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Four-body model of the four-nucleon system

A. C. Fonseca
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Using a nonrelativistic field theoretic formalism a soluble model of the four-nucleon system is developed
and solved numerically. Two- and three-body scattering proceeds'through intermediate quasiparticles and the
resulting T matrices are separable in momentum space and satisfy two- and three-body unitarity. The 2+ 2
subamplitudes are treated exactly by the convolution method. The resulting four-body equations reduce to
single variable integral equations following partial wave decomposition and can be solved numerically by
rotation of contour together with matrix. inversion. A complete phase shift calculation is performed for the
isospin triplet interaction. The differential cross sections for all two-to-two processes initiated. by p + 'He,
n + 'H and d + d are compared with experiment for energies up to 25 MeV in the center of mass. Total
elastic and reaction cross sections for the processes initiated by n +'H are also calculated and compared
with experimental data.

NUCLEAR REACTIONS Four-body calculation of SH(a, n}3H, 3He(p, p}3He,
2Hg d)2H 2H(d g)3

I. INTRODUCTION

After the work of Faddeev in the three-body
problem' substantial progress was achieved in the
formulation of connected kernel integral equations
for the n-body problem. ' Unlike the I.ippmann-
Schwinger equations, they have the advantage
that after iteration their kernel becomes a com-
pact operator. The method of integral equations
has therefore been used almost exclusively to
carry out quantitative four-body calculations for
the four-nucleon problem. Although these equa-
tions are, at least in principle, solvable by stan-
dard methods, their complexity is so great that
few scattering solutions' ' exist for realistic two-
body potentials. The main difficulty involves the
need to use the off-shell 1+ 3 and 2+ 2 subampli-
tudes as input to the four-body equations. Even
if two-body separable potentials are used between
pairs, the resulting subamplitudes are nonsepara-
ble in momentum space, and this leads to multi-
variable integral equations that are extremely
time consuming to solve numerically even in the
fastest computers currently available. ' If a sep-
arable approximation to the kernel of the four-
body equations is introduced, it is possible to re-
duce them to one vector variable in intermediate
states which after partial wave decomposition be-
come single variable integral equations. This
method has been used extensively i:n the four-
nucleon problem to obtain bound states or thres-
hold scattering results' ' because in that energy
region a small number of terms is sufficient to
obtain accurate solutions. On the contrary, in
the scattering region, the number of separable
terms per subamplitude that is required to in-

elude, grows fast as the energy increases beyond
rearrangement and breakup thresholds. 4 In ad-
dition to the difficulties inherent to the singularity
structure of the four-body kernel that are common
to any calculation method, this leads to very large
sets of coupled equations that are also hard and
time consuming to solve.

In view of the present state of the art we find
it convenient to formulate a four-body model of
the four-nucleon system that exhibits as many
features of the experimental problem as possible,
and whose solution in the scattering region may be
obtained with considerably less numerical effort
than a more exact formalism would allow. In a
previous work" we used the field theoretic method
of Amado" to formulate a soluble model for four
identical particles and studied a spinless version
of the four-nucleon problem. Now the theory is
generalized to include spjn and isospin effects so
that a more realistic approach to the four-nucleon
system may be attempted. As before, the long
range Coulomb force will be disregarded.

The elementary particle of the present model,
the nucleon, is named N and has both spin and

isospin 2. We follow the nuclear physics con-
vention and assign isospin projection+2 to the
neutron and —. —,

' to the proton. In the two-body sec-
tor of the model two quasiparticles d and p are
introduced with s-wave coupling to two N's. Two-
body NN scattering proceeds through the d (deuter-
on) each time a spin triplet pair interacts and
through the P whenever a spin singlet pair inter-
acts. The d is, therefore, a physical particle
with spin I and is isospin 0 and the P an unphysi-
cal particle with spin 0 and isospin 1. In the
three-body sector, both the total spin and the to-
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tal isospin have two possible values, 2 and 2, and
the dynamical equations that describe three-body
bound states and scattering states are those of
Aaron, Amado, and Yam" (AAY). Since no ten-
sor or spin orbit force is included, both the total angu-
lar momentum and total spin are conserved and for
the total three -body orbital angular momentum ) = 0,
there are three independent amplitudes that can be
characterized by their spin and isospin according to
Table l. We have calledtheni(D, D), (Q, D) and

(D, Q) where D stands for doublet and Q for quartet.
As in the spinless model" an approximation to the
AAY exact three-body amplitudes is developed. It is
assumed that the three-body problem of interest
is dominated by the three l = 0 amplitudes (D, D),
(Q, D), and (D, Q) and three quasiparticles meant
to approximate three-body scattering in each of
these states are introduced. In the absence of a
better designation they are called t, t', and t"
with spin and isospin assigned according to Table

Since the short range forces are charge inde-
pendent and the- long range Coulomb force has
been disregarded, the t represents 'H or 'He de-
pendirig on whether its isospin projection is & or

The f is coupled to both A'+ d and fV+ P and the
renormalized parameters of the interactions are
chosen such that equal mixtures ofiV+ d and Ã+ p
are present in the wave function of the t. The t'
and the t" are unphysical particles coupled ex-
clusively to 1V+ d and N+ P, respectively Pro.
ceeding to the four-body sector we obtain after
partial wave decomposition. , one-dimensional in-
tegral equations for the processes n'He-n'He,

TABLE I. The three independent three-body ampli-
tudes with orbital argular momentum l = 0.

Amplitudes Spin Iso spin Quasiparticle

(D, D)

(e, D)

(D, q) 2

Y
i
2

3
2

II. TWO- AND THREE-BODY AMPLITUDES

As in Aaron, Amado, and Yam three-nucleon
model" we allow for an s-wave two-body A'-1V
interaction that is described by the following spin
and isospin dependent unrenormalized Hamiltonian
(h = 2m„= 1):

n'He-p'H, and n'He-dd, n'H-n'H, as well as
for dd- n'He and dd-P'H. Detailed numerical
calculations indicate that the total cross sections
obtained from unitarity for 2-3 processes in the
three-body sector and for 2-3 and 2-4 processes
in the four-body sector are non-negative and thus
we find that our three-body approximation, which
involves the neglect of certain classes of graphs,
leads to no gross violation of unitarity.

In Sec. II we describe the two- and three-body
amplitudes of the model. In Sec. III the four-
body equations for all 2-2 processes are form-
ulated, and in Sec. IV the results obtained from
the solution of our equations are compared with
experiment. Some conclusions are given in Sec.
V.

