
PH YSICAL REVIE% C VOLUME 19, NUMBER 4 APRIL 1979

Electromagnetic effects and weak form factors
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A simple "renormalization" of nuclear form factors is shown to account for the major effects of induced
Coulomb corrections to weak decays. Application to present experiments indicates that these effects are at
the edge of detectability.

RADIOACTIVITY Induced Coulomb corrections to weak decay~.

I. INTRODUCTION

There have been numerous treatments of Cou-
lomb corrections to weak interactions. Recently
there have been a number of discussions' of such
corrections within the framework of the elemen-
tary particle approach to weak processes in nu-
clei. An interesting feature which emerged from
these treatments was the observation by Bottino,
Ciocchetti, and Kim (BCK) that in addition to the
conventional finite nuclear size corrections of order
Z

E'ER

(where Z, R are the nuclear charge, radius re-
spectively while E is the electron or muon energy)
there are additional "induced Coulomb" terms of or-
der Zn/mzR (where m„ is the nucleon mass)
which arise from "recoil" form factors (such as
weak magnetism or induced tensor) whose kine-
matic structure depends on the momentum trans-
fer q between initial and final nuclei. We wish
in this note to give a more general discussion of
such terms than given by BCK. For definiteness,
our treatment here will be within the framework
of allowed beta decay. However, our conclusions
are more general, and similar results will obtain
for muon capture, electron capture, inverse P de-
cay, etc. We shall demonstrate that the major ef-
fect of the induced Coulomb terms may be account-
ed for by a simple "renormalization" of weak form
factors. In the next section we define notation and
derive this renormalization scheme, while in Sec.
III we assess the impact of these results on pre-
sent generation experiments.

II. DEFINITIONS AND DERIVATION

We have chosen here to quote results specifically
for the case of allowed nuclear beta decay, on
which experiments are being performed with ever
increasing precision. A number of recent experi-
ments' have sought information about recoil form
factors —specifically weak magnetism, induced
tensor. Clearly analysis of such experiments re-
quires an equally precise and careful theoretical

treatment. In the absence of electromagnetic ef-
fects, the theoretical analysis is straightforward
and results may be expressed in a simple closed
form. ' Electromagnetic corrections produce an
unavoidable complication to this formalism. Their
effects can be divided into two categories:

(i) static distortion of the electron or positron
wave functions whose presence can be accounted
for by use of a Coulomb wave function for the out-
going electron or positron rather than use of a
plane wave';

(ii) all other electromagnetic corrections —e.g. ,
bremsstrahlung, hadronic photon exchange. One
attempts to account for such terms by factoring
out a radiative correction term'

1+ g(E, E,„)—.2' ™ x '

I

We shall be dealing here with the effects of the
former.

To zeroeth order in recoil the hadronic weak ma-
trix element can be characterized purely by the
Fermi and Gamow-Teller terms. Use of a Cou-
lomb wave function modifies the spectrum via an
overall multiplicative factor E(Z, E), the Fermi
function, which is common to both Fermi and
Gamow- Teller decays, plus additional small cor-
rections of si'ze ZeqA, Z'n' whose precise form
depends upon the Fermi or Gamow-Teller char-
acter of the transition. We have previously cata-
logued the effect of such terms on the various
spectral functions. '

There is also, of course, a Coulomb correction
to recoil form factors such as weak magnetism.
This correction can be separated into two pieces:

(a) a term whose origin is similar to the leading
corrections discussed above. The effect on the
spectrum is 8((q/m„)ZoqR) «&1 and is hence neg-
ligible. "

(b) a term whose origin lies in the fact that the
electron or positron energy is affected by the pre-
sence of the electrostatic potential. These are '
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the "induced Coulomb" effects of 8(Zn/m„R) which
are of interest to us here. "

In order to study these terms we begin by de-
fining notation. Consider the nuclear beta transi-
tion

T, =~ cose,(p2, ~(V„+A„)p2,&l", (2)

First disregard electromagnetic effects. Then the
weak beta decay amplitude is assumed to be givenby

n p+e +v, .
For purpose of discussion we consider electron
decay. Modifications appropriate for positrons
will be included in the final formulas. Let p„p„
p, k denote the respective four-momenta of parent
nucleus, daughter nucleus, electron, and neutrino.
The parent and daughter masses are M, and M, .
We also define

& -P1.+P2r O'-P'X -P2 —P + & ~

M=-,'(M, +M,),

where G= 10 '/m„' is the conventional weak cou-
pling constant, 8~=15 is the Cabibbo angle, and
I" is the matrix element of &he lepton current

l"' = u(P)y)" (1+y,)v(k) .

