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Deformed nuclei in the Lipkin-Nogami approach
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The Lipkin-Nogami version of the spherical BCS method is extended to study the effects of pairing
correlations on the ground-state properties of nuclei with permanent deformation. The Kuo-Brown effective
interaction is used to study the even-even nuclei in the 2p-1f shell. Considerable changes in the pairing
energies compared with the deformed BCS and full Hartree-Pock-Bogoliubov methods are obtained. The
neutron-pair separation energies and the projected spectra show improved agreement with the data.

NUCLEAR STRUCTURE I ipkin-Nogami method with deformed basis applied to
even Ti isotopes. Effective Kuo-Brown Interaction; projected spectra.

In an attempt to correct the ground-state energy
of a nucleus in the Bardeen-Cooper-Schrieffer
(BCS) approximation' for the fluctuations in the
number of nucleons due to pairing correlations, .

the present authors recently applied' the Lipkin-
Nogami version' ' of the BCS approximation to
study the. Ni, Zn, and Ge isotopes. Unlike the
previous studies' ' a realistic interaction was
used and the method was extended to be applicable
to nuclei having both neutrons and protons outside
the closed core. The method %as limited to spher-
ical shapes only. Nuclei in the 2p-lf shell, how-
ever, are known to possess deformed Hartree-
Fock (HF) and Hartree-Fock-Bogoliubov (HFB)
solutions which are lower in energy than the spher-
ical BCS solutions. The purpose of the present
paper is to extend and apply the Lipkin-Nogami
method to nuclei having deformed solutions. The
method is termed as modified deformed BCS
approximation (MDBCS).

As before the modified Hamiltonian is written
as

where the expectation value (X& is calculated with
respect to the BCS ground-state wave function
which is approximated by the vacuum of quasi-
particles (At ) defined by

Ao = UICof+ VO. C(-„, (4)

where C~ represents a Hartree-Fock deformed
particle state n& given by

=t-'~~&~ + j~T~ ji iT' V~ j'm

and ~K&= T ~n& is the time reversed state The H. F
transformation coefficients D,. are obtained by
self-consistently diagonalizing the HF Hamiltonian

X=H —X,N —XP'

where H is the shell-model Hamiltonian describing
the n particles outside the core, i.e. ,

H= g e;ata&+ —g (ij ~V„~kl&a~ata, a~,

where &, represents the single-particle energy
in a state ~i&=- ~j,.m, r& and (ij.(V„~kf& represen s.
the antisymmetrized matrix elements between two-
particle states. N represents the particle number
operator. The Lagrange multiplier X, is deter-
mined by the constraint

x g D',.

where an axial symmetry is implied for the HF
orbitals and the superscript on D coefficients
stands for the z component of the isotopic spin.
The parameter k is determined using three dif-
ferent conditions as described in Ref. 2. The
resulting values of X, are labeled I, II, and III,
respectively. The first condition

gives
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1 2 ~; D . (ii IV& jIj &Da U'V Us V~ —Z;D; D; (ii IV& lii&U v 'U 'V.

Z.„(U.v.U, v, )'
(8)

The second condition,

&KH& = (X&(H&,

leads to

'&iilv~ le&Ds ')'(v 'Ua')'-~ « ~'&ii le lii&D ')'(v 'U ')'
1II

2

'D- '&ii lv~jlf&D~' U V.
' U~'~~-~ D D. &i~ (v~li~&U v 'U 'v

(10)

X'," is obtained by combining (8) and (10), i.e.,

~- ~;~(D- &ii lv. l»&D~ )'(v. 'Us')'-~;(D. &ii (v. (ii&D. )'(v. 'U ')' '"
III

4 Z~ q 8 (U~ V~ U~ VB)

e'r
V„' = —1+ (12)

where

(14)

e' = D',.1,,Dj ~,

D,.h, D.

x g D,D~,(V~)',

and

~;,= ——g (vf 7 ~v„~a~i~& g D'„D'. ,v'. U'. ,

(18)

X' = X,'+ 2 X', (n, + 1) .
The ground-state energy is given by

Z= —g [((n ~~ ~o.&+ e.') V."+~.'U'.V:]
QT

—4g ~; Q(U:v:)'. (20)

The BCStransformation coefficients Uand V and
the parameters X, and A., are determined self- consis-
tently by solving the gap equations

The last term represents the correction to the
ground-state energy for the fluctuations in the
number of particles due to pairing correlations.

The calculations are performed using the re-
normalized Kuo-Brown matrix elements for the
Hamada- Johnston potential. A "Ca Core is
assumed and the basis states are limited to 2p, &„
2p, &„1f5&„and 1f», harmonic oscillator states.
The single particle energies (q) are taken to be
-8.35, -2.85, -6.28, and -4.22 MeV for neutrons
and -1.07, 4.83, 0.72, and 2.43 MeV for protons
corresponding to lf, &„ lf, &„2p,&„and 2P, &,
orbitals, respectively. The calculations were
performed for all the even-even isotopes of Ti,
Cr, Fe, Ni, and Zn. The results are reported,
however, for only the Ti isotopes since the results
obtained for the other sets of isotopes are similar
in nature. The modified deformed BCS- equations
are solved using all the three expressions (8),
(10), and (11) for A, and the results are labeled
I, II, and III, respectively. The ordinary deform-
ed BCS solutions are obtained self-consistently
by solving the above gap equations with X, = 0.
Before solving the gap equations for MDBCS or
DBCS case, the transformation coefficients D are
obtained by performing a self-consistent Hartree-
Fock calculation. The calculations were perform-
ed for both the prolate and oblate shapes. The
results are given only for the prolate shapes which
are lower in energy than the corresponding oblate
shapes for all the nuclei reported here.

