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Separable expansions to local potentials in a quasipotential approach
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A recently proposed method which was successfully used to make separable expansions for the
nonrelativistic two-body t matrix is here used to construct separable expansions for the two-body t matrix
satisfying relativistic unitarity in a quasipotential approach. The present method, unlike other commonly used

methods, does not require the calculations of eigenfunctions and eigenvalues of the kernel of the scattering
equations and yields simple form factors. The method is illustrated for a simple nucleon-nucleon potential in

the context of the Blankenbecler-Sugar equation.

NUGLEAB BEACTIONS Finite rank approximations to the t matrix of a local
potential, relativistic unitarity, Blankenbecler-Sugar equation solved, phase

shift calculated.

I. INTRODUCTION

A recently proposed separable expansion' for
the nonrelativistic t matrix of a local potential
gave good convergence at all energies. The meth-
od also yielded' good results for the case of the
realistic Sy Dy channel. More recently the meth-
od has been compare'd with the unitary pole ex-
pansion' (UPE) method in calculating trinucleon
bound state observables for the Reid~ soft core
potentials. It has been found' the the method of
Ref. 1 in general gives better results than the
UPE method. In particular' in the case of the
method of Ref. 1 it was not necessary to resort
to t-matrix perturbation theory to achieve con.
vergence for trinucleon observables whereas it
was inevitable in the case of the UPE. The con-
vergence of the trinucleon observables was by
far superior in the case of the separable expansion
of Befs. 1 and 2 than in the case of the UPE. The
same conclusions were true' in a later trinucleon
calculation using the one-boson-exchange poten-
tials. '

In the present work we apply the method of Ref.
1 to construct separable expansions for the two-
body t matrix satisfying relativistic two-body
unitarity. These separable expansions can be
used to study three-body scattering at intermediate
energies and also to determine relativistic effects
in the trinucleon bound state calculation. The
necessity of using a relativistic theory in the
low-energy nucleon-nucleon problem has long been
realized. This is because the strong repulsion in
the nucleon-nucleon potential at short distances

builds short range correlations into two-nucleon
wave functions at all energies, .which probably
cannot be adequately described by a nonrelativ-
istic theory.

The minimal requirement for a relativistic
theory is that the scattering amplitude should
satisfy relativistic elastic unitarity relation.
This could be achieved in the two-body Blanken-
becler-Sugar equation' which is a one-dimensional
on the mass shell approximation for the fully co-
variant Bethe-Salpeter equation. ' So in the pres-
ent work we shall be limited to the consideration
of the Blankenbecler-Sugar equation in the con-
struction of the. separable expansiori for the rela-
tivistic two-body t matrix.

Separable potentials and corresponding t ma-
trices are very interesting in practice" "be-
cause of the great simplicity they bring to the
three- or four-body problem using either rela-
tivistic or nonrelativistic kinematics. Separable
potentials have been used in relativistic three-
body problems" but such one-term separable
potentials cannot adequately represent thy ~ore
realistic potentials such as the boson-exchange
potentials, ' Such realistic potentials are in
general local and the present method provides
a simple prescription for constructing separable
expansions to these potentials, which can then
easily be used in three-body"" or four-body'
Blankenbecler-Sugar type equations satisfying
the constraints of relativistic unitarity.

The present separable expansion has all the
interesting features of the separable expansion
of Ref. 1. As in Ref. 16 the present separable
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expansion too can be derived from the Schwinger
variational princ iple. ' The variational nature
of the expansion will guarantee good convergence.
Another crucial feature of the expansion is that
the separable t matrix t„(p,q; s) of rank A' in any
partial wave can be made exact at any momentum

q for N sets of momentum p and energy s.' This
property has been well exploited in Refs. 5 and 6
to achieve good convergence for the trinucleon
bound state observables. As in Ref. 1 the present
expansion has simple form factors whose analytic
properties can be easily studied. It is hard to
find the analytic properties of other separable ex-
pansions ' which invo'lve numerically constructed
eigenfunctions. The analytic behavior of the form
factors is important if one wants to solve the
three-body problem with this separable expansion
by the technique of contour rotation. " The present
method does not give any unwanted singularities
and the usual contour rotation technique can be
easily applied.

In Sec. II we briefly describe the method, define
the two-body partial wave Blankenbecler-Sugar'
type equation and report the numerical results.
We work in the E-matrix form of the Blanken-
becler-Sugar equation. We show how the rank
1 K matrix can be made exact at a particular
energy and momentum. We chose to make the
half-on-shell I& matrix exact at an incident labora-
tory energy of 200 MeV. Due to the pole domi-
nance idea of I ovelace" this substantially im-
proves results of scattering at other energies.
Finally in Sec. III we give a brief summary and
some concluding remarks.