In order to define the hadronic matrix elements,
let parent, daughter nuclei have -spins J, J' with
projections M, M' on some quantization axis. Then
we define weak form factors a, b, ... ,j, via

1"(p~V)(~n& =bj j.b)3„ l" (aP„+e(l)1)+iCj,!j (qxl), +Cj„'jC,".,". lnq„+ 2
P'1(, )v' 'Y, (q)

l (p~A)) ~n& =Cj'1' je1 ne 15 cl P dl 0 +( ~2 k0 P 0'l (4)

j'2; j 12;2 ln(5~) Y2 (q)
( Q2 Cj'3 j 12;3 n(5 ) 2 (q) 2 ss12

1)2J

Here a, c, are the usual Fermi, Gamow-Teller form factors, 5 and d represent the weak magnetism and
induced tensor terms, respectively, while k is the induced pseudoscalar. The structure functions e,f,gj „

3 are often omitted but can b e of considerab le importance for some transiti ons. Thi s parametri zati on
includes all recoil effects to 8(q/m»q'R') and should be adequate for arbitrary allowed transitions. A

general analysis of P decay spectra in terms of these form factors has already been given. "
Now suppose we turn on electromagnetism. The correct generalization of equation 2 has been shown to

be"

sssv fd'vt)(r, p)V" (( v,)v((v)v
2

2
'). "2[(pp,,-, -, l(V„+A„)~ -„&+ (p-„l(V +A )( p, p. -, &],

where P, .(r, p) is the solution to the Dirac equation in the presence of the nuclear Coulomb potential which
reduces to 9(p)e ')" as Z-0. Here states n and pare prescribed to remain on their mass shells, and in
addition we must in the hadronic matrix element make the substitution

q, -q.+ey(r),
where P(r) is the nuclear Coulomb potential, in order to maintain gauge invariance. '

If we now consider a recoil form factor —e.g. , weak magnetism b—we have

(6)

G
T = cos8c

2

3

)3 f, (r. , p)e" ' "y"(1+y5)v(k)

x ' ' ' —iCj 'je „13 b((q —p+8) .)(p —s —q) + ' ' '
~

Writing s as a derivative on the exponential and integrating by parts we have
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GT= cos8c
2

3 is ~ r CZ'u
)3 j'1;j

Finally, using

-i%'q, (r, p) = pq, (r, p) + 5y, (r, p)

and defining the weak magnetic charge density p, (x) via

b(q') = b(0) d'~p, (r)e (10)

We find

T= cosmic d'r (~ ~ +iCj",:je „„p,(~)(1(2M)b(0) ting, (r, p)+$g, (r, p)]„+ .)y (], +y,)g(b).
v' 2

The term in Eq. (11) involving q(t), (r, p) gives rise to the correction terms of type (a) discussed above and
is not of interest here. It is the terms in Eg, (r, p) which yield the induced Coulomb effects. In the Appen-
dix we show that

(12)

where F»(Z, E) is the Behrens-Janecke Fermi function" and u(p) is a free electron spinor.
Generalizing this derivation to include the remaining form factors, we find

T= (E,(Z, E)]'i'(T, + eos8 " 5,il„„, l"e(v —3T)BJ & 0

+Cgly g l~ c~+d v. —cr +2&v +

,m Yu(p)y i (1+y )v(k))
h

Cj 2; jC]1;2 &„(q —(P).
(2 ). (3i2 ~6Ã)

where

point weak charge

QZ
dorf = d+ b (o' —3'7),

o =3~= ~5, uniform weak charge

1, surface weak charge .
(14)

1 3 ZQ
+ b q, + — ((r —3~)

Here 0 represents contributions from the gauge in-
variance substitution, while ~ gives the effects
arising directly from the Coulomb wave function.
Comparison with Eq. (4) shows that a major corn
ponent of the modifications to the decay spectrum
due to induced Coulomb effects can be identified
by utilization of unmodified spectral functions but
with "effective" coupling constants

AZ
C ff

= C+ t ed(7+—V) 4 2b7

AZf ff f+ (+3j.r —~em)

QZ
a,g= a+ e(o —3v),

where the upper (lower) sign is for electron (posi-
tron) decay.