H Pg(ke)Nt (k)Ã (k)+PP ( e(o&+ ek2)[Dc,e(k) J Dc,ee(k

aalu

$,8
fy, 8

+ Z Z (1/W2)1 „'"f„(q)(-,'-,'s,s, l
zo)&-,'-,'f,f, le~)Dree(Q)x', , (-,'Q 4) x,' . (-,'Q+ q)+ H.c.

1' 1 2 ~ 2
ag

~D"e'(k» D'"e '(k') j = &a &cc & „,&.;&ee. ,

and the A's obey the anticommutation relations
appropriate to fermions,

(A, ((k), A'~ ), (k'))=5@,5„,5g(, .

(2)

where q and Q are the relative and total momenta
of the two interacting particle@. The first Clebsch-
Gordon coefficient refers to spin and the second
to isospin. v is either d or g depending on total
spin and isospin of the pair interaction. Both D
and N are field operators; the D's obey the usual
commutation relations suitable for bosons,

case letters are meant to designate the quantum
numbers of spin and isospin, while lower case
letters refer to projection quantum numbers; the
greek alphabet is used for integer values, and the
latin alphabet for half-integer values; the first
symbol always refers to spin quantum numbers
while the second to isospin quantum numbers.

The two-body scattering amplitudes resulting
from (1) have been graphically represented in
Fig. 1(a) and have a separable form in momentum
space. Due to the Pauli exclusion principle two-
body NE scattering is characterized by two in-
dependent s-wave amplitudes. They are

Pll subscripts and superscripts referring to spin
or isospin obey the following convention: Upper- (k'

I

&"(&) lk& = r,'f, (~)~,(~+.,)fe(&'), (4)
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for a spin triplet pair and

(k'
I
&"'(&) Ik) = ~.V.(~)~e(&)fc,(~'),

for a spin singlet pair. Both the d particle and

P particle propagators, v~ and 7'~, are discussed
in Appendix A and represent sums of self-energy
bubbles. Each interaction is characterized by a
coupling constant y and a vertex function f(k). The
triplet interaction is also characterized by the
wave function renormalization constant Z„ that
takes on the range of values 0 & Z„& 1. The re-
normalized parameters of the interaction in each
of these channels are chosen to fit the low energy
triplet and singlet nucleon-nucleon data and their
values are discussed in Appendix A.

If we move to the three-body sector we obtain
a set of equations that describe particle quasi-
particle scattering and that have already been
studied by AAY." The Nv-Nv'(v, v' = d or P)
scattering amplitudes satisfy the integral equation
depi. cted in Fig. 2. In each partial wave the equa-
tion reads

&"'(a' f z)=&"I' (u' A. .z)
00 2

v" =4& 0 0

x v „(E+e„„——,'n')v"v„",'(n, k; E), (6)

where „'„, is the single N-exchange Born term
and ~~~ are the well-known three-body spin-iso-
spin recoupling coefficients. " Since no tensor
or spin-orbit force is included, for each value of
l there are three independent amplitudes whose
spin U and isospin V take on the values (—,', —,'),
(-'„-,'), and (-'„—', ). The number of coupled equations

(a)

depends on the values of 0 and V. For U= V= 2

both Nd and Ng channels are included while for
U= &, V =

& only the Nd channel contributes. The
NP channel is solely responsible for the U=. —,', V
= 2 amplitude.

To proceed to the four-body problem with no
further approximation mould lead to the numerical
difficulties inherent in multivariable integral equa-
tions, so that we insert our three-body approxi-
mation at this point. Unlike most of the previous
work in the four-body problem'~""' no attempt
is made to expand the exact three-body amplitudes
in a complete Set of separable terms. Sirice the.
number of terms needed to obtain accurate results
in the four-body sector grows fast' as the center--
of-mass energy increases beyond rearrangement
and breakup thresholds, such procedure would
lead to a large number of coupled equations in the
four-body problem arid also to increasing difficulty
in handling the singularities of the four-body ker-
nel. Instead a model three. -body amplitude is
formulated that has the same analytical structure
(poles and cuts) as.the exact amplitude but con-
tains some adjustable parameters that allow for
some flexibility in fitting the on-shell three-body
data. Our aim is to retain the simplicity that re-
sults whenever each independent three-body amp-
litude is described by a single separable term
together with the ability to compensate for the sup-
pression of higher order terms. For that purpose we
proceed as in the spinless model" and-introduce
the following unxenox~alized interaction HamQton-
lan:

x [T'"(0)FD"(-9—q)

x N«(3@+ q) + H.c. ,

where v is either d or P and y is f, f', or f' de-
pending on the total spin and isospin of the chan-
nel interaction. The elementary particle in our
model, the N, now couples in s wave to d or (and)

Q to generate t, t', or t" with spin and isospin
assigned according to Table I. It is therefore as-
sumed that the three-body problem of interest can
be characterized by the three l=0 three-body amp-

WEXEYEEXXz + C) C) + C) C) C) +
N v'

(b)
N . N

C WXXXXYz

N

FIG. 1. {a) Graphical representation of the NN scat-
tering amplitude. v is either d or Q depending on the
spin-isospin quantum numbers of the channel interaction.
{b) First few terms in an expansion of the v-particle
propagator.

PIG. 2. Graphical representation of the integral equa-
tion for Nv ¹'amplitude {square) as described by
Aaron, Amado, and Yam (Ref. 13). v and v' are either
dor Q.
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(k'
i
Tu~(E) ik) = A„, ,g„,„(k')r,(E+ e,)

+ ~vega y(k) ~ (8)

where &, is one of the three-particle propagators
described in Appendix B. The spin U and isospin
V of the intermediate quasiparticle plays the role
of the total spin and total isospin of the channel
since the interaction must proceed through this
state. Since the t is coupled to both N+ d and
N+ P, for U= V = 2 we have a, two-channel process
as in Eq. (6). Each interaction is characterized
by a coupling constant A. and a vertex function g(k)
which for simplicity is assumed to be energy in-
dependent. In addition to the wave function re-
normalization constant Z, of the t that takes on
the range of values 0 & 8, & 1, the (D, D) interac-
tion is also characterized by the percentage of
N+ d and N+ P that is present in the wave function
of the t. Due to the field theoretic nature of the

litudes (D, D), (Q, D), and (D, Q). The quasipar-
ticles t, t', and t" are meant to approximate three-
body scattering in each of these states. As in a
previous work" the approximate three-body amp-
litudes do not include all possible diagrams that
are consistant with both (1) and (7). QTe neglect
all particle-exchange contributions and retain only
the subclass of graphs that involve intermediate
f's as well as Nd or NQ bubbles in intermediate
states. According to our approximation, Nd scat-
tering proceeds exclusively in s wave through the
t for a state of total spin —,', and through the t' for
a, state of total spin —', . Since the P is an unphysical

particle, Np scattering does not take place as an
on-shell three-body process, but in the four-
body sector of our model, virtual NQ scattering
will proceed exclusively in s-wave through t or
t" depending on whether the total isospin of the
three-body state is —,

