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Energy dependence of the absorptive S-wave pion-nucleus optical potential
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It is shown that the simplest two-body pion rescattering model for pion absorption in nuclei leads to a rapid
increase with pion energy for the absorptive part of the S-wave pion-nucleus optical potential proportional to
p'. The energy dependence is almost entirely due to the pion-nucleon rescattering amplitude and not to
nuclear structure effects.

NUCLEAR REACTIONS Absorptive part of S-wave pion nucleus optical potential
calculated as a function of pion energy.
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I. INTRODUCTION

As pions cannot be absorbed on free nucleons
nuclear-pion absorption involves at least a two-
nucleon mechanism. This may either be viewed
as absorption on one single but bound nucleon or
as an explicit two-nucleon absorption mechanism.
To reflect this situation the absorptive part of the
8-wave pion-nucleus optical potential is commonly
parametrized in. a form which emphasizes the two-
body aspect of the problem as'

2(d V„,= —4mImBpp'.

Here ~ is the pion energy, p the nuclear density
and ImB, a potential parameter.

At threshold the value for ImB, has been deter-
mined from the level widths of pionic atoms to be
0.042 p, 4.' There has been some recent progress
in. attempting to understand this value of ImB, in
terms of elementary two-body rescattering mech-
anisms. ' Hachenberg and Pirner' have con-
sidered a very sophisticated model for th6 rescat-;
tering operator, and Bertsch and Riska have
employed the simplest phen. omenological model
for the rescattering operator which fits the low
energy pion- nucleon phase shifts. Both groups
obtained very similar results for the threshold
value of ImBO: 0.036 p.

~ (Ref. 3) vs 0.031 g
(Ref. 4). The remaining 20 30 P discrepancy
between the calculated threshold values for ImBp
and that extracted from pionic at,om level widths
may possibly be attributed to missing many-body
absorption mechanisms which have not been taken
into account in the parametrization of the optical
potential. In addition. one- nucleon absorption
viewed as absorption on. one nucleon bound in pair
wavefunction could be of some importance. '

In. this paper we address the question of the
energy dependence of the optical model parameter

ImB, above threshold. The fact that recent pheno-
menological optical model fits to pion-nucleus
scattering data seem to favor a rather marked
increase of ImBp with pion energy' makes this
question particularly interesting. We consider
the same two-body absorption operator that was
considered recently by Bertsch and Riska4 and
much earlier by Woodruff' and Koltun and Reitan. '
Since this operator can explain 70 80 P of the
threshold pion absorption rates in nuclei we as-
sume that it will also be adequate to the same ex-
tent at higher energies. The main development
here therefore consists in the generalization of
the calculational method of Ref. 4 to nonzero pion
momenta.

The paper is divided into four sections. The
second section is devoted to a brief description
of the method employed and the model for the
absorption operator. In the third section the
matrix elements of the rescattering operator are
evaluated in the Fermi gas model. The numerical
results and a concluding discussion are presented
in. the last section.

ImU„, =-„- eE, E, ~ T„'.
f

(2)

Here T« is the matrix element of the pion ab-
sorption operator between the initial (i) and final
nuclear state (f) and the sum is taken over all
final states aQowed by energy conservation. . %e
denote the energies of the nuclear states E,. and

II. THEORETICAL APPROACH

The lowest order contribution to the imaginary
part of the pion-nucleus optical potential can be
obtained from the multiple scattering expansion to
have the form
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assumptions then lead to the following expression
for the potential parameter ImBO defined in Eq.
(1) (Ref. 4):

I

I

I

FIG. 1. Pion rescattering model for two-body pion
absorption.

Ez and the nuclear volume R
We now make the assumptions that the absorp-

tion operator T is a two-body operator and that
the independent particie model is adequate for the
description of the nuclear wave functions. With
the definition for the optical potential above these

ImB,=, d(1)d(2)gy(12)T(12)g, (12) '
2p20-

x 5(E& E, a&)..

In this expression t/, and g. z are the antisymmetric
pair wave functions in the initial and final nuclear
states with the sum taken over all of them. The
coordinates (1) and (2) represent the spatial and
spin-isospin coordinates of the pair nucleons.

We shall write the absorption operator T as a
function of the fractional momenta k, and k, de-
livered to the pair nucleons:

T~f GPSS'r, y rl 2 3
— 3e' "~''""2 2m '5 q —k, —k, T kl, k2 &

r„r, .

H = 4w —i/JQ ' gt/'+ 41T~ l/JT' f x 1T i/J,™ (5)

Here g and t/t are the nucleon field operators and

P the isovector pion field operator. The mo-
mentum operator conjugate to g is denoted K.
In (5) ~ is the nucleon isospin operator and p the
pion mass. The two coupling constants A. are de-
termined by a fit to-the pion-nucleon S-wave scat-
tering lengths to be'

A, ,= 0.003 + 0.001,

= 0.050 a 0.001.

