mass is taken to be —,'. The on-
shell value of the channel momentum /z is defined
by k()'=(E+h~). Here n, P, o, etc. refer to va-
rious channels. Now in explicit notation the fully
off-shell matrix element of Eq. (1) can be written
as

Tq, (qq, r„; )=Vq, ()tq, r,)rg I fdqq, Vq, (q,q, q, )(q,' —q, '+Iq) T„(q'„r;E). (22)

(23)

Equation (22) can be rewritten as

T(qVrq„'E)=qq, (qq, r )+g Vq(p , )qfqdyqqy lq„)(,q,q„-q, )r'T(q, „(q„r„;E)

Here the momentum label k refers to the on-shell value. As in Sec. II we introduce a function y (k, q )
such that

y..(k. , k. ) =1.

where

+g If dq.q.'Aq. (q„q.;E)T.„(q., r„E),
a

(24)

&,(p, q.;E)=[V,(p, q, ) —V,(p, k,)y„(k„q.)](k,'-q +if) ' (25)

is nonsingular at q, =k,. It is to be noted that the formulation of this section is distinct from the multi-
channel formulation of Ref. 4. Equations (23)-(25) are not related to the corresponding equations of Ref.
4. The formulation of this section is a multichannel generalization of the formulation of Sec. II.

We introduce the following auxiliary equation with a nonsingular kernel:

I'I, (q„r, ; E) = V„(q„r,) Ey frdqq. *A,.(q„q.;E)I(q„r, ; E').., (26)

Finally we have to relate the solution of Eq. (26} to that of Eq. (24}. As in Sec. II we again introduce the
operator forms of these equations because formal manipulation becomes simple in this form. It is easy to
see that in operator form Eqs. (8) and (11}-(14)still hold provided we modify Eqs. (9) and (10) in the fol-
lowing way:

Va (p() q E) V() (p() k )

II„.(p„q.; E) = 5(p, —q, )(k,' —q, '+ ie) 'y„(k„q,) .
(27)

(28}

Now with the help of Eqs. (27) and (28) the fully off-shell matrix elements of Eq. (14) can be written in
explicit form as

T (p, r;E)=I' (p, r;E)+ g I' (p, k;E)I (k, r;E), (29)

where

I, (k., r; )=X dq, q.'(k.' —q,'+i&) 'y„(k„q,) r. (q., r;E).
From Eqs. (29) and (30) it is easy to see that I& are solutions of

I& (k(), r; E) = d&„(k&, r„;E) + g d& (k&, k; E)I, (k„r;E),

(30)

(31)

where

d, (q r ;)=yf dqd. *{I.' .q,.'.r(q)-'y, (q , q )T (q. r.; E). . . .„, (32)
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Equations (29) and (31) are the fundamental equa-
tions of this section and are one of the possible
multichannel generalizations of the method pre-
sented in Sec. II. As noted before this generaliza-
tion is distinct fro~ the half-on-shell multichan-
nel generalization of Ref. 4. As in Sec. II we have
two types of half-on-shell formulas from Eq. (29).
They correspond to putting p =k or x=k in Eq. (29).
Each of these half-on-shell equations is different
from that of Ref. 4. As in Sec. II and in Ref. 4 it
js easy to see that the t matrix given by Eq. (29)
satisfies on-shell unitarity if V and y are real and
real approximations to the solution 1 of Eq. (26)
are considered. This is true in the three-particle
scattering below the breakup threshold. Hence the
present method may be used to give approximations
to the three-body scattering problem satisfying
constraints of unitarity provided real approximate
solutions of I are considered.

IV. SUMMARY AND DISCUSSION

Here a method is proposed fog solving fully off-
shell Lippman-Schwinger-type equations whose
kernel has a singularity at a fixed point. The
problem is reduced to the solution of an auxiliary
equation whose kernel is free from singularities.
The method is a generalization of the method pre-
sented in Ref. 4 to the case of fully off-shell f, —

matrix elements. Reference 4 gives a method for

half-off-shell t-matrix elements. The present
method yields two types of schemes for the half-
off-shell t-matrix elements. One of them is
identical with the method of Ref. 4 but the other
is distinct from the method of Ref. 4. If approxi-
mate perturbative solution of the auxiliary non-
singular equation is employed these two methods
will lead to different approximations for half-off-
shell t-matrix elements. The method satisfies
constraints of on- shell unitarity.

The method is extended to the case of off-shell
multichannel problems. As in the single channel
problem the method yields two schemes for cal-
culating half-off-shell t-matrix elements, But
none of these schemes correspond to the method
of Ref. 4 for half-off-shell t-matrix elements in
multichannel scattering problem.

Various approximation schemes will probably
emerge in the future based on the present method.
Numerical investigations are currently being
carried out using iterative solution for the auxi-
liary equation for I". The freedom in the choice
of y should be exploited to improve the conver-
gence of iteration scheme. It might be possible
to generalize the method to the case of the three-
body problem above the threshold for breakup into
three particles. This will be a problem of future
interest.
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