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Perturbation of linearly transformed energy spectra by configuration mixing
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We study the effect of configuration mixing on the well known linear relations between the energy spectra
of j and j configurations. We show that both single-particle excitations and third-order corrections lead to
breakdown of these relations. Contributions from the former tend to cancel when many high-lying orbits
contribute simultaneously.

NUCLEAR STRUCTUBE Linear relations between leads, configuration mMing
effects.

I. INTRODUCTION

TABLE I. Relative two-body matrix el,ements for
(+d3/ g) (i f7/2), extracted from the energy levels of
( 8CI, 4 K), and their difference values.

Difference values between spin pairs
Spin pairs Exptl spectrum a Exptl (Ref. 3) PMM"

4, 3
3,5
5, 2

0.55
0.09
0.67

0.45
0.35
0.65

0.5,0
0.38
0.67

Derived from ( 8C1, 40K) experimental spectrum.
"From the PMM potential (see Ref. 8).

Theoretical linear relations between the energy
spectra of pairs of simple configurations such asj' j" and j,j,-j,j, ' have been well known for
some time" and are of considerable interest not
only because of their direct connection with the ef-
fective two-body interaction'but also because of
the implications with respect to nuclear structure.
For instance, relatively recent work on the exper-
imental spectra of ("Ti,"V),' ("Mo, "Tc),' and
("'Po, "At) (Ref. 6) shows that these pairs all
follow the theoretical j'-j' relationships (where
the levels have been appropriately identified) with
a remarkable fidelity, suggesting that the struc-
tures of j' and j' should be good approximations for
these nuclei. On the other hand, the experimental
data' for the spectral pairs ("Cl, "K), ("Sc,"Sc),
("Sc,"Co), and ("Nb, "Nb) satisfy thej ~j „j&j „'
(Pandya, ) transformation with variable and ques-
tionable success. In the apparent best of these
four cases, namely, ithe well-known pair ("C1,40K),
the three, relative, two-body matrix elements that
can be extracted from the energy levels are shown
in Table I together with the experimental values
given in Ref. 3. Also shown are the parameters of
the local equivalent of the Kallio-Kolltveit poten-
tial' derived in Ref. 8 [the Petrovich, McManus,
Madsen (PMM) potential]. The particularly poor

correspondence between the ("Cl, "K) difference
for the (8 —5 ) matrix elements and the other en-
tries underscores the fact that the success of the
linear relations in relating certain spectral pairs
may have little significance in the prediction of
spectra (or other properties) in other nuclei.

In this paper we do not propose a particular
answer to the ("Cl,"K) problem, which does not
appear amenable to s.ny simple explanation (see
Sec. VI). Instead we will enlarge on the approach
first given by Talmi' and treated in detail in Ref.
2. In sum, as shown in these references, the sec-
ond-order effects due to configuration mixing
from a certain type of two-particle excitation
can be renormalized in the two-body interaction.
For the purposes of our discussion, we express
this as follows; We assume the first-order in-
teraction energies are related by

zU ),=Z c,,zU )„.
I

We define the second-order perturbation effects
by

where the primes on the summation symbols sig-
nify the exclusion of the term corresponding to
j' =j"=j. - Then it is true" that

«(j""j " 'U')')& = ~ C& «(j'- (j')'), , (4)

where we have suppressed the suffixes n and tT in
the linear transformation coefficient C~, . In gen-
eral, the equivalence of Eqs. (1) and (4) does not
hold for third- or higher-order excitations or sin-
gle-particle excitations of the type j'-j'j" (j' pj")
in any order, as we shall show in several cases.