(6)

With these values for the coupling constants A.

the isospin 2 S-wave pion-nucleon phase shift

The 5 function in Eq. (4) expresses overall mo-
mentum conservation, q being the momentum of
the absorbed pion.

We assume that pion absorption takes place by
one rescattering of the initial pion as illustrated
in Fig. 1. It is important to point out that there
is no possibility of double counting between the
first iteration of this mechanism and the third
order iteration of the one-nucleon optical potential
(with an S-wave term and a P wave Horn t-erm)
since the iteration in the Schrodinger equation of
the one-nucleon potential leaves the nucleus in the
ground state while the absorption mechanism in

Fig. 1 leads to highly excited states.
We describe the S-wave pion-nucleon rescat-

tering vertex in Fig. 1 by the phenomenological
zero range mN Hamiltonian employed by Woodruff'
and recently by Bertsch and Riska:

l

S33 is well reproduced to 250 MeV and the isospin
& phase shift S» to 50 MeV pion kinetic energy in
the laboratory system. The fit to the S» phase
shift can be improved at higher energies by
allowing the X's to be energy dependent as dis-
cussed in Sec. IV.

The absorption operator that corresponds to the
Feynman diagram in Fig. 1 can now be con-
structed, and is for the case of a charged (here
positive) pion found to be

.Sw 1 o ' k,
M(d p2+ k 2 —CO 2

X —7 —'I
2 ((d+(d')(7' X 7 ) (7)

Here k', is the momentum delivered to the second
nucleon by the virtual pion and ~' is the energy
carried by the virtual pion. The energy of the
initial pion is ur = (q + p')'~'. We shall denote the
"effective" mass in the pion propagator in (7)
/L* =—(g —~")'~'. In (7) f is the pseudovector
coupling constant (f /4m =0.08). To this operator
one should add the operator which corresponds to
the situation where the rescattering takes place
on the second rather than the first nucleon.

The Hamiltonian (5) is derived for the pion
nucleon center-of-mass frame. When constructing
the contribution to the first order optical potential
due to the S-wave pion-nucleon rescattering amp-
litude, the transformation to the pion-nucleus
center-of-mass frame" introduces a multipli-
cative factor g= (1+~/2m)/(I+ m/2Am) in the
optical potentiaP (I is the nucleon mass). For
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consistency with the first order optical potential,
we shall therefore also include the factor g with
the amplitude (7). This corresponds to the choice
of Miller" for the second order P-wave optical
potential.

The transformation from the pion-nucleon
center-of-mass frame to the pion-nucleus one
also introduces a contribution of proportional
p in the S-wave first order optical potential
which is due to P-wave pion-nucleon scattering.
It is therefore natural that the second order
P-wave rescattering mechanisms should also
contribute a similar term to the second order
(p') S-wave optical potential. We do not consider
that term here, although at large pion energies
it is far from unimportant, as it is not usually
incorporated into the S-wave potential parameter

Bp but rathe r kept as a separate ter m in the
optical potential because of its different origin. '
In fact, it vrould be inconsistent to include such
a term without including the P-wave optical pot-
ential simultan. eously. The present results thus
only relate to the p' term in the optical potential,
but not to terms of the type &p.

By carrying out the momentum integrals in Eq.
(4) the configuration space expression of the
symmetrized operator can be cast in the isospin-
separated form

T(12) = t'(7'+ r'), + t'(7' —7 ), it'(9 x I'),

The amplitudes t are given as

t' = —,11,
~ Y,(p*r)e ,

'~' "[cos(q r/2) (a' a') r-i~ sin(q r/2)(a1+ a2).r] (9a)

+2
t'=~11, Y( ter)e""[c os(q r/2)(a'+ a ) r isin(q r-/2)(a —a ) r], (Qb)

+2

Y, (t1*r)(&u+ &u')e" "[cos(q r/2) (a'+ a') r —i sin(q. r/2)(a' —a ) rl. (9c)

The function Y, has been taken to have the form ImBO= p~ K QQ(E~ —E( —(d)2p~

(10)
x 2 tf. tfi l(p) +4 tfj ()

+2)t '+t 'f

In Eqs. (9) the coordinate vector r is defined as
r, —r, and the vector R as —,(r, +r,). In the
threshold limit q-0 these expressions reduce to
those in Ref. 4.

True S-wave absorption corresponds to the
lowest order term in q r in Eqs. (9). The higher
order terms in q r dependence lead to. contribu-
tions to higher partial wave terms in the optical
potential.

