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The R-matrix method has been used by Tobocman as a basis for deriving the equations of N-body
scattering theory. It is claimed that this method avoids some of the ambiguities inherent in the more
conventional approaches. We point out and correct some errors in Tobocman’s treatment. We also give
arguments to support the contention that our correction terms make a negligible contribution to the final

equations.

NUCLEAR REACTIONS Errors in Tobocman’s R-matrix method formulation
of N-body scattering theory are pointed out and corrected; correction terms ]
appear to be negligible.

L. INTRODUCTION

Several years ago Tobocman proposed a K-ma-
trix theory of nuclear form factors.! The forma-
lism developed in that paper constitutes a deriva-
tion of the dynamical equations for many-body
scattering on the basis of the Wigner-Peierls
R -matrix method.? The results are a generaliza-
tion and refinement of those of Brown and deDom -
inicis® and of Garside and Tobocman.* This
method is a completely time-independent alterna-
tive to the usual time-dependent derivation of the
many-body scattering equations.® The equations
given by the new method are very similar to the
standard ones. The difference consists in the
presence of certain projection operator factors
and in a somewhat different definition of the
Green’s function operators used. The limiting
process implicit in the scattering formalism is
one of allowing the normalization volume to be-
come arbitrarily large rather than one of allow-
ing wave packets to become arbitrarily large.

The purpose of this paper is to point out two
flaws in Tobocman’s treatment and to analyze
their consequences. The first flaw results from
the fact that the lack of self-adjointness of the
kinetic energy operator was not fully taken into
account. The second flaw is the result of omitting
a projection operator factor from the integral
equations for the reaction operators.

Correcting these flaws introduces additional
terms into the scattering equations which appear
to destroy the similarity with the standard equa-
tions. However, we are able to present arguments
to support the contention that these additional
terms in fact make no contribution in-the scatter-
ing equations. Thus the similarity between the
equations of the time-independent formulation of
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many-body theory and the standard ones is pre-
served.

The errors in the original treatment are out-
lined in Sec. II, and the corrected formulas are
supplied. Reasons why the correction terms are
not expected to be important are given in Sec.
III. As the ideas of Sec. III are presented in a
rather general form, we provide in,Secs. IV, V,
and VI an illustration of these ideas in terms of
a simple three-body model.

Il. EQUATIONS FOR THE WAVE FUNCTIONS

As in all R-matrix formalisms, the system point
in 3N-dimensional configuration space is confined
to a finite volume V. This point represents the
simultaneous position of the N particles making up
the system. The boundary of ¥ is a 3N-1 dimen-
sional polyhedron;its faces,the channel entrances,
are regions of fixed channel radius » ,=a,. There
is one channel entrance ¥, for each partition a of
the system intotwogroups or clusters of particles.
T, is the relative displacement of the centers of
mass of the two clusters of partition «.

Within the volume ¥ we define for each partition
a the region v, which is the 3N-dimensional cylin-
der having channel entrance I, as a cross section.
The partition regions U, partially overlap each
other, and the union of the U, equals the volume
V. Let P be the projection onto the volume U,
and let P, be the projection onto the volume V.

Associated with each partition a of the system
is a representation of the Hamiltonian H of the
system as the sum of a partition Hamiltonian H ,
and a partition residual interaction V¢, '

H=H, +Vo=Ha+V8=... (1)

The partition @ channels are the eigenstates of
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H, with eigenvalue equal to the system energy E.
This set of channels consists of a discrete set
corresponding to the two-body asymptotic states
and a continuum associated with the three-or-
more-body breakup configurations.® The Green’s
function operator G and partition o Green’s func-
tion operator G, are defined by

(E-H)G=G(E~H"=P 2)
and
(E-H)G, =G (E-HY)=P,. (3)

The Green’s function operator G is set equal to
zero outside the volume v as is G, outside the
volume U,. Thus

PG=GP=G, (4)
PdGO(=GO(Pa=Gd' . (5)

Equations (2) and (3) are our corrected versions
of Egs. (13a) and (14b) of Ref. 1, in which the
operator

A=H-H'=H -Hl=T-T7" : (6)

was tacitly, and erroneously, assumed to be zero.

T represents the operator for the total kinetic
energy.

By operating on Eq. (3) from the right with G
and making use of Eqs. (1) and (2) one finds

P.G=G,+G, V¥, (7a)
v =vea. (7b)
A similar procedure starting with Eq. (3) again
and operating from the left with G gives
GP,=G,+GVYG,, (8a)
vO=ve-a. (8b)
Equations (7) and (8) replace the basic Eq. (15)
of Ref. 1. They represent the R-matrix theory
version of the resolvent equation.