The effect of single-particle excitations on the
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linear relations amongst particle-particle, parti-
cle-hole, and hole-hole spectra was studied by
Goode, Koltun, and West. ' In particular, they de-
rived a "triptych" relation involving all three types
of spectra, which to first-order is not affected by
single-particle excitations. Because of our par-
ticular interest in observable and possibly pre-
dictable effects resulting from single-particle
excitations, amongst other breakdown phenomena,
we adopt a different approach. We consider five
simple examples of configuration mixing and ex-
plicitly study the breakdown owing to single-par-
ticle excitations and higher-order excitation ()
second order) .These examples are

(a) Two and four identical particles in a j = —,
' sub-

shell perturbed by a. j = —,
' subshell. In the absence

of configuration mixing, four particles in a j = —,

subshell are in a two-hole configuration. When
the special case of a pairing interaction is con-
sidered, we show explicitly that the linear relations
hold only up to second order in the interaction.

(b) Three identical particles in a j =-,' subshell
perturbed by a j = —,

' subshell.
(c) Three identical particles in an 83&2 subshell

perturbed by a low-lying f,&2 subshell. Here, sin-
gle particle excitations appreciably disturb the lin-
ear relations only for the level with J=j —1 =~2.

(d) Three identical particles in a subshell j per-
turbed by several other subshells. We find that
the linear relations are appreciably perturbed by
single-particle excitations involving individual, ex-
cited-single-particle orbits j . But if we have
several nearly degenerate excited-single-particle
orbits with a large range of angular momenta, such
as all the single particle states in an excited os-
cillator shell, we find that the single-particle con-
tributions to the deviations from the linear rela-
tionships tend to cancel out. We think this result
might have relevance in explaining why the shell
model works as well as it does.

(e) Six nonidentical particles in a j = —, subshell
perturbed by a j =-,' subshell. If there is no con-
figuration mixing, then this state is a particle-
hole configuration of the type (—,')"(—,') ", n = 1, 2, 3.
Here we consider only n=1 (T=2).

Our numerical calculations are made mainly
with a surface delta interaction (SDI), but our
main conclusion that the breakdown of the linear
transformations is generally relatively minor
seems to hold for more realistic interactions as
well.

II. (2) '" ~ CONFIGURATION OF IDENTICAL PARTICLES

PERTURBED BY A j=—,
' LEVEL

Fgr the two particle case, we begin with the fol-
lowing assumption regarding the single-particle

energies,

6'~/2 —65/2 —E' ) 0,

and also define

v,. =-&(-',); l vl (-,')',), (6)

(~)

(6)

Then up to second order, the energies of the low-
est two-particle states J=0, 2, and 4, are given by

Z&'& = V —W'/2~,

z,&'& = v, —w,'/~,
@(4) —y2 4 &

and the excitation spectra are given by

&2&2) -Z.(2& = V, —V, + W'./2e —W22/~,

~(» E&» —V V + W2/2&

(9)

(10)

(11)

(12)

(13)

We consider now the four-particle configuration.
Using fractional parentage techniques, "it can be
shown that the excitation spectrum relative to the
J= 0 ground state is

z,&'& - z &'& = v, —v, + (w', /2~) -~(w', /~), (14)

(15)

Thus the excitation spectra satisfy, for example,

@(4) @&4) @(2) / &2) m2 (w2/g) .
Q 2 Q 14 2 (16)

E =6 2G I(E'+ G) + 3G']~

while the J=4 state is at

For four identical particles, we obtain

Z3(4) = e —4G —(e'+ 4G')'i'

~4&" = ~ —G —(~'+ G')'~'

(17)

(18)

(20)

The excitation energy of the J=4 can be expand-
ed in powers of G/e. We find, for the two-parti-
cle case that

(2) @(2) 3G 4
3 G2/~ 3 G3/~2 (21)

and, as expected, the two-particle excitations
(i.e. , the W, term) do not change the excitation
spectrum, but one-particle excitations change the
J=O to J=2 spacing.