' or 2. The three-body amp-
litudes of our model have been depicted in Fig.
8(a) and have a separable form in momentum

space. In a representation in which the total spin
and the total isospin of the channel is specified
they may be written as

+ + + ~ ~ 0

FIG. 3. (a) Graphical representation of the approxi-
mate amplitude for Nv Nv'. y is either t, t', or t''
depending on the spin-isospin quantum numbers of the
channel interaction. (b) First few terms in an expansion
of the approximate three-particle propagator y. v and v'

are either d or Q.

formalism,

Zt+ s~ff+ sg~ = 1,
where Z, is the probability of finding an elementary
t in the wave function of the physical t, and s„„
and s» are the spectroscopic factors for the N+d
and N+ P configuration, respectively. The rela-
tion between the spectroscopic factors and the
parameters of the interaction is discussed in
Appendix B.

Subject to these constraints the renormalized
parameters of the interactions are adjusted to fit
the most important three-body observables such
as the triton binding energy (e, =8.48 MeV), the
nucleon+ deuteron component of the triton wave
function, and the doublet and quartet neutron-
deuteron s-wave phase shifts and inelastic para-
meters. As in the work of Alt, Grassberger, and

Sandhas, ' the vertex functions g„(k) are chosen
to have the same momentum dependence as the
exact three-body Sturmian functions g„re-
sulting from the solution of

2

g„'",'(k; E) =[q', "]'. , ft„'„;e„'„,(k, n; E) r„,(E+ ~„.——,'n') g„". ,'(n., E),
v'=d, Q 0

(10)

for l =0 and corresponding to the largest eigen-
value g. It is well known' that for E & —q„ the
largest eigenvalue solution of (10) can be repre-
sented with reasonable accuracy by an expression
of the type

g'(k E) &([k'+ P,'(E)][ +kP, '( )E][ +kP '(E)]] ' (l l)

where P„P„P,depend on the three-body center-
of-mass energy E. Therefore we adopt for g„„(k)
an expression that is identical to (11) but whose
parameters P» P» and P, are energy independent.
For U=V= —,

' the parameters of g„,(k) (v=d or p)
are those that fit g„""'(k,E) at the three-body
bound state energy. '4 The three-body coupling con-
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3nq~"'= g,' ),g„,'(k)r„(E+ e„--,'n'), (12)

at the same energy.

stants X„, are chosen so that equal mixtures of
N+ d and N+ g contribute to the three-nucleon
wave function. This is a somewhat arbitrary pro-
cedure that can be justified by the approximate
validity of the supermultiplet theory of Wigner"
where the triplet and singlet nucleon-nucleon in-
teractions are considered to be identical. For
Z, =-O we have s„„=sN~=0.5, where the s„„prob-
ability contains not only the nucleon+ deuteron con-
tribution but also the rescattering continuum of
the triplet N-N interaction. " In the model, the
resulting nucleon-deuteron component of the three-
body bound state wave function is of the order of
4C% which conforms with most predictions" in-
cluding the one resulting from the exact solution
of (10) with Il= 1 and l=0. For the spin-isospin
states (Q, D} and (D, Q) where there are no three-
body bound states the parameters of g„,(k) are
taken to fit g~~'(0, 8}at the two-body scattering
threshold E = —c~, and the coupling constant X,„
satisf ies

With the above choice of parameters the s-wave
phase shifts '~"5, and inelastic parameters re-
sulting from the numerical solution of (8) for Nd
elastic scattering are shown in Fig. 4 for U= —,

'
and in Fig. 5-for U=-,'. These results are com-
pared with both AAY predictions and the most
recent neutron-deuteron phase shift analyses. The
values of the parameters are shown in Table D,
where the sole purpose of set 8 for P, and X is to
improve the fitting of the real part of the phase
shifts to AAY three-body calculation. Both sets
A and B are used to test the sensitivity of the
four-body calculation to changes in the three-body
amplitudes. Detailed numerical calculations have
shown that in all three-body amplitudes where it
is possible to define on-shell scattering, the in-
elastic yarameter remains between 0 and 1 above
breakup thresholds and returns to unity at suffic-
iently high energy. No gross violation of unitarity
is observed in the three-body sector of our model
and the 2-3 cross sections predicted by the optical
theorem are non-negative. The total s-wave cross
sections for elastic scattering and breakup are
shown in Figs, 6 and 7 and are compared with
AAY results.

We have therefore been able to formulate a one
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FIG. 4. Doublet phase shifts and inelastic parameters
versus EN resulting from the solution of Eq. (8) for
Nd Nd. Curves A and 8 correspond to the two differ-
ent sets of parameters in Table II. The open circles,
the triangles, and the crosses result from the phase
shift analyses of Befs. 18, 19 and 20, respectively. The
dashed line corresponds to the solution of AAY equations
{Bef.13) vrith the two-body parameters of Appendix A
and &q = 0.051.
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PIG. 5. Quartet phase shifts and inelastic parameters
versus E& resulting from the solution of Eq. (8) for
Nd Nd. Curves A and B correspond to the two differ-
ent sets of parameters in Table H. All other symbols
are as in Fig. 4.
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TABLE II. Parameter of the three-body T matrix in each spin-isospin channel interaction.
Only p& and & have two sets of values, A and B. p& and p3 are never changed. The units are
{fm-&) for P and { -&3) for X&.