II. SEPARABLE EXPANSION

The Blankenbecler-Sugar equation' for the-
two-body t matrix t(s) has the form

sider scattering of two nucleons the kinetic energy
E„,of the incident particle in the laboratory sys-
tem is related to the center-of-mass momentum
k by

E) b=2k M '.
If we solve Eq. (2) in the K-matrix formulation,

i.e. , we consider the principal value of the inte-
gral involving (k' —q') ' the phase shift is given
by20

tan5=

p}
X (p+p ) +

2vpp' (p -p'}'+ ~'

Next we give a brief summary of the method of
Ref. 1. (For a more complete review, see Refs.
1 and 16.) The method depends on making the
separable expansion to the potential U in Eq. (1)
according to the prescription

v„=g vIf.&n..„(f„~v, (6)

where

where f„ is a set of suitably chosen real functions.
Hence to any order R VN is Hermitian and the
corresponding t matrix we get by solving Eq. (1)
with this V~ satisfies the constraints of two-body
unitarity. Substituting V„back into Eq. (1) and
solving for t„(s) we get

t„(s)= g Vlf.)D.„(f„iV,

vtSC(u, u;s}
(4)

2(u2+M2)'t 2

where K is the K matrix corresponding to Eq. (2).
The potential used in Eq. (2) in the present investi-
gation has the simple Yukawa form"

t(s) = v+ va, (s)t(s)
where

m, ff=l

= v+ t(s)c,(s)v,
where s=R" is the square of the total energy in
the center-of-mass frame. The S-wave projection
of Eq. (1}has the explicit form"

t(p, p', s) =, M v(p, p')

Mv(p, q)t(q, p', s)
0 (q'+M )' (k —q'+ ff)

where M is the mass of each particle in inverse
femtometers and s =k'+M'. Here k is the magni-
tude of the center-of-mass momentum and the po-
tential matrix elements are expressed in units of
femtometers. Equation (2) is written in units
@=c=1. We shall stick to this convention of
units throughout the rest of the paper. If we con-

(D ~)„=(f„~(v—UG0v) f ). (9)

q dq „qMv P, q,
0

(10)

Equations (8) and (9) define the required separable
expansion. As shown in Ref. 16, Eqs. (8) and (9)
can also be deduced from the Schwinger variational
principle. ' The variational nature of the expan-
sion will guarantee good convergence.

We shall nov give the explicit S-wave forms of
the momentum space integrals needed to evaluate
the separable t matrix given by Eqs. (8) and (9).
Generalization to other partial wave is straight-
forward. We have in explicit notations
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where

%e also have

(& 't 'f.=e'&qf p*&cf.(~)f.(p) Mv(q, p) f-&p p"' (i2)

To see how the separable expansion works in
practice we carried out S-wave numerical calcula-
tions with the potential given by Eq. (6) with X

fm '
p, =1.0 fm x and M =1 0 fm ' as in

Ref. 20. Next we chose the momentum space
representation of the expansion function f„(p) to
be

( ) c 1(P
ll

( 2 2)2 tl

@=1,2, 3, . . . , N,

I

s and p. The pole dominance idea of Lovelace
will give a- good t matrix at other energies. " The
expression for t(s) in Eq. (16) is not known pre-
cisely. This makes the implementation of Eq. (15)
difficult. Instead as in Ref. 1 we take a new set
of basic functions f„satisfying Eq. (16) and

I'IA&=4(» I» (1'1)

where N is large enough such that t„(s) is a good
approxi'mation to t(s).

With the help of Eq. (8), Eq. (1V) becomes

where C„,' is the Gegenbauer polynomial of degree
(n —1) and is defined by"

so
m, n=&

(18)

C„,'(cosg) = (14)
sin P

Here a is a parameter which can, be varied to
improve the convergence of the separable expan-
sion. The expression in the square bracket in
Eq. (13) is formally equivalent to (P'+o. ') ". The
functions represented by Eq. (13) are orthogonal
with respect to some weight function. This ap-
proximate orthogonalization of the expansion
functions is important in order to prevent the
matrix D ' from becoming too singular after nu-
merical evaluation of integrals in Eqs. (10) and
(12). As in Ref. 16 it is possible to do these in-
tegrals analytically with certain class of functions
f„and potential V. If this is done the orthogonal-
ization of the functions is not so important because
of the greater accuracy of the integrals. However,
in the present work we chose to do the integrals
in Eqs. (10) and (12) numerically with choice (13)
of the expansion functions.