I et us now consider a pairing interaction, which,
in second order gives rise only to two-particle ex-
citations. We take the same orbitals and occupan-
cies as above, i.e. , 2 and 4, identical nucleons in
nondegenerate j = —,

' and j = —,
' orbits. We take the

latter orbit an energy e higher and use an attrac-
tive SDI of strength G. For two identical parti-
cles, the lowest j = 0 state is at an energy
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while for the four-particle case, a similar expan-
sion yields

E,"' —E,"' = 3G + —,
' G'(e + OG'/e ', (22)

g (4) g (4) —g (2) @(2)

+Rag@�

(2)
2 0 2 0 14 2

g (4) g (4) —g (2) @(2)
4 0 4 0

where

(23)

(24)

(25)

both up to order O'. We see that beyond order G'

the spectra are different. Yet, in the stmeg cou-
pling limit, e =0 (where the perturbation expan-
sion naturally breaks down), we obtain again the
same excitation energy, this time 4G, for two and
four identical particles. This is a rigorous result
for eigenstates of generalized seniority, as is the
case for the SDI." Such a result for the degener-
ate (G = 0) case seems to hold even for more gen-
eral interactions, which give rise to one-particle
excitations as well, provided only that the wave
functions are eigenstates of the generalized sen-
iority. " Here we have investigated the energies
for two and four identical particles for an SDI of
strength G=1 MeV.

Table II shows the excitation energies for J=2
and J=4 states for e =0 and 2 MeV and also in
the limit e -~. The excitation spectra are seen
to be identical in both extreme limits, e = 0 and

~, and do not differ substantially for a typical
intermediate case e =2 MeV.

We may also estimate the four-particle ener-
gies by assuming the second-order perturbation
results hold exactly. This gives

TABLE II. Excitation energies (MeV) for two and
four identical nucleons in j= & subshell perturbed by a
j= ~~ subshell, using surface 6 interaction of strength
G=1 MeV.

Nucleons
6 = Cg/2 —C5/2

f =2

E(2) E(2)
2 0

E(2) E{2)
0

E(4) E(4)
4 0

2.114

3.714

2.114

3.714

2. 349

3.178

2. 201

3.277

2. 314+ 0. 677/c

2. 714+ 1.5/p

2. 314 —0. 792/c

2. 714 + 1.5/p

9/2 3~0 21 2 7 4 '

We now consider the effect of configuration mix-
ing due to a j =-,' subshell. Table III shows the ex-
citation energies, e =0, 2, and ~, of the lowest.
(-,', —,')' states for an SDI of strength G= 1. The en-
ergies obtained by using Eqs. 26, and 27, with the
V~ set equal to the exact two-particle energies,
are shown in parentheses. As can be seen, the
results agree fairly well over the whole range of

III. ( 2 ) CONFIGURATION OF IDENTICAL PARTICLES

PERTURBED BY j= 2 SUBSHELL

For a pure (—,')' configuration of identical parti-
cles, the possible J values are —,', —,', and, . The
energies of these states are well-known linear
combinations of the two-particle J=0, 2, and 4 en-
ergies. Relative to the —,

' state, we have

(26)

which is the second-order energy shift in the J= 2

state. This is exact for large e. On the other
hand, for e =0, the total energy shift for J=2 is
-1.2 MeV. If we assume that the total energy
shift has obeyed Eq. (23), there should be a cor-
rection --2.14 MeV. Actually there is no correc-
tion, which is a symptom of the breakdown of per-
turbation theory.

IV (A
~

) CONFIGURA'I IONS WITH f i ADMIXTU RE

Our next example involves some of the configu-
rations in the Pb region. Consider the %=126 iso-
topes, 83Bi, ',4Pb, and ",',At. The two lowest sin-
gle-particle states are Ok, &, and If,&,. The low-

lying two- and three-particle levels were calcu-

TABLE III. Excitation energies (MeV) for three identical particles in j= ~ subshell. Num-
bers in parentheses are excitation energies obtained by applying the linear relations of Eqs.
(26) and (27) to the calculated two-particle energies shown in Table II.