The remainder of the development of Ref. 1 is
correct provided that the following replacements
are made: The reaction operators X,g and X,
defined by Eqgs. (17b) and (17¢) of Ref. 1, are to
be replaced by

Xos=(1+VY6) VY (9a)
and .
X'4p=V5(A+GVE). (9b)

The modified Lippmann-Schwinger equations,
Egs. (28a) and (29b) of Ref. 1, are to be replaced
by

PV, =G (E=-Hg)pg; +Go Vi ¥y, (10a)

for scattering states and

Pg¥, =G, V'V, (10D)

for bound states. For the case where a # 3 Eq.
(10a) becomes

Pct\I/Bj =Gava\l’ﬁj +Goc(T - TT)‘I’Bj (100)
since
(E=Hg)y, =0. (10d)

For the case where a =8, Eq. (10a) becomes
Pp¥g; =g +GgVp¥g;
+Gg(T = TN (W35~ ¢5)) (10e)

since

Pypg; =g - (10£)

These expressions are identical to the usual forms
given for the Lippmann-Schwinger equation ex-
cept for the projection operator factor on the left
and the last term on the right. The last term on
the right vanishes by virtue of the fact that the
partition Green’s function operators fulfill out-
going wave boundary conditions and therefore have
the same asymptotic behavior as the outgoing part
of Wg;.

IIIl. EQUATIONS FOR THE REACTION OPERATORS

In Ref. 4 dynamical equations for the reaction
operators X4 have been derived, again tacitly
assuming that A vanishes. The corrected dynami-
cal equations are found as follows. Lety be any
partition and write the identity

Xog=VE+ V1= PGV +VEP, GV, (11)
Note from Egs. (7a) and (9a) that
P,GVE =G, Xy . (12)

Substitute this result into Eq. (11) to obtain the
corrected dynamical equation

Xepg=VE +VP(1=P)GVE +VP6, X, 5.  (13)

This would replace an equation which has the form
Rop=Va+VoGy Xy _ (14)

We use the circumflex to distinguish the solution
of Eq. (14) from that of Eq. (13).

If the quantities A and 1~ P, in Eq. (13) are set
equal to zero then Eq. (13) becomes identical to
Eq. (14). One can show that it is reasonable to
expect that these quantities can be neglected in
the limit as the channel radii a, and consequently
the volume U becomes infinite. It is only in this
limit that the channel states become representa-
tive of physical configurations.

The A terms convert to surface contributions



1662 C. CHANDLER AND W. TOBOCMAN ) 19

with the use of Green’s theorem. This results in
expressions involving the values and derivatives
of continuum channel radial wave functions evalua-
ted at large r,, say v,=b,. The b, will increase
along with the channel radii a, as we go to the
infinite volume limit U - . These expressions
will therefore be oscillatory functions of the
energy. As the b, get larger, these expressions
become more rapidly oscillating. It thus seems
reasonable that averaging the equations over a
small energy interval will cause the A-term con-
tributions to vanish in the infinite volume limit.
To discuss the contributions of 1- P, we note
that the term in which it appears may be written

P,V(1=P)GV4Pg. (15)

The A terms have been dropped by virtue of the
previous argument. The factors P, and Pg have
been introduced in recognition of the fact that the
reaction operators X, are to be evaluated be-

tween channel states in which such projection oper-

ators are implicit.

There is a volume v, at the center of U formed
by the intersection of all the partition volumes v .
Each quantity PV, is contained almost entirely in
V,. The small portion of P,V , that lies outside of
1V, becomes relatively negligible as U, and all the
U, become infinitely large. Clearly, if the limit
is taken in a manner such that the ratios of all the
channel radii to one another remain fixed, then the
portion of PV, that is exterior to U, remains
fixed while the interior part becomes infinite in
extent. It is then plausible that in this limit we
can set

PV P, =PV, (U=). (16)

Thus the (1 —-Py) term may be reasonably neglec-
ted.