As in Ref. 1 we exploit the freedom in the choice
of the expansion functions to give good results
for the rank-1 approximation. It has been shown
in Ref. 1 that we can make the rank Nt„(p, p', s)-
exact at a particular s and p for all p' and all

¹ 1 if we take a new set of expansion functions
f„, where

I'Ifi&=t(s) Ip& (16)

=2, 3, ... , N. (16)

In particular we can make the rank-N result exact
at N sets of s and p. But for simplicity we chose
to make the rank-1 result exact at a particular

If,&= g If.&c.(u),
m=&

where

(19)

c.(p) = P D.„&y„ I
v Ip&.

n=&

(2o)

TABLE I. Phase shifts in radian for different N.

Ezb
(MeV)

100
150
200
250
300
350
400
450
500
550

1.403
1.259
1.515
1.063
0.988
0.923
0.866
0.814
0.767
0,725

1.404
1.259
1.151
1.063
0.988
0.923
0.866
0.814
0.768
0.726

1.422
1.263
1.151
1.065
0.996
0.938
0.888
0.845
0.807
0.773

1.434
1.267
1.153
1.066
0.996
0.939
0.888
0.846
0.8-10

0.777

1.433
1.268
1.154
1.067
0.998

- 0.938
0.886
0.849
0.810
0.777

Kith this new set of expansion functions defined
by Eqs. (19), (20), and (16) we can make the rank-
N result exact at an energy s and a momentum p
for all N & 1. This will approximately built in
the bound or the antibound state pole of the t ma-
trix and because of the pole dominance idea of
Lovelace" this will give a good representation of
the t matrix at the neighboring energies.

All the equations of this section hold good in the
E-matrix formulation when the integral over G,
is replaced by its principal value. Here in this
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FIG. 1. Half-shell K-matrix elements at an incident
kinetic energy E»b ——400 MeV.
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FIG. 2. Off-shell K-matrix elements at an incident
kinetic energy E»„=400 MeV for momentum q= 0.229
fm-

paper we shall work in the K-matrix formulation
of Eq. (1). The parameter o. in the expansion
functions of Eq. (13) is first varied to improve
the convergence rate. The value finally adopted
after a small experimentaion is @=1.2 fm '.

Next we improve the rank-1 result for the K
matrix by a redefinition of the expansion function
given by Eq. (19). We implemented Eq. (19) at
an incident kinetic energy Ey b 200 MeV and at a
momentum p corresponding to on the energy shell

I I I I

I 2 3 4
p(fm I)

FIG. 3. Off-shell K-matrix elements at an incident
kinetic energy Ey~b 400 MeV for momentum p= 3.020
fm ~

-0.4

III. SUMMARY AND DISCUSSION

In the present work we use the method of Ref. 1
to construct separable expansions for the two-body
t matrix, of a local potential, satisfying the con-
straints of relativistic unitarity. We present
numerical results for the K-matrix elements
rather than for the t-matrix elements. We test
the numerical accuracy of the present method
for a Yukawa-type potential in the context of the
Blankenbecler-Sugar equation. The method
yielded an excellent rank-1 approximation and
good convergence at all energies considered.

The present method is similar in spirit to the.
method of Ref. 18. The form factors of the sep-

(on-shell) momentum at E„b=200 MeV. We took
X=5 to redefine f, defined by Eg. (19). This
makes the rank-N half-on-shell K matrix "exact"
at E„„=200MeV.

In Table I we show on-shell phase shifts at
various energies for various values N (The.
calculations were carried out in single preceission
on an IBM computer. ) We also checked that the
half-off-shell and fully-off-shell K-matrix ele-
ments converge equally rapidly. To have a feeling
about how the K-matrix elements converge in
practice we plot some graphs for these K-matrix
elements at E„„=400MeV. The on-shell momen-
tum corresponding to this energy is 1.006 fm '.
In Fig. 1 we show the half-off-shell K-matrix
elements at this energy. Figures 2 and 3 show
fully-off-shell K-matrix elements at the same
energy for off-shell momentums 0.229 fm ' and
3.020 fm ', respectively.
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arable expansions of Ref. 18 are to be constructed
numerically whose analytic properties are diffi-
cult to study. The present method yields simple
form factors whose analytic properties can be
studied easily, and consequently the present
separable expansion can be easily used in three-
and four-body scattering problems.

There is an arbitrariness in the choice of the
functions f„and also in the choice of numerical
parameters once the functional forms have been

chosen. However, this arbitrariness can be turned
to good advantage, as has been done in this paper,
by varying the parameters to obtain the best con-
vergence. %e can also chose a functional form as
in Ref. 16, which wil'l give simple analytic form
factors for the separable expansions.
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