Nucleons

E3&2 —~5i2(3) (3)

Es&2 —ES&2
(3) (3)

a=0

0.440 (0.381)

2.768 (2.781)

E = Eg(2 —Cgg2
&=2

0.713(1.031)

2.256 (2.277)

1.286 —1.008/&
(1.286 —.0.77/6)

1.886 + 1.255/e
(1.886 + 1.157/c)
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lated by Golin" for several different interactions
including configuration mixing. In the absence of
configuration mixing, i.e. , pure (h,i,)', the three-
particle energies are linear combinations of the
two-particle energies, regardless of the form of
the interaction. We want to know to what extent
these relations still hold in the presence of con-
figuration mixing from the f,i, subshell. The re-
sults are shown in Tables IV and V. Here the two-
particle excitation energies and the three-particle
energies obtained by exact diagonalization are
listed and compared with the values obtained by
applying the linear relations to the two-particle
energies. As seen, the linear relations hold very
well for all J values except one, J=—,'. This is
partially due to the fact that configuration mixing
acts mainly in the J = 0 state, i.e. , two-particle
excitations. For these-, the linear relations hold

exactly, up to second order in the interaction. Qne-
particle excitations are indeed rather small for
the SDI, which is our test interaction. Only for
J=j —1=—,', which is the first excited state, do the
linear relations fail significantly, presumably be-
cause the one-particle excitations are most impor-
tant in this state. It is interesting that for the
analogous case of (j = —,')' shown in Table III, the
linear relations work much better for J=+ than
for J =j —1 = —,'. Golin" also considers two other
interactions, those reported by Kuo-Brown ' and
Schiffer-True, with similar results. The same
situation applies to the neutron configurations

Pb, ' Pb, and "Pb where the two lowest single-
particle states are, respectively, g,i, and iyy/, .

V. THREE IDENTICAL PARTICLES IN A SUBSHELL

PERTURBED BYSEVERAL OTHER SUBSHELLS.

We have not been able to obtain a general rela-
tions between the second-order energy shift of
two-particle and (n) 3) particle configurations
arising from one-particle excitations. However,
we are able to obtain an approximate sum rule in
one special case: the interaction energy for a. (j')
configuration of identical particles. For this case,
Eq. (1) yields for the first-order interaction ener-

EU') =g c E(j') ~, (28)

(29)

as a result of excitation of a nucleon from j to j'.
For the three-particle case, we can show by

using the formulas given by de Shalit and Talmi"
that

&&(i '-ji'') g= + cz s,'r J&&U'-ii '), , (3o)

where

S, ~, ~ =2(2j'+ I) Z (2j+I ' . (31)
2 2 Jl

Zi even

(Actually. to obtain this result, we have dropped
cross terms proportional to

with t" w J').
According to Eq. (30) if all S coefficients were

equal to unity, second-order corrections to the en-
ergy resulting from one-particle excitation would
follow the same linear relations as the first-order
energies, as also occurs for two-particle excita-
tions. However, this is not generally the case.
First of all, if the sum in Eq. (31) were over all

TABLE V. Excitation energies (MeV) for (hoi2, f7' 2)
subshell of Po and At relative to J= ~ ground state

2
(see Ref. 12). Values obtained from (h9i&, f&i&)~ energies
by applying linear relations are given for comparison.

Experimental From linear relations

where, as before, the C~ coefficient is proportional
to the square of the fractional parentage coeffi-
cient.

Next, consider the second-order perturbation
contribution to the energy arising from one-par-
ticle excitations. For the two-particle case, we
have

&(f7(2) —&(hei2) = 0.897 MeV (from Ref. 12)
(I,i,)' (A'8&2 f7&2)'

-0.80
—0.19
—0.10
—0.06
—0.03

-1.03
—0.21
—0.11
-0.07
—0.04 '

TABLE IV. Excitation energies (MeV) for (&A)2, fg/2)
subshell of 84Po and 85At, using surface delta interac-
tion of strength KG=0.0092 MeV.