IV. SIMPLE ILLUSTRATIVE EXAMPLE

We consider a simple example to illustrate the
concepts and arguments given above. The system
consists of three particles labeled N, P, and C in
one dimension. Particle C is infinitely massive
and inpenetrable for the other two particles. The
interaction between the particles is described in
terms of finite range two-body potentials. The
Hamiltonian for this system is

H=T+V, (17a)
h»2 82 h—z 32

Tomg— o — o 17b
oM, 5FZ, " 2Mp RR’ (17b)

V=Vy@Ry) +Vp(Rp) +Vyp(|Ry=Rp|) . (17c)

To discuss the asymptotic behavior of the sys-
tem we need to introduce the relative motion and

internal motion coordinates for each partition.
There are three partitions:

a=P: (P)(NC), (18a)
a=N: (N)(PC), (18b)
a=D: (NP)(C). '  (18¢)

The relative (r,) and internal (p,) coordinates for
each partition are

¥p=Rp, pp=Ry, (19a)
7yv=Ry, py=Rp, (19p)

” _MuRy+MpRp
b My+Mp

In terms of these coordinates the kinetic energy
operator is

Pp=Ry—-Rp. (19c¢)

T=Ty+T 4, ' (20)
7 9°

To==5——5 20D

«  2m, ar:’ . (20b)
nt 92

Ta==5— =%, 20

* 204805 (20)

where
mp=Mp, Up=My, (21a)
my=My, py=Mp, (21b)
M M

mpy =My +Mp, (21c)

“ =—ﬂ———£—_'
P My +Mp

Next we introduce the partition Hamiltonians H ,

the partition internal motion Hamiltonians 3¢ ,, and
the partition residual interactions V:
H=H,+V%, (22a)
Hy=T o+ 5., (22b)
where
Hp=Tp+Vy, VE=Vp+Vyp, © (23a3)
Ky =Ty+Vp, VV=Vy+Vyp, (23b)
Hp=Tp+Vyp, VP=Vy+Vp,. (23¢)

Now the asymptotic behavior of the system can
be discussedin terms of the channel states ¢ ;(p,,),
which are eigenfunctions of the partition internal
motion Hamiltonians:

(805 = 3o b oy(pe) =0 (24)

Let E be the energy of the system, and let ¥ be
its wave function:

(E-H)¥,r,,p.)=0. (25)‘

Associated with each partition a is an asymptotic
region of configuration space corresponding to
large values of 7, where the partition residual in-
teraction vanishes. In that region a channel state
expansion
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FIG. 1. Configuration space diagram for the one
dimensional three-body system. 7y and 7p are the
displacements of particles N and P respectively from
the infinite mass, impenetrable particle C: 7, =(myry
+mp¥p)/ (my+mp).

Waﬁz bps(Pp)ups,irg) (g large) (26) |

defines the channel radial wave functions ug; .
which are solutions of

7%kg,?
(%%—Tt) ugs,0i(rg) =0, (27a)

Ezk 2
L8 —F . 27
T =E =8, (27b)
Then the asymptotic behavior of the system is
described in terms of the amplitudes of the ingoing
and outgoing wave parts of the radial wave func-
tions ug; o

1/2
BT -tz i,y
”s;.w‘(hkm) (€7*"81788 4564, = €781 BYg; o)

(28)

U is the collision matrix.

Having described our system and introduced
some of the relevant concepts and quantities, let
us now diagram configuration space and the channel
entrance surface. This is shown in Fig. 1. For
our simple system configuration space is two-di-
mensional. The channel entrance surface is made
up of the'segments PA, AB, and BH. These
segments are the channel entrances for partitions
P, D, and N, respectively.

The projector P of Eq. (2) is 1 inside the poly-
gon OPABH and vanishes elsewhere. The partition
projectors of Eq. (3) are defined as follows:

P, =1 inside OPAD,

=0 elsewhere, (29a)
Py=1 inside OCBH ,

=0 elsewhere, (29b)
P,=1 inside OEABF,

=0 elsewhere. (29¢)

The channel radii are

ap =OP, (302)
ay =OH , (30b)
ap,=0L. (30c)

In the R-matrix formalism the channel states
¢4, are required to vanish at the channel entrance
edges. Thus,

¢p;=0 for p,=0,0D, (31a)
¢y;=0 for p,=0,0C, (31b)
¢pr=0 for p,=- LA, LB. (31c)

For this reason the formalism provides a descrip-
tion of physical reality only in the limit as the
channel radii ap,, ay, and q;, all approach infinity.
The dashed lines in Fig. 1 have been used to
delimit the ranges of interaction of the two-body
potentials. The potential V, is different from zero
only between the lines SV and OH, the potential
Vx vanishes everywhere except between the lines
PO and MK, and the potential V is nonzero only
between the lines NX and IZ.