U i y 1

Nd

t'
U= 3 V=-,'

Nd

tl l

U= T V=—1 3
2

NQ

0.829
2.084
2.075
3.706

270.8
1257,0

0.809
0.809
2.473
2.867

-247.2
-247.2

8.48 MeV
0.0

0.212
0.272
1.936
2,923

13.40
54.24

0.500
0.500
2.404
2.441

20.59
20.59

term separable representation oi the thr ee-body
amplitude that has many features of the exact
problem and whose parameters may be adjusted
to the on-shell three-body data. At the expense
of simplicity there is still room for considerable
improvement. More separable terms per inde-

300

pendent amplitude can be easily allowed as well
as vertex functions that are energy dependent and
that become complex above scattering thresholds.
In particular it may be appropriate to include the
p-wave three-body amplitudes. They play an im-
portant role in neutron-deuteron scattering and
as shown by Yjon4 their presence affects the pre-
dictions of the four-body scattering calculation.
Energy dependent three-body form factors are
also required to correct for the absence of par-
ticle exchange diagrams at the three-body ver-
tex. Since these two important features would
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FIG. 6. Total doublet s-wave cross sectiona for
Nd Nd and Nd NNN versus E& resulting from the so-
lution of Eq. (8). Curves A and B correspond to the two
different sets of parameters in Table II. The dashed
line corresponds to the solution of AAY equations {Ref.
13) with the two-body parameters of Appendix A and
gg= 0.051.

0—
0 IO 20

FIG. 7. Total quartet s-wave cross sections for
Nd Nd and Nd NNN versus EN resulting from the so-
lution of Eq. (8). The notation is the same as in Fig. 6.
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greatly increase the time involved in the numer-
ical solution of the four-body equations shown be-
low we postpone their inclusion for a subsequent
publication where an improvement of the present
model will be attempted.

III. FOUR-BODY AMPLITUDES

Having introduced explicit fields coupled to
N+d and N+p that led to three-body ampli-
tudes in a separable form we now proceed
to the four-body sector and consider all two-par-
ticle-to-two-particle amplitudes. The four-body
equations that we obtain here are dynamically
similar to the ones developed for four identical
bosons" but some changes are necessary to ac-
count. for the large number of I+ 3 and 2+ 2 chan-
nels. The 1+3 channels to be considered are M,
Nf', and Nt" while the 2+ 2 channels (named also
quasiparticle-quasiparticle states) are dd, dP,
and yQ.

As it has been previously pointed out the three-
nucleon bound state ~H('He) is represented by a
f with isospin projection+-, ' (--,') and likewise the
N is either n or p depending on its isospin pro-
jection. Since in the model all short range inter-
actions are charge independent and the long range
Coulomb force has been disregarded, the results
obtained from the solution of our equations for
reactions initiated by charge symmetric states
(P+ 'H and n+ 'He or P+ ~He and n+ 'H) are iden-
tical. Therefore the two-to-two reactions of in-
terest are n'He -n'He, n'He -P'H, and n'He -dd,
n'H-n'H, as well as dd-dd and dd n'He. As
shown in Table III only the states n+'H, P+'H,
and d+ d are pure states of the total isospin I with
isospin projections I,=1, I,=-1, and $,=0, re-
spectively. Both n+'He and p+'H have I,= 0 but
neither is a pure state of the total isospin. If we are to
study the reactions initiated by n+ 'He (orP+ 'H) the
total I cannot be specified or otherwise the initial
and final states become appropriate mixtures of
n+ He and P+'H. In a preliminary study of our
model we want to avoid unnecessary difficulties
and for that reason we Chose not to solve the equa-
tions for these particular reactions where the
total isospin is not a, good quantum number. " In-
stead we formulate and, solve numerically the

where the y" summation runs over I;, t' and I;"

y' N

+
y"

y' N

N t N t
{a)

y' N y' N y' v t

X X
1/ cwax)

N t N N

equations for the reactions initiated by n+'H (or
p+ 'He) and d+ d for which the total I can be spec-
ified.

We want our four-body equations for the re-
quired processes to be of the Lippmann-Schwinger
type where the kernel is given by the product of
well-identified terms, that is, Born terms and
intermediate propagators. As it has been dis-
cussed elsewhere" the presence of quasiparticle-
quasiparticle states as off-shell external lines
make it difficult to separate the Born terms from
the intermediate propagators. The four-body
equations are therefore constructed in such a way
that no quasiparticle-quasiparticle state ever
appears as an off-shell external line. The simp-
lifying assumptions adopted in the three-body
sector of the. model are carried through in the
four-body sector, that is, virtual Nd or Np scat-
tering can only occur in s-wave through the inter-
mediate t's. Therefore, in the absence of /&0,
Xd or Np scattering, the total four-body spin S
and projection S, are conserved. Concentrating
first on the reactions initiated by the M state, a
graphical representation of the integral equation
for the Nt -Ny (y = f, f', or f') amplitude is illus-
trated in Fig. 8(a). In a representation in which

S, S„ I, and I, are diagonal the equation reads

TABLE III. Two-body reactions of interest.

Mixed

V, P

-1
0
1

P+3He

n+3H
n + 3He; p + 3H FIG. 8. Graphical representation of the integral equa-

tion for the Nt Ny' amplitude (circle). y' (or y") is t,
t', or t" and v {or v') is d or Q.



A. C. FONSECA

and driving term S(E) is

S,,„(E)= B~ „(E)+S„i,(E)+K...(E) . (14)

B,,„(E)corresponds to the d or (and) @ particle
exchange Born term, g, „(E) to the box amplitude
depicted first in Fig. 8(b), and X„,(E) to the sum
of the last two box amplitudes. Both 6..., (E) and

X,,„(E) may have as intermediate states the 2+ 2

channels dd, dQ, Qd, and QQ. The Born term
B„,„(E)describes the exchange of two correlated
and fully interacting particles while the box amp-
litudes involve the exchange of two uncorrelated
particles in a two-step process. As shown in
Table IV the number of two-body channels that
contribute to (13) depends on S and I, and the num-
ber of coupled equations varies from one to a
maximum of three. Since the dd channel is absent
for an incoming n+'H (or p+'He) state we need
not wrjte an equation for this particular rearrange-
ment reaction.