III. IMPLICATIONS FOR PRESENT EXPERIMENTS

The interesting feature of these modifications is
their experimental implication. In the case of
c,«there is none of significance. The modifica-
tion giveri here reproduces the previously calcu-
lated induced Coulomb terms. " It amounts to a
small renormalization of the dominant Gamow- Tel-
ler form factor, w'hich is much smaller than un-
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certainties in calculated Gamow- Teller matrix
elements due to imperfect nuclear wave functions,
relativistic effects, "meson exchange, "etc. Thus
the induced Coulomb terms may as well be ab-
sorbed into the definition of c and the unmodified
spectra utilized. It might appear that there exists-
a substantial effect on the ft asymmetry in Gamow-
Teller mirror decays from induced Coulomb cor-
rections in that

c,«2(e ) nZ d
c (e+) MR

which is a correction at the percent level for val-
ues d/Ac-8(1). However, the full expression for
the ft asymmetry also involves interference with
the induced tensor

ft' c,«'(e ) 2 d E,' —E,
ft c,«'(e') 3 c M

where E, , E0 is the maximum energy of the elec-
tron, positron. For mirror decays, the end point
energy difference is Coulombic

E' -E-=s' 12 QZ
0 0 (18)

Thus

—1=2 —(7 -g+ —', ).ft" nZ d
t m«R Ac (19)

.For a uniform weak charge distribution the asym-
metry vanishes and in any case

3 &g —7 Z 1 ) (20)

q"u(P)y~(1+y5)v(k) =m,u(P)(1+ys)v(k) (21)

remains essentially unmodified by the Coulomb
correction

so that, since d/Ac -8(1),"the effect on the ft
asymmetry is quite small —~0.1% for Z =10.

In a similar fashion, since v —3~ = 0, there is no
effect on the ft asymmetry from terms in k and no
renormalization of the Fermi terms due to effects
from the induced scalar e. That both these re-
sults are to be expected is easy to see since the
plane wave identity

[go+ ep(z) ]P,(r, p )yo(1+ y5) v(k)-(q —p+ iV) ' P, (r, p) y (1+y5) v(k)

= 'P, (r, p)([E+eP(r)]y, —iy ~j(1+y,)v(k)+'P, (r, p)k(1+y, )v(k)

=m, P, (r, p) (1+y, )v(k) (22)

as pointed out by Blokhintsey and Dolinsky. '
Renormalizations of a and f are of interest in

that the conserved vector current hypothesis
(CVC)" predicts values for these eoupiings. How-
ever, we have already seen that the correction to
a vanishes because of the identity 0 —3v. = 0. Also,
for an analog transition CVC requires that

which is different from the value for the corre-
sponding electron decay

AZ
c ff(e decay) =c+ ~(c —2d+25). (28)

c,«(p capture) = c+ ~ c -2d+ 2b —k, (25)

e=0 (23)

Thus there is no modification expected for the Fer-
mi term. In the ease of f there is a substantial
modification expected to the CVC value since one
has from impulse approximation estimates

Using the value derived via the partially con-
served axial vector current hypothesis (PCAC)"

(27)

ZA . ZAj,/f -
. g/f -Znm„R .

N
(24)

this gives

Since y,u(p=0) =u(p=0), the induced Coulomb
term arising from the induced pseudoscalar
contributes to an effective renormalization of the
Gamow- Teller coupling in muon capture

c,ff(p, capture) —c,«(e decay) = —k7

(28)

This represents about 1~% reduction of the "ele-
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mentary particle"' predictions for the muon cap-
ture rate on "C. Such effects will, of course, be
more sizable for heavier nuclei.

We also note that induced Coulomb terms are
relevant to analyses of experiments whose aim is
to study the question of second class currents.
Here, the presence of a second class current may
be considered to be signaled by a component of
the weak form factor which changes sign between
electron and corresponding mirror positron de-
cays. ' Examination of Eq. (15) then reveals that
omission of induced Coulomb effects can result
in simulation of a second cia'ss piece of the form
factors.