3
2

5
2

7
Y
9
2.

11
2

13
2

15
2

17
2

2I
2

0.72

0.67

0.60

0.73

0.70

0.69

0.80

0.80

0.85

0.71

0.66

0.69

0.74

0.70

0.69

0.81

0.81

0.86
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J', states and if the nucleons were identical, we
would obtain

Sgtggg 2 (32)

1
~1/2, 2, 5/2

i@
1/2 2, 9/2 6

(33)

We see again that the second-order energies for
the three-particle case do not follow the same lin-
ear relation as the first-order energies. However,
suppose we have several excited single-particle
states j', in fact aft values of j' from (j —J') to (j
+J'), and all with the same single-particle excita-
tion energy. In this case, using the SDI, it is read-
ily shown that

«0'-jj') = 4 LJ)(2i'+ l)(j-'j' - -'J0)' (34)

where the detailed form of p(j, J) is not of direct
concern here. The dependence on j' is given by
Eq. (34). For the three-particle case, we write

=g C„g S,„,,«(f'-„')„,. (35)

where we have summed over particle states j'.
Now we define S(J',J),

ZS, z z«(j'-ii ')~
S(J',J) =—"~ @~, ,

)

which, it turns out, is independent of P(j,J) [see
Eq. (34)].

For the linear relationships to hold exactly
would require that S(J',J) = 1 for all possible (J',J)
values. As might be expected, this is not the case.
However, the deviation of S(J',J) from unity is
small enough so that the 1inear relationships are
not appreciably affected. We illustrate this for
j = —,', where, for (—,')', J= —,', —,', a and J'=0, 2, 3.
The relevant values of S(J',J) are given in Table
VI. The mean value of S(J',J') for this case is 0.8
and the rms variance is 0.10. If, for the sake of
the present argument, we limit. ourselves to sec-
ond-order exeitations of the type (j)'-(j')' and
(j)'- (j,j ') but allow all possible values of j', we

so the second-order correction would be twice as
large as required for the same linear relations to
hold as for the first-order energies. Actually, of
course, a (j') configuration of identical particles
can have only even J,. Thus if we calculate 8 for
the specific configuration already considered in
this paper, namely, j = —,

' and j' = —,', J' can only equal
2, and we find

~1/2, 2, 3/2 3 &

where the C~, ~ are again fractional parentage co-
efficients. If all S(J',J) were equal to unity, the
perturbed energy differences would follow the
same rule a,s given in Eq. (1) but, this time, in-
clude all second-order single-particle excitations.
Clearly, it is a reasonable presumption that the
character of the one-particle excitations to the
distant states is such that the linear relations are
not significantly violated and thus can be simula-
ted by a renormalization of the effective interac-
tion. As far as second-order one-particle excita-
tions are concerned. we may expect that only near-
by and fragmentary configurations lead to a sig-
nificant breakdown of the linear transformations.

Vl. PARTICLE-HOLE TRANSFORMATIONS

The best known examples of the particle-hole
transformations in the "Ca to "Ni region are
(,",Cl —,",K) and 2~8c —,",Co).' In the first case, the
linear relations hold extremely well, "and e'ven

better than expected wtih "reasonable" interac-
tions such as SDI, Kuo-Brown, and Schiffer- True.
Although, as already noted, we cannot explain this
precisely, perhaps the effects of configuration
mixing on the linear relations tend to cancel for
the same reasons presented in the-last section for
the j' jj ' transformations.

In the second case (Sc and Co), the linear rela
tions are significantly violated. Using the argu-
ments of Sec. V, this violation can be roughly un-
derstood if we have a single, low-lying, perturb-
ing p,/, orbit. As a simple example, we will con-
sider the particle-particle and the "particle-hole"
configurations, (-,')' and —,'(—,') ', i.e. , in the absence
of configuration mixing. The latter configuration
involves six particles. (For the analogous case of
f,&, and 1p,~„we would have (f,&,)', i.e. , ~Sc, and

(f,~,f,~, '), i.e. , "Sc.) For the particle-particle
configuration, we will consider isospin states of
1 and 0. In the absence of configuration mixing,
the former has J = 0, 2, and 4 (already considered)
and the latter, J =1, 3, and 5. For the particle-

TABLE VI. Values of S(J',J) for j = ~.