V. ANALYSIS OF THE A CONTRIBUTIONS

To discuss the contributions of the operators A
defined by Eq. (6) we introduce the asymptotic
states

¢a1=¢a1(pa)fod(ra) (32)

and the partition Green’s function operators

Ga= Z:/:Ol d’)’j;"otdr' |¢’a15("’a"')> (—z/ﬁ)faf(’r<)

X gc(l(r>)< ‘Pq]é(/ra-‘rl)' ’
(33)

where

fuy@) = <_—L;;:a!) " sink e (34a)

1/2
gay”) = (%“—) (coSkyy7 = so8inky;7) . (34b)
of

The parameters s,, can be assigned any finite
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value; they control the asymptotic boundary con-
ditions fulfilled by G,. The reaction amplitudes
X,;,p; are then defined as the matrix elements
with respect to the asymptotic states of the reac-
tion operators defined by Eq. (9):

Xoip7 =Pt 1 Xop Py - (35)
}

The integrations required to evaluate this matrix
element are understood to be confined to the inside
region volume U which for our system is the area
enclosed by the polygon OPABH.

From Eq. (13) we see that the evaluation of the
reaction amplitudes requires the solution of the
coupled integral equations

(@i;7 [Xog|®g,) =(ai; 7|V +VE(1 - PT)GVg‘) &5, +Z f ar {ai;r IV(;)G,/ka;r')(yk; 71X, 1@ 55 (36a)
3

and the subsequent evaluation of

sx:oti B :fad dyfa( (r)(ozi;r lXaqu’ Bj> ) (36b)
where
7y oylvk;7) = yu(p)0(ry=7). (36c)

The first A contribution on the right of Eq. (36a)
is
Boi,pi ) ==(ai;7|al®g,) . (37)

Consider the case where ¢ =N and =P and use
the Green’s theorem to transform the volume inte-
gral to a surface integral. The volume in this
case is the intersection of projectors P, and Pp,
the rectangle OCGD, and the surface is line seg-
ments CG and GD. The result is

Byip s @) =§i‘:—‘n_N‘ (bl o160y = 7’)(8_2; - BZ_N) ®p;(by)

o p 0w (5o =52 ) s )
ZmP PJ Ni\Yp Bbp Bbp pi\¥p/>
(38)
where
by=0D, bp=0C. (39)

In accordance with Eq. (36b) this A contribution to
the reaction amplitude is

-

I/ E)
Ayi,pj =m (i ffpl)fm(bn)(gz—N -£;> Pps(by)

7 /3 B
+M(fm ‘¢p1)¢1vr(bp)(5‘b; "—iw-,) fri(bp) .

(40)

The question is: How does Ay, p; behave in the
limit as b, and b, approach infinity? The channel
states ¢.;(p) decay exponentially with p for chan-
nels a? that are two-body channels. Thus Ay, p;
vanishes in the infinite 4 limit if both N7 and Pj
are two-body channels. In any case, fy,;(by) and
fp;(bp) for large b, and b, will be strongly os-
cillatory functions of the energy provided Ni and

]

Pj are open channels. By choosing the parameters
S of Eq. (34b) appropriately” we can restrict our-
selves to the evaluation of reaction amplitudes in-
volving only open channels. We conclude that
Ayy p; becomes an increasingly strongly oscilla-
tory function of energy as b, and b, increase and
therefore can be eliminated by averaging over a
small energy interval.

Let us consider 8, 4;(#) of Eq. (37) for another
choice of @ and B. Let us set @ =D and B=N.
Then the volume of integration is the intersection
of P, and Py, polygon OCBF. By use of the
Green’s theorem the volume integral is converted
to a surface integral which in this case is a line
integral along CB and BF. The result is

Apy,ng =‘[HD ar fpi ()8 p; ;)

2

=2;inp I:tboi(?’)fm(% r +bp) | fu; 7 +bp)]

-

5 3 7’ 3 F) )
X (bp —bp\) ®n;(bp) +§ﬁ‘; ¢m(bu)<§‘b; ~ %,

x [fm(" +%ﬁ bD) | )y (r +bb)] ) (41)

where
b,=DB. (42)

The behavior of A, ,; for large values of b, and
bp is similar to that of Ay; ;. If Di and Nj are
two-body channels, A, y; will tend to vanish be-
cause ¢ ,;(bp) and ¢p;(b,) will decay exponentially
with increasing 4. In any case, the matrix ele-
ments, involving fp, andf, the way they do, will
become increasingly strong oscillatory functions
of the energy with increasingly large values of b,
and b,

This completes our discussion of the A contri-
bution to the first term on the right of Eq. (36a).
In the other terms, the operator A is always multi-
plied by a Green’s function operator. Let us next
direct our attention to the third term and analyze
the A contribution to the kernel of the integral
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equation:

Nai ya 0 7) = (@i;7|T = THG ks 7")
2
="% (¢or16(7-u—’r) ’T - TT

X|¢ykgyk(7>)fyk("'<)>a (43)

’
where v,,7 =7, v, for ¥'>7 and r, ¥’ for r >7".