The matrix elements tf; in (11) now involve the
spin and spatial parts of the wave functions only.
The subscripts (+), ( -) in (ll) indicate the
symmetry of the initial spin-spatial pair wave-
function.

The sums over the spin. parts of the pair wave
functions can be performed by the same method
as the isospin sums. For this purpose we write
the spin dependence of the amplitudes explicitly
as

t' = U' (a'+ a') + V'(a' —a'). (12)

III. EXPLICIT EXPRESSIONS FOR THE MATRIX ELEMENTS

In this section we derive an explicit expression.
for the potential parameter ImB, in symmetric
nuclear matter starting from Eq. (3). It is con-
venient to evaluate the isospin matrix elements
first using the separation (8). Since the operator
T(12) is symmetric in the coordinates of the two
nucleons and since the final state energy does n.ot
depend on isospin, one may use closure for the
isospin components of the final pair wave functions
to obtain the result

The expressions for the vector operators U and
V are then according to Eqs. (9)

j. 2
Uf~- Vf~ —0~

&f le'~'~Y1(p*r)j o(2qr)r li&, ,

Uf. —Vf, (13)

0&,
————,x, (&u+ &u')(fle" "Y,(p*r)j,(,'qr)r li), ,

—

Vf —0
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Here we have only retained the S-wave contribution. After carrying out the sums over the spin
components of the initial and final pair wave functions we eventually find the result

(d
lma, = .„18&'+5(Z,-E,. ~){IV,'&I

& &+ 2 III,',. I; &+ IO,',. + 0;,. I& &+-,'IV&,.'+ Vz,.'I'& &

fr i

+ IVf&I( )+2 IVf &+Vf&( &«&+ IU„U„.I &.&+. IV„V„.I&, &+ ~ Ivf& Vf&I( &) (14)

(r r ) = e&"m~'"(e'"~~ "ye '" '~)
0 2

(15)

Here the symmetry of the spatial pair wave func-
tion has been exhibited explicitly. The total and
relative momentum variables K and k are defined
as K „=k +k„and k „=2 (k —k„), 'and the cor-

Here the subscripts (+) and (-) indicate the sym-
metry of the initial spatial pair wave function.

For the evaluation of the matrix elements of the
vector operators U and V in (14) we use Fermi
gas wave functions to construct the pair wave
functions

l

responding spatial variables as R = —,
' (r, + r, ),

r = (r, —r,). The pair wave function is labeled by
the momentum indices m and n.

The matrix elements in Eq. (14) are of the type

d'r, d'r, g*„e""Y,'(p*r)j,(&qr)rg„. (16

The initial pair wave function P» involves nucleons
in occupied orbits and the final wave function g„„
nucleons in vacant ones. We shall use henceforth
the abbreviation f = (&r&n) and i = (kf ).

It is convenient to perform a multipole expan-
sion of the pair wave functions in the integral.
This leads to the expression

2 A, ~

QQ( —i)~i~Y~,„.(k~)Y~„(k&) d'r, d'r, e ' ~' e'
g L M f LM

(17)x j~, (k&r)j (qr/2)j z(k, r)AY+, ~, .(r)Y~&&(r).

The sum over L involves only even or odd terms depending on whether the initial pair wave function is
symmetric or antisymmetric.

In carrying out the radial integrals in (17) it is convenient to separate the integrations into one over
the center-of-mass variable R and one over the relative variable r. The center-of-mass integral leads
simply to a Kronecker delta 6K, K.,&

which expresses momentumconservation. Afterevaluatingthe in-
Kf& Ki+

tegral over the relative coordinate using standard methods we obtain the following result for the p, th

spherical component of the matrix element V:

V„= «-„,"„.,«Q Q( —«)
'i

( —()"([L'][L]) ( ) ( )Y, .()!«)Y (),)1,(y (,, q). (18)

Here the radial matrix element ILL, has been de-
fined to be

Iz ~, (k, k ., q) = dr rj z. (k &r)j o(z qr)

x Y, (]&.*r)j~(k,r).
In (18) we have used the notation [L]=2L+ 1.

In the expression for the optical potential para-
meter (14) one needs the square of matrix
elements of the type (18) summed over the mo-
mentum variables with account of the energy con-
servation 5 function. The 5 function can be writ-
ten in terms of the Fermi gas momenta as

P =~n'p' . p i i (21)

with p being the nuclear density and k„ the Fermi
momentum. The function P is a normalized finite
geometry weight function:

where of course Rz ——R;+q. The sum over mo-
menta is complicated by the appearance of a term
q R,. in the 5 function as a consequence of momen-
tum conservation. To be able to proceed we there-
fore assume that it is a reasonable approximation
to replace that term by its angle average value O.