For an incoming dd state we write the equations
for both processes d&f- dd and dd-n'He (or P'He).
As in a previous work" to avoid dealing with the
quasiparticle-quasiparticle states as off-shell
external lines we obtain first an integral equation
for dd-Ny (y = t, t' or f"). The elastic amplitude
dd- dd is then calculated by performing an in-
tegration over the half-on-shell amplitude for
d'd-Ny. The integral equation for dd-Ny has
been depicted in Fig. 9(a) and reads

«=.'ir;,'„&& &if&=g f&k, 'ia.'„'„ik"&

x T,(E+ &„-fy"')

x (k"
~

v'"„(E)~k&, (18)

(k )B&,',(E)~k&= g &„,'„(k )B, ,(z))k&,
VMy Q

where

which is graphically represented in Fig. 9(b).
Having written the equations for the required 2 2
amplitudes initiated by both n+'H (or p+'He) and
d+ d, we now calculate the Born terms B„,,(E) and

B,«(E) as well as the box amplitudes g, ,„(E) and

L, ,„(E). The results are basically identical to the
ones presented in Ref. 11, but more complicated
due to the existence of spin and isospin quantum
numbers. Although we have written E&ls. (13),
(15), and (16) in a representation in which 8, 8„
I, and I, are diagonal, to carry out the explicit
calculation of the Born terms and box amplitudes
with the interaction Hamiltonians (1) and (7) it is
most convenient to use a representation in which
the spin and isospin projections of the individual
particles are specified. The connection between
the two representations has been left for Appendix
Q and indicate here just the final results. The
two-particle exchange Born term B„„(E)can be
written as

(k' ['r ~ (E) ) k) = (k' )B (E) ( k)

,Z f,&k ig„,, &E&ik"&

X Ty„(E 6~+„—M3 )

x (k"
)
K ~„'«(E)

~
k) . (15)

B", ,(z) Ir&= g, g., (r+k /3)T„(x)

x l&„g„~(k'+ k/3),

X=E+ s —k2 —(k+k') /2 —k'
(18)

B„~ (E) is the single-particle exchange Born terms
and s„„(E)is given by (14). The solution of this
equation provides a means to obtain the elastic
amplitude for dd- dd. The precise form of the
integral pelation between 1;«and 1'«« is

N N y& d

TABLE IV. Two-body channels in each spin-isospin
inter action.

d d d N

S=O S=2

Nt
dd, @Q
Nt, Nt"

Nt"

Nt, Nt'
dd

Nt, Nt', Nt"
dQ

Nt"

Nt'
dd FIG. 9. (a) Graphical representation of the integral

equation for the dd Ny amplitude (rectangle). (b)
Graphical. representation of the integral relation expres-
sing the dd dd amplitude (hexagon) in terms of the half-
on-shell dd Ny amplitude {rectangle).
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The four-body spin-isospin recoupling coefficient
y„, „ is given by

Xsr ( 1)s+r v+v v--v'UVU V W( Z 8 . UU

x W(-,', e,f, ,', VV—'), (19)

where W is the Racah coefficient and U=v'2U+ 1.
U- V, U' —V', and Z —8 are the spin-isospin
quantum numbers of particles y, y' and v, re-
spectively. The single-particle exchange Born
term B,«(E) is a special case of the more general
Born term B „,(E) (v, v' =d or P} that may be
written as

(k'IB (E) lk) =(-1)W2 - „„,[xsr (k IBw ~ (E) l~)

+ (-1)'"x".&& IB .(E) I -i&]
(20}

where

(1-,.IB (,) I-„&=~"f"(""-")~g-(""'~')
E+ g„——,'P —(k+8) -P'

(21}

«'II*,',«) i~&=2K J '2, , x" .(&'I~,""(~)i~'&

and

xG, (E)x „,(klB,- (E)I& )

(23)

(k'Ix (E)lk&=2(-1) "

«Q f (m, x",0 „I.~„.„'w&„.I„,. '

xGgE)x"..(1 IB...(E& ll &

(24)

The box amplitudes 6„,,(E) and X, ,(E) are con-
structed using the convolution procedure that has
been discussed elsewhere. " We therefore present
here just the final results,

and

q„'„'„,= UVR'8 W(-,', —,', S, Z; Z'U)W(-,', —.', f, e; e'V).
(22)

where the summation in v and v' runs over both
d and (t&. The G, and G, pro'pagators are defined
as

(Y —Q)(Y —Q') " Im[v„(x+ c„)]v„,(Y —e„—x)
7r (Y —Q —g, —g)(Y —Q' —E„—x)

and

G2(E}= ~ ~'(Y)~.u+ - .(Q }"(Y —Q"}

(Y Q)(Y Q") " 1m[~„(x+~,)]&„(Y-e„-~)
7r (x+ c„—Q")(Y—Q

'- e„—x) '

I

(26)

where

Y=E+ q„+ &„, —k",
Y —Q =E+ c„——,'k" (k+ k")' —k', —

Y —Q' =E+ e„——,k"' —(k'+ k")' —k",
Y —Q" = E+ e„, ——,'k"' —(k' —k")' —k" .

(27)

The Kronecker symbol 5„~ makes the first term
in both (25) and (26) equal to,zero unless v =d.
This terminates the description of the four-body
equations for a system composed of four identical
fermions. The structure of these equations is very
similar to the four-body equations of Narodetskii'
or Perne and Sandhas' for the same two-body
N —N interaction, a single term in the Hilbert-
Schmidt expansion of the 1+3 subamplitude, and
all terms in the expansion of the 2+ 2 subampli-

tudes. The main differences are the choice of
three-body vertex functions and propagators to
be used in the four-body sector and the treatment
of the 2+ 2 subamplitudes. While I most other
work a separable expansion of the 1+3 and 2+ 2

subamplitudes is required to reduce the four-
body equations to one variable integral equations,
in this work the 2+ 2 subamplitudes are treated
exactly using the convolution method. " This
seems to be a particularly convenient procedure
in the scattering region where the correct treat-
ment of all two-, three-, and four-body cuts is
most needed.

IV. RESULTS

In this section we present the results obtained
from the numerical solution of Eqs. (13), (15), and
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All symbols are as in Fig. 10.

FIG. 10. Singlet s-wave phase shifts 0~40 versus E&.
Curves A and 8 correspond to the two different sets of
parameters in Table II. The dashed line and the crosses
correspond to the resonating-group calculation of Hefs.
28 and 29, respectively. The black dots are the four-
body results of Tjon (Ref. 4). A11other data are from
phase shift analyses: open circles from Ref. 24, inverse
triangles from Ref. 25, triangles from Ref. 26, and
squares from Qef. 27.

(16) for the reactions 'He(p, p)'He, 'H(n, n)'H,
'H(d, d)'H, and 'H(d, p)'H. Our integral equations
contain one vector variable in intermediate states
and reduce to single variable equations following
partial wave decomposition. The singularity
structure of the Born terms and box diagrams,
though more complicated, is similar to that en-
countered in the three-body problem and the us-
ual contour rotation method" together with ma-
trix inversion has been used. The numerical cal-
culations are straight-forward but lengthy mainly
due to the convolution integrals used to obtain
the box amplitudes. Using an 18 point integral
equation mesh the CDC 7600 computer takes ap-
proximately three minutes to solve the equations
for seven independent amplitudes in six partial
waves (40 minutes for the IBM 370-158).