J'=0
J =2
J'=4

J—2
2

0.929
0,570

5
2

0.833
0.810
0.857

J=—9
2

0.762
0.843

may write the following linear transformation for
the perturbed energies E~ for the spectrum of j'.

E~(d') = Z C, ,~E(j ') ~, +Q [], (37a)
J' I gt

[]-=«0')', 'S(J', J) Z «(j'-~j')„, (37b)
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TABLE VII. Excitation energies (MeV) for six identical nucleons in j=—subshell, T= 2 and
3. The energy differences in parentheses were obtained by using the Panlya relations, see
Eq. (45).

Nucleons

E(6) E(6)
0 4

a=0

2.619(2.998)

E = Eg g2
—65(2

E' —2

3.071(2.945) 2.714 + 2.60/»
(2.714 + 0.10/&)

Then, the second-order shift S, which results from
one-particle excitations, for the two-particle con-
figurations are

(40)

(41)

(42)

For the particle-hole, i.e. , six-particle case, we
calculated only the energies of the J'=0 (T = 3) and
J = 4 (T =2) cases. The latter corresponds to the
J' = 6' ground state of "Sc and the former to the
J"=0' analog state.

We find the second-order shift that is due to
one-particle excitations is

g (6) —00 (43)

because there is no [(-,')' —,'] state with T=3, J'=0.
We also find by explicit calculation that

hole case, we have a pure (-,')' configuration, J'= 0
for T= 3 and J =1, 2, 3, 4, and 5 for T=2. States
with T=1 or 0 cannot correspond to particle-hole
configurations.

The de Shalit-Talmi theorem for two-particle
excitations holds also for nonidentical particles.
Thus the Pandya relations, "which connect the
energies of —,'(-,') ' and (-', )', still hold when the sec-
ond-order shift (of order W'/s) resulting from two-
particle exc|tations is included. However, as with
identical particles, these relations are broken by
one-particle excitations.

For the case treated here, the two, off-diagonal,
matrix elements that follow are relevant for one-
parti cle excitations:

(36)

(39)

the excitation energy of the J=3 state.
Some of our numerical results are shown in Ta-

bles IV, V, and VII and bear out the above. Note,
however, .that the deviation from the Pandya trans-
formed spectrum changes sign between e = 0 and
e =2. Also, the effect on configuration mixing is
seen to increase the 4-0 splitting from 2.7 to
3.07 MeV (a little more than 10%). A similar re-
sult (not shown) obtains for the ("Sc—4'Sc) case.
Here calculations were not made with the SDI but
with the more realistic Kuo-Brown (KB)"and
PMM interactions. With these, the jj coupling
values for the (6' —0') splitting are, respectively,
4.7 MeV and 6.6 MeV, compared to the experimen-
tal value of 6.6 Me V. Configuration mixing owing
to 1p,~, level increases the splitting by 20% and

10%, respectively. Thus one might expect that an
intermediate interaction between KB and PMM
would reproduce the splitting results obtained
experimentally.

VII. CONCLUSIONS

It has been known for some time that the linear
transformations between energy spectra are pre-
served for configuration mixing that is due to two-
particle excitations to the same orbits, at least
up to second order in the interaction. "We have
shown that these relations do not hold in higher
order or for single-particle excitations. However,
we present arguments to show that in the latter
case (up to second order) they do hold apP&'oxi,

mately if there is a large range of j' values for
excited single-particle states. This is indeed the
case for configuration mixing that is due to high-
lying levels. Thus the effect of such configuration
mixing on energies also can approximately be
simulated by a change in the effective interaction.

/ (6) gg (6) — M2 /E (2) M2 ~ (2)
0 4 14 2 36 3 (44)

On the other hand, application of the Pandya re-
lations to the two-particle configurations gives

P((b,E) ) —P(aE "&) =ar&E "& —~f&,E "& (45)

As noted, Eq. (45) also applies in the presence of
two-particle excitations. We see that Eqs. (44) and
(45) differ only because of the interaction in J=2
states. For this reason we have not considered
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