The results for the ground-state energies are
displayed in Table I. It is clear that the DBCS is
a good approximation to a complete HFB calcula-
tion. The changes in the ground-state energies
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TABLE I. Comparison of the ground-state energies (E) and the pairing energies for the
Ti isotopes obtained by solving the modified deformed BCS equations using three different
expressions (8), (10), and (11) for A, 2 labeled as I, II, and III, respectively. The results are
compared with those of HFB and ordinary deformed BCS calculations. The pairing energies
are given in the parentheses. All the energies are given in MeV.

Nucleus
MDBCS

II DBCS HFB Experiments

—28.60
(—0.00)
-51.36
(- 2.14)
—71.46
(- 3.79)
-90.85
(—6.20)

-28.60
(—0.00)
-50.98
(- 1.51)
—70.88
(- 3.25)
-89.76
(- 4.56)

—28.60
(- 0.00)
-51.70
(- 2.51)
—71.92
(- 4.16)
-91.27
(- 6.62)

—28.60
(—0.00)
-50.77
(- 0.46)
-70.57
(- 2.93)
-89.41

(-. 3.31)

-28.60
(- 0.00)
-50.77
(- 0.58)
—70.63
(- 2.85)
-89.46

(—3.64)

—33.425

-56.146

-76.649

-95.741

TABLE II. Comparison of the parameter A, 2 obtained using different approximations. The
superscripts n and p denote neutron and proton, respectively.

Nucleus
g tl

2

II

44Ti

4ST;

48Ti

0.000

0.360

0.255

0.241

0.000

0.177

0.094

0.078

0.000

0.493

0.371

0.319

0.000

0.000

0.000

0.410

0.000

0.000

0.000

0.132

0.000

0.000

0.000

0.440

TABLE III. Comparison of neutron-pair separation energies (—6E p) obtained from
different approximations and the corresponding experimental values. All the energies are
given in MeV.

Nucleus

48Ti

48Ti

22.76

20.10

19.39

22.38

19.90

18.88

23.10

20.22

19.35

—b,ENp
DBCS

22' 17

19.80

18.84

HFB

22.17

19.86

18.83

Experiment

22.72

20.50

19.09
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FIG. 1. Comparison of experimental [see C. Lederer,
J. Hollander, and I. Perlman, Table of Isotopes (Wiley,
New York, 1967)] and calculated spectrum of 46Ti with
DBCS and MDBCS in three different approximations. The
percentages give the probability of each angular momen-
tum state in the DBCS and MDBCS wave functions.

0 8% 0 9% 0 8% 0 9%
DBC S MDBCS-I MDBCS-Z MDBCS-IK

0.0 - 0
EXPT

FIG. 2. Comparison of experimental [see C. Lederer,
J. Hollander, and I. Perlman, Table of Isotopes (Wiley,
New York, (1967)] and calculated spectrum of Ti with
DBCS and MDBCS in three different approximations.
The percentages give the probability of each angular
momentum state in the DBCS and MDBCS wave functions.

in the MDBCS approximation compared to the
DBCS approximation are not negligible, and there
is considerable change in pairing energies. This
reflects a change in the wave function. This is in
agreement with the conclusion reached in the
spherical case' with realistic interaction. For a
phenomenological interaction, however, the
changes in the spherical wave functions for Ni
isotopes due to the introduction of parameter g
were insignificant. ' In the present calculations
the contribution to the energy due to the fluctuation
of particle number is largest for approximation
III unlike in the spherical solutions' where the con-
tribution was largest for approximation II. 'The

values of the parameter X, using different approxi-
mations are shown in Table II.

Neutron-pair separation energies are compared
with the experimental values in Table III to check
the quality of the ground-state energies obtained
in the MDBCS approximation. The neutron-pair
separation energy is defined as

tions, there is a definite improvement. in the
neutron-pair separation energies in the MDBCS
approximations I and III as compared to the DBCS
approximation.

In order to test the wave functions obtained in
the 1V[DBCS approximations, projection of good

, angular momentum states was carried out following
the procedure laid out in Ref. 10 and the results
are displayed in Figs. 1 and 2 for Ti and 'Ti,
respectively. The spectrum for '4Ti is not pre-
sented since the DBCS and MDBCS wave functions
are identical for this nucleus due. .to the absence
of pairing correlations. The figures indicate that
MDBCS leads to a definite improvement in the
calculated spectrum of "Ti whereas for "Ti the
two approximations give almost identical results.

From the results of this paper it seems that the
Lipkin-Nogami modification of the BCS approxima-
tion does lead to improved agreement with experi-
ments for deformed nuclei when realistic interac-
tion is used.

DE„p(N, Z) = E(N, Z) —E(N —2, Z) .

The experimental values are those of Mattauch,
Thiele, and Wapstra. ' .. Unlike the spherical solu-
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