In Figs. 10 through 15 the Et-Nt phase shifts
~15, are shown for I= 1 and different values of
S and E. Considering that the predictions of the

180

150

Nt-Nt

optical model or the A-matrix theory for the four-
nucleon system are not on the basis of the two-
nucleon interaction and involve some kind of pre-
liminary fitting to chosen four-nucleon observ-
ables, we compare our results with the most re-
cent phase shift analyses" "and with the pre-
dictions pf resonating-group calculations for
p+'He (Ref, 28) and n+'H. " The corresponding
phase shifts resulting from the four-body calcu-
lation of Tjon' are also displayed for comparison.
The solid curves correspond to set A for the para-
meters P, and A, of the three-body T matrix (see
Table II) and the dash-dotted lines to set 8 With.
the exception of "5, all other phase shifts conform
with what is expected from previous ealeulations
or phase shift analyses. The s-wave phase shifts
are repulsive and satisfy the relation ~16 (E= 0)
—~~6,(E = ~) = w. In the framework of the shell
model the absence of positive parity I= 1 bound
states in the four-nucleon system is attributed
to the Pauli principle that prevents a third neu-
tron (or proton) from occupying a position in an
already filled s, &, shell. Therefore the modified
Levinson's theorem" may be invoked to justify
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FIG. 13. Triplet s-wave phase shifts ~~60 versus E&.
All. symbols are as in Fig. 10.
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the behavior of the s-wave n+'H (or P+'He) phase
shifts as due to the existence of a Pauli excluded
7=0 bound state. As in the phase shift analyses of
Tombrello" the triplet s-wave phase shifts are
smaller than those corresponding to the singlet
state [if the s'60(E =0) = w convention is adoptedt.
but they do not differ greatly in magnitude. The
p-wave phase shifts exhibit the usual resonant
structure. The singlet p-wave phase shifts re-
sulting from set A, seem to have the correct order
of magnitude but the triplet "5,present a sharp
rise through v/2 that is not observed in any other
calculation or phase shift analyses. With set B
there is a slight improvement in "6,but the singlet
phases become too small. The d-wave phase
shifts are repulsive and, contrary to the predic-
tion of the resonating-group calculations of
Reichstein et al."or the phase shift analyses of
Morales et al. ,

'7 they do not change sign around
E~= 20 MeV (proton laboratory energy). Since
the resonating-group calculations do not take into
account the effects of breakup and the phase shift
analyses does not allow for complex phase shifts
it is possible that our model calculation may give
a better prediction that only an exact calculation
can verify. The inelastic parameters are shown z
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in Fig. 16 for I=1, S=0, 1, and l=0, 1. In the ab-
sence of a rearrangement channel in I=1, inelas-
ticity is due to three-and four-body breakup. The
spin triplet interaction is more inelastic than the
spin singlet. This may be attributed to the pres-
ence of dP states in S= l instead of pp states in
S=0 (see Table IV). While the dp boxes are re-
sponsible for three- and four-body inelasticity,
the PP boxes only allow four-body intermediate
states and for this reason are much less inelastic.

In Figs. 17-20 we show the differential cross
sections for the isospin triplet Nt -M elastic scat-
tering process at energies between 1 and 30 MeV.
The results of our calculation (curves A and 8
correspond to two different parametrizations of
the three-body amplitudes —see Table II) are com-
pared with experimental points from either
sH(n, n)'H or 'He(P, P)'He reactions. When com-
paring with p+'He elastic data the Co~lomb amp-
litude is added to the nuclear amplitudes multiplied
by the appropriate Coulomb phases. Although our
differential cross sections have the right shape
and order of magnitude they do not fit the data
equally well at all energies, particularly below
5 MeV. This is mainly due to the strong resonant
behavior of the triplet p-wave phase shift at low
energies. When set 9 is used and the resonance
has broadened and moved to higher energies, there
is a remarkable improvement particularly at 3.5
MeV where "5, has the order of- magnitude that is
expected by either phase shift analyses'4 "or
Tjon's calculation. ~ Above E~= 6.5 Me7 our model
calculation does quite weQ in reproducing the gen-
eral trends of the experimental data. This is best
seen in Fig. 21 where we plotted the total elastic
cross section versus laboratory energy. Once
again the sharp rise of the total cross section at
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FIG. 15. Triplet d-wave phase shifts ~ 52 versus Ez.
All symbols are as in Fig. 10. The phase shifts of Befs.
26 and 27 had to be averaged over J.

FIG, 16. Isospin triplet inelastic parameters versus
E~. The parameters of the three-body T matrix are
from set A in Table Q.
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FIG. 17. Angular distribution for ~H(n, n)3H at differ-
ent neutron laboratory energies. Curves A and B cor-
respond to the. two different sets of parameters in Table
II. The black dots are experimental points from-Ref.
31.
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FIG. 18. Angular distribution for 3IIe(p, p)3IIe at dif-
ferent proton laboratory energies. The solid curves
correspond to set A in Table II and the dash-dotted lines
to set B. The crosses are experimental points from
Ref. 32.

low energies is due to the triplet p-wave. reson-
ance. Above E„-=6.5 MeV the calculated cross
section follows the experimental points and there
is little difference between curve A and B. The
total reaction cross section is shown in Fig. 22
and falls within the error bars of n+'H data.
(crosses). Qur calculation does not agree so well
with the experimental reaction cross section for
p+ 'He (dots) but since Coulomb distortion can
have an important effect on P+3He results w6 do
not consider this to be a serious discrepancy.

In Fig. 23 and 24 the differential cross sections
for dd P3H are shown for deuteron laboratory
energies between 6.7 and 51.5 MeV. At low ener-
gies our differential cross sections lack sufficient
structure but improve considerably at higher ener-
gies. Nevertheless the overall order of magnitude
tends to be smaller than experiment. The elastic
cross sections for dd-dd are shown in Fig. 25 and
although they have the correct shape the order of
magnitude is much too sinall. Since nv (v=d or g)
scattering in the three-body sector of our model
proceeds through an intermediate quasiparticle
y (y = f, f' or f"), there are many four-body dia-
grams (such as simultaneous exhange of two

nucleons between two incoming deuterons) that
are not allowed and whose contribution may be
important to deuteron-deuteron elastic scattering
(see Ref. 11). It is our hope that a better approx-
imation to AAY three-body amplitudes would im-
prove both the elastic and the rearrangement amp-
litudes.