Presently there are a number of experiments
which attempt to probe for these second class ef-
fects. Of these there are two which are of rele-
vance here. The first is the A = 8 experiment of
Tribble and Garvey, "wherein the P-a correlation
is measured for the mirror processes

'B- Be*(2.90 MeV)+e'+ v,

12 +12

'Li- 'Be*(2.90 MeV)+ e-+ v, .
Since this is a 2 2 transition, the analysis in-
volves nearly all the form factors. The theoretical
prediction can be written in terms of'

where d» is the component of the induced tensor
which changes sign between electron and corre-
sponding mirror positron decays and is attributed
to second class currents. Application to the ex-
perimental value"

Ckl . 06 09 (35)

—,'(y —y+)c.„„,=1.4 x10 'j,/A'c . (36)

Here also an impulse approximation calculation
yields 6

probably should not be done directly because the
value ofj, is somewhat uncertain, the number
used in obtaining Eq. (32) arising from an impulse
approximation calculation.

Finally we mention that careful P-y correlation
measurements have also been undertaken in the
A =20 system"

"F-"Ne*(1.634 MeV)+e + v,~"Ne+y

"Na -"Ne *(1.634 Me V) + e + v, .

This is also a 2' -2' transition so that the same
combination of form factors as given in Eq. (29)
is involved. We find in this case

theory

Ac

Ac
+ (-.)

3 l/2 ~ D

= —300,A'c

so that we find

I
~f „„„,=+042,t'~d&

I Ac~ sitnulated

(37)

(38)

Eo 2E j3 3 E
A' A'

which is a relatively large effect, but still some-
what smaller than the present experimental limit"

Writing

(29) ~-,„,=-O.r~2.0. (39)

1 1 1.(r r.).*—p 2(-r r+) h.o,y -2(r -,r+)co 1o b-

(30)

we find

In conclusion then, we note that induced Coulomb
effects, although sman. , may be important correc-
tions to the analysis in future generation experi-
ments.

27 QZ
5/14 2yn„R A'c

Using an impulse approximation calculation"

=- 300,A'c

we find

2 (r —r, )c,„1, b
= —0.23

which simulates a second class signal,

dn
simulated + 0 23

A, C

(31)

(32)

(33)

(34)

It is a pleasure to acknowledge very useful con-
versations with Professor S. B. Treiman.

APPENDIX

We start with the exact solution to the Dirac
equation in the presence of a Coulomb potential:

(2 )2~1/2

g.(r, p) =
-m.P—

gl4 p Pl Q y' 2P (p2C) eia q (~r) (A'1)

where
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cr„= —,'n [l(a.) +1 —y„]+@,—argr(y. + i v),

/

(~) (gK( )Xg p ( ) ~
(

2 2 2)1/2
7 K

~.f.(.)..,.(')~

otZE, . , —K + ZQ ZIB~/pV= exp(22'g K)
=-- (A2)

2m. '~' Z+m,x(x) =— ' g, (r) — f,(r)e "
e

1 r2 1 y4
[F,(Z, E)]' 'o. zm, R ——,—

2m. '~' Z+m.y(~)= — ' f,(x) + '
g, (~) e"

E+m, '
p

and f„(x),g„(r) are the usual small, large compo-
nent Dirac wave functions. For the present appli-
cation it is sufficient to retain only the ~z~ = 1
terms, giving

=0,

Z(r)= — ' f,(r) — ' g, (r)e '
g 8+m, ' P

P&,. ~,g, (r,P) =
N* fur(x)+ x(r)y'+y (r)y r

+z(~)y ~y']u(p), (AS)

1r'=-[F (Z E)]"'inZBJ & 2g 5 g2

1
& = 2&+~~ —& (A4)

1 2m, '~' F. +en.
w(r) =— ' g, (r)+ 'f, (r)e "

2 E+m, '
p

Z/2= [F„(Z,Z)]' '
q, (p~) —o.ZZa ——„,———,i,

I

where for a uniform electrostatic charge distribu-
tion of radius R

1 (2w)' '~'
N= —exp[i[-,'m (1 —y, ) +q,

4n mP

—argI" (y, + iv)] },

and Em (Z, E) is the Behrens-Janecke Fermi func-
tion.

Then

-iV|(', (r, p) = pP, (r, p) —iVP, ,&,g, (r, p)

= p|t', (r, p) iVz (r)y.-r y,u(p)

=p(.(r, p)

QZ ~ 1J" 2»
y 1 —————

y rf —y u(p)g2 5 ~2 p p

(A5)

which is the result quoted in Eq. (12).
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