The resultant contribution to the right side of Eq.
(36a) is

> f ar’ (—%) (Doid o= T =T $,r 8y

X <¢ykfk le B'¢8j> H (44)

where the assignments of g and f have been made
in anticipation of the fact that the matrix element
of T—T" is to be transformed into a surface inte-
gral. The matrix element of 7~ T7 is seen to be
identical to the definition of ba,'yk(r) as given in
Eq. (37) except that f,, has been replaced by —gy,.
The energy dependence of g is similar to that of
f so the arguments given above showing that

5 qi,yx(¥) makes no contribution also apply to the
A contribution of the third term on the right side
of Eq. (36a).

The A contributions to the first and third terms
on the right of Eq. (36a) have been shown to be
negligible. The second term is similar to the
third term except that G appears in place of a
partition Green’s function operator G, How-
ever, the Green’s function operator G is required
to have the same behavior as the partition Green’s
function operator G, in the o partition asymptotic
region. Thus the A contributions of the second
term will be of the same kind as those of the other
two terms, so they can also be eliminated by
averaging over a small energy interval.

VI. ANALYSIS OF THE (1 — PA’) CONTRIBUTION

We now analyze the second term of Eq. (36a) dis-
regarding the A contributions. In particular, we
consider the operator

Ouys =P oVl =P )GV,P,. (45)

We argue that the operator P, V=V P, is con-
tained almost entirely in the volume v,, the inter-
section of all partition projection operators. The
operator 1-— P, vanishes within U,, so the opera-
tor P,V,(1=-P,)would also vanish if all the P,V,’s
were contained entirely in U,.

The volume v, for our example is the rectangle
OCGD. The area in which P,V, does not vanish in
Fig. 1 has horizontal stripes, the area in which
P,V, does not vanish has diagonal stripes, and

the area in which P,V _does not vanish is speckled.
We see that these areas are contained almost
entirely in V,. P,V, is nonvanishing outside of U,
only in the quadrangles CETW and RUFD. P,V, is
nonvanishing outside of U, only in the triangle
QGY. P,V, is nonvanishing outside of U, only in
the triangle JIG.

Now consider what happens when the channel
radii ay, ap, and g all become very large main-
taining fixed ratios to each other. The striped
and speckled areas where P,Vy,, PpVp, and PV,
do not vanish all become very large, but the areas
of the quadrangles CETW and RUFD and the areas
of the triangle QGY and JIG remain fixed. Thus
the relative contributions of these areas become
negligible in the inifinite channel radius limit,
provided they do not occur in the regions corres-
ponding to the central parts of the bound state
charnel state wave functions. Just the opposite
is true.

For the operator P,V,, we must consider the
overlap of partition D channel states with the quad-
rangles CETW and RUFD. For the operator P,V,
we must consider the overlap of partition N chan-
nel states with the triangle QGY. For the opera-
tor P,V, we must consider the overlap of parti-
tion P channel states with the triangle JIG. In
every case the area in question is located at the
edge of the channel entrance as far away as pos-
sible from the place where the bound state channel
states, the ones associated with two-body channels,
would be localized. So it is clear that as the chan-
nel radii increase in magnitude the extent of the
channel entrances increases, and since the quad-
rangles CETW and RUFD and the triangles QGY
and JIG remain fixed in size their contributions to
matrix elements involving the channel state wave
functions must become relatively less and less im-
portant.

We conclude that the operator P,V (1 - P,),
which is the left-hand factor of @ ,, of Eq. (45),
will cause the vanishing of the large channel radius
limit of matrix elements of 0,5 Which have par-
tition channel states on the left. Therefore, the
second term on the right side of Eq. (36a) may be
ignored. Having thus justified the neglect of the A
contributions and the (1 - Py) contribution to Eq.
(36a), we conclude that Eq. (36a) may be replaced
by

(@057 | X )@ )
=(isr|Volos)+ 3 [ ar'(@isr |V,G,bvkir)

X vk v | Xogl®g,) - - (46)

Note added in proof. The surface contributions
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resulting from the kinetic energy operator not be-
ing self-adjoint has been discussed previously by
E. Gerjuoy in Phys. Rev. 109, 1806 (1958). His
analysis is based on the Lippmann-Schwinger in-
tegral equations. His conclusion that the surface
contributions vanish if the energy is given a small
positive imaginary part is very similar to our use
of an average over a small energy interval to
eliminate the surface contributions in the context
of the R-matrix formalism.
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