V. DISCUSSION

In the previous sections a four-body model of
the four-nucleon system was introduced and its
numerical predictions compared with the approp-
riate experimental data. Two- and three-body
scattering proceed through intermediate quasi-
particles and the parameters of the interaction
are fitted to the two- and three-nucleon observ-
ables (bound state and low energy scattering prop
erties). The 2+2 subamplitudes are treated ex-
actly by the convolution method and in this respect
our approach differs from the work of Tjon, 4

Narodetskii, ' or Perne and Sandhas. ' In most of
the previous work with nucleon-nucleon separable
interactions a complete separable expansion of
the 1+ 3 and 2+ 2 subamplitudes -is required to
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FIQ. 21. Total elastic cross section for n3H n3H ver-
sus neutron laboratory energy. Curves A and 3 corre-
spond to the bvo different sets of parameters in Table
H. The crosses are experimental points from Ref. 34
and the open circles are from Ref. 35.

reduce the four-body equations to one vector vari-
able in intermediate states. The method proposed
here involves a one term separable represen-
tation of the 1+3 subamplitudes and the correct
treatment of the 2+2 subamplitudes by the
convolution method. As pointed oot before we
have adopted a very simple model three-body
amplitude and there is plenty of room for further
improvement. The next step would require choos-
ing three-body vertex functions that are energy
dependent and that become complex as the three-
body center-of-mass energy increases beyond
the first scattering threshold. The P-wave three-
body amplitudes should also be included. It is our

200-
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FIG. 20. Angular distribution for 3He(p, p)~He at dif-
ferent proton laboratory energies. The parameters are
those from set A in Table If. The open circles are ex-
perimental points from Ref. 33.
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FM. 22. Total reaction cross section for n+~II neutron
laboratory energy. The crosses are experimental points
from Ref, 85. The black dots correspond to the experi-
mental reaction cross section for p+ 3He and are from
Ref. 36.
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FIQ. 23. Angular distribution for 2H (d, p) H at different
deuteron laboratory energies. The parameters of the
three-body T matrix are from set A on Table II. The
crosses are experimental points from Ref. 37.

hope that such changes would greatly improve the
results of our model, particularly in the low en-
ergy region where the amplitudes are more sen-
sitive to the details of the three-body T matrix.

Since our four-body equations reduce to single
variable integral equations after partial wave
decomposition, and the singularity structure of
the Born terms and box amplitudes is similar to
that encountered in the three-body problem, the
numerical techniques developed in the three-body
problem were readily applied to the solution of
these equations. With the present computer capa-
bilities, our scattering equations are manageable
within reasonable amounts of central processing
unit (CPU) time and describe both qualitatively
and quantitatively the main features of the four-
nucleon scattering problem. The methods devel-
oped here can be easily applied to build four-
body nuclear reaction models that can be solved
in a computer with considerably less numerical
effort than a ~ore exact2 formalism would allow.
We are thinking in particular of nuclear reactions
initiated by such states as 'He + n, p+ 'Li, or
n+'Li where, at low energies, the dominant re-
action mechanism may be considered four-body.
Since the energy required to break up an e-par-
ticle is large compared to the energy of dis-
sociation of 6Li into u+ n+p or 3He into p+ d and

p+ n+ d, one hopes that the internal degrees of
freedom of the nucleons in the n particle may be
frozen and that: such nuclear reactions may be well
described as a four-body problem. Qur approach
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FIG. 24. Angular distribution for ~@(d, n)~IIe at differ-
ent deuteron laboratory energies. The parameters of
the three-body T matrix are from set A in Table II. The
circles are experimental points from Ref. 88 and the in-
verted triangles from Qef. 39.
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FIG. 25. Angular distribution for HQ, d) H are differ-
ent deuteron laboratory energies. The parameters of the
three-body T matrix are from set A in Table II. The
crosses are experimental points from Ref. 40.
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has even the advantage that the breakup ampli-
tudes can be easily expressed in terms of the
two-to-two amplitudes" and are not much harder
to calculate than the 2-3 amplitudes in the three-
body problem. In a recent work" it has been
shown that when the elementary constraints of
unitarity and analyticity together with dispersion
techniques are applied to three- and four-body
final states in the quasiparticle isobar picture,
a set of integral equations for the few-body amp-
litudes is obtained that is very similar to ours.
Therefore it is our hope that the four-body form-
alism previ. ously described exhibits enough fea-
tures. of the experimental problem to provide a
good desc ription of four-body scatte ring proces-
ses.

The author wishes to thank P. E. Shanley for
useful discussions and the Computer Science Cen-
ter of the University of Maryland for their gener-
ous collaboration. This work was supported
by the U. S. Department of Energy.

APPENDIX A: TWO-PARTICI, E PROPAGATORS: v.„p@

(1) 7'~(E): As it has been previously pointed out,
N-N scattering proceeds through the d each time
a spin triplet pair interacts. Since the triplet in-
teraction is responsible for the two-nucleon bound
state, the 7'„propagator is constructed by summing
a series of self-energy bubbles [see Fig. 1(b)] and

is renormalized so that a pole appears at the
deuteron binding energy. For the vertex function
we chose the Hulthen form f(n) = (n + P~') ' and f»
that reason, the expressions that describe 7~ are
the same as in AAY, "

The coupling constant y„can also be written as

= 327/otgp~(ot~+ P~) (1 —Z~) . (A6)

The triplet interaction is therefore characterized
by the binding energy of the deuteron &„, by the
range parameter of the vertex functions P„, and

by the wave function renormalization constant
Z„. In terms of the low energy parameters of the
triplet nucleon-nucleon interaction we have

~P„'Z~ ~P~( P~+ „)
a~ 2(Pg+ ling) (1 —Zg) 2(Pg+ (xg)

(A6)

&'n f '(n)(E)=- 1+y '
(-2v), (A8)

For a vertex function of the Hulthen shape the in-
tegral in the denominator of (A8) can be easily
performed. For E (0,

(A 9)

(A7)

where a~ is the triplet scattering length. For
q~=2.226 MeV, a~=5.41 fm, and Z~=O, P„ is ob-
tained through (A6) and y„with the help of (A5).

(2) 7o(E): The singlet nucleon-nucleon inter-
action is attractive but not strong enough to pro-
duce a bound state of the two-nucleon system. In
the model the singlet interaction is characterized
by the unphysical quasiparticle &f whose propaga-
tor is constructed as in AAY (Ref. 13) and is given
by

( )
S~(X)

d

y'
[S„(X)]'=Z,+ y„' g.

(A 1)
while for E&0

(A 10)

For o.„=V—,'&~ and o = (X —c~)(0, l is real and is
given by

In terms of the low energy parameters of the sing-
let nucleon-nucleon interaction we have

(A3)

whereas for o= (X —e~)) 0, r is complex and is

Re& =4[(n„+ tl, )(2P~'+ o)(g, + o)] '

3 16r
P@

= 1+ 1 —-——-~
2r, ~ 9a,

16pp ~4a ~
yg

Q~pp —2

(Al 1)

(A 12)

2&~p~ —o
2p~ +o 4P.(&u+&.) '

img=v2o[(e, +o)(P,'+-,'o)'] '. (A4)

where a~ and r~ are the singlet scattering length
and effective range, respectively. For a~ = -23.78
fm and r~ =2.6V fm the two parameters P~ and y~
that characterize the singlet N-N interaction in
the model are determined through (All) and (A12).
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APPENDIX B: THREE-PARTICLE PROPAGATORS: r„r,„r,„

(1) ~, (E): Since the f (luasiparticle is coupled
to both N+ d and N+ P, the f propagator is con-
structed by summing a series of Nd and N(t«bub-
bles. The propagator is graphically shown in
Fig. 3(b) and the corresponding unrenormalized
amplitude is given by

Zt+ sNd+ sNz = 1,
where

(B8)

(B9)

1 I 1
+ (, f(E) ( «+ . , (Bs+&t s+&t s+&t

N4

d3n

( )~g ( (n)T (W) . (B1O)

where -&t"' is the bare energy of the t at rest.
I(E) may be written as

f(E) —(y(u«)2
3n

( )3 g~, '(n)r„'"'(E+ e~ --', n )

.3

+ (&o(",«)'f 2 ), g~, '(n)ro("'(E —2~n) (B2)

and represents the sum of two bubbles, one in-
volving an N and a fully dressed d and the other
an N and a fully dressed p. The d and (t«particle
propagators are taken to be unrenormalized.
Summing (Bl) we have

(gm) 1 E+ ~(0« f(E) (BS)

Requiring that &t have a pole at the -triton binding
energy E = -&t gives the relation

7'd and 7'~ are the derivatives of 7'd and v'~, re-
spectively, and s» and sN~ are the spectroscopic
factor for the N+ d and N+ P configurations. The
spin —,', isospin —,

' three-body s-wave amplitude is
therefore characterized by &„g«, and g~ in ad-
dition to Z„SNd, and s». In all calculations

(2) 7', , (E): The f' (luasiparticle is meant to ap-
proximate the spin quartet l = 0 state of the three-
nucleon interaction. In the model, Nd scattering
proceeds through the t' each time an N and a g in-
teract in a state of total spin —,

' and total isospin
Since the spin quartet interaction is repulsive

there is no bound state of the three-nucleon sys-
tem with such quantum numbers, and the t' is
an unstable particle with no physical analog. Vfe
construct the unrenormalized propagator wt',

"' by
summing a series of Nd bubbles such that

= &(+ f( «) . (B4)
(r(N«) 1 E g e(0«(y(«««)2

Assigning to the renormalized propagator 7', =7","'/
Z, a unit residue at the pole we obtain

d3

(2 ), A(,' (n) r~"'(E+ e~ ——,'n ) .

r, (X)= S,(X)/X,

[s,(x)]-'=z, — " cf Q

)3 gg j'(n)

«([r (X+ 1') —7 (Y)]

cf g
(- ),g„'(n)

(85) (Bl1)

The renormalization method for unstable quasi-
particles has been developed elsewhere ' so as
to give the renormalized propagator &;= v,(,"«/Z, ,
the form it would have if a separable potential
was used between the two interacting particles.
Since the t' is an unstable particle, Z, , is neces-
sarily zero and in that limit we obtain

x=z+ &„
3 2Y= Ed —&t-

S'= -gt —2n,3 2

x [r,(x+ w) v, (w)], (B6) [~,,(E)]-'= 1 —~„,'

d3n
,,g~ (n)&„(E+e„-~zn ) (B12)2v)8 dt

by taking

where the renormalized coupling. constants are
given by

lim Zt, qt'0' = 1,
Z ~0

(B13)

A„t =«tZ„Z( X„( (Bv)

and r„=7'„("«/Z„The wave funct. ion renormaliza-
tion constant Z, is such that lim (8)

Zt, ~0 Zd t' dt~ dt' ' (B14)
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Apart from the d bubbles that are expressed
through ~~, the w, , is the same one would obtain
if a repulsive separable potential was used between
N and d. In the model, the spin quartet inter-
action is therefore characterized by the coupling
constant X«, and the vertex function g«, .

(3) r,„(E): For the t' propagator we proceed
as for the t' propagator and sum a series of NP
bubbles. Using an identical renormalization pro-
cedure we obtain

[r „(E)]' = 1 —A.

d3

(2 ),g~, „'(n)w~(E ——,'n ) . (B15)

In the model the isospin quartet interaction is
therefore characterized by the coupling constant
A.~,„an& the vertex function g~,„.

APPENDIX C: SPIN AND ISOSPIN FACTORS

The solution of the four-body integral equations
as described in Sec. III is most easily done in a
representation in which the spin and the isospin
of the channel are diagonal. On the contrary to
calculate the Born terms and box amplitudes it
is inost convenient to use a representation in which
the spin and isospin projections of the individual
particles are specified. It is therefore necessary
to relate .both representations, and as an example
of the procedure we will write the necessary re-
lations for the two-particle exchange Born term

In the representation in which the spin and iso-
spin projections are specified the Born term
B,,„(E)may be written as

&U', u'; V', v', —,', s'i i' i k 'I B ~ (E) IU, u; V, v; a, s; a, i; k& = g ( 1)&k'
I Bi,(E) I k&&2, z, s', 0'

I U, u&
. C, (y

e,e

x&,', z, s-, oIU', u'&& ,',o, f'-, eI v, v&&,', e, f-, eI v', '&,

(C 1)

where &k IB~,(E) Ik) is given by (18), and s and i are the spin and isospin projections of the nucleon. In
terms of the spin and isospin of the channel

&k'
I B„~(E)I

k& g &
—,U, s, u

I S, S,&&
—,U', s', u'

I
S, S )(—,V, i, v II, Ig

Ny$9Q sS~
Va-~a V ~ ~

&&
&

—,', V', i', z,
'

I
I, Ig&U', u'; V', v'; —,', s'; —,', i'; k'

I
B„.„(E}I

U, u; V, v, —,', s; —„i; k) . (C2)

Substituting (Cl) in (C2) we obtain (17) after reducing the Clebsch-Gordan coefficients.
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