With this approximation the sum over initial
momenta (i) in the expression (14) may be imme-
diately replaced by integrals as4

(20)
P(x) = 24(1 —2 x+ ~ & ') X '. (22)
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The sum over final pair wave functions can be
converted to an integral as well:

for the summed squares of the vector operator
matrix elements (12) the expression

nzkgx'0
4(2w)'

(23)

+5(E& E-, &u.) 1/1' = & p'mk„QQ
f, i LL'

The quantity JLL. has been defined as

(25)

here x' is the final relative momentum divided by
k~:

1

J~~.= [ L][L'] dx Qx)x'I ~ (x'k~xk„, q)
0

x' = [x'+ ~m(I —q'/4~m)/k &']'". (24) (I 'Ll
) (26)

The variable x is defined as x =k, /k z.
Using (21) and (22) to evaluate the momen-

tum sums and exploiting the orthonormality and
completeness of the spherical harmonics we find

)

By now substituting the result (25) for the vector
operator matrix elements into (14) we obtain the
final result for the optical potential parameter
Im80 as

2 P 2 + 2 CO+(d QP +Q)trna. =2f mk, t g g ~, + ~, +~. Z„,+P P Z, + X, X, Z„,
Ip,

Here the superscripts+ and —on the summation
symbols indicate whether even or odd values of
the summation variable are to be included.

The choice of the value &' for the energy trans-
fer of the rescattered virtual pion is not complete-
ly obvious. Considering the process depicted in
the Feynman diagram in Fig. 1 one has

threshold than the other one (28) and results for
the imaginary parts of the pio'n. -nucleus scattering
lengths which are in better agreement with empir-
ically obtained values. ' We shall therefore use
this latter value here, i.e. , we set &u'= ~/2.

When setting tu' =~/2 the form of the integral
I~~. defined in Eq. (19) changes to

(28) I~~, (k&, k, , q) = dr r j ~.(kfr)j o(zqr)

with k„k, being the initial and final momenta of
nucleon 2. If one assumes that the momentum of
the knocked-out nucleon is much larger than that
of the initial one, 1k,'I » 1k, I, momentum con-
servation at the vertex leads to ~'= k'/2m with
k being the momentum of the virtual pion. . This
prescription was used in the recen. t study of the
reaction m+0-pp in Ref. 8 to argue that the
energy transfer should be small compared to the
pion mass.

On the other hand, one can also express &' in
terms of the energy of the initial pion as

CO~'=—+ (R~ k~ —R( k().2 2m
(29)

The most common ansatz for &' is the one ob-
tained from (29) by neglecting the Fermi motion
terms and keeping only ~/2. Setting &u'= tu/2 leads
to a singularity in the pion propagator when q = M3

p, ,
' which is an. artificial consequence of neglecting

Fermi motion and not related to any physical
threshold and thus undesirable. This ansatz does,
however, give a much larger value for ImB0 at

&& [Ij,(~r) —y, (vr)]j ~(k r) (3.O)

with z = (u&" —g')' ~' being the effective pion mass.
In the expression (26) for the integral J~~. the
square of the radial integral has to be replaced by

I~z, -(ReI~~, ) +(ImI .) .
Otherwise the results (27) are unmodified.

IV. RESULTS AND CONCLUSIONS

We have calculated the values for the optica. l
potential parameter ImB, from Eq. (27) as a
function of pion momentum and show the results
in Fig. 2. As can be seen ImB0 is a rapidly in-
creasing function of pion momentum (or energy).
At threshold our value 0.029 p,

4 is somewhat
smaller than the value 0.031 p,

4 reported in Ref.
4, a difference we explain by our use of a more
accurate numerical integration method. The
threshold value is thus -35/0 smaller than the
standard value 0.042 p,

4 obtained from the level
widths of pionic atoms, ' but that value a,iso has
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FIG. 2. The optical potential parameter ImB, as a
function of pion momentum. The solid curve is obtained
with cu' = co/2 and the dashed curve with &'=~3@/2 (i.e. ,
threshoM va', ue) .

an uncertainty of -20%. The remaining discrep-
ancy is probably due to one-body and/or ma, ny-
body absorption mechanisms not considered here.
The inc|'ease with pion energy that we find for
ImB, is, however, strong enough to make ImB,
= o.o4o already at 25 MeV, an energy where the
zero-range pion-nucleon interaction (5) still gives
adequate values for the S-wave pion-nucleon
phase shifts.

It is interesting to note that the result for
ImB, is rather insensitive to the choice of the
value for the energy transfer co' of the virtual
pion except at large energies. The solid curve
in Fig. 2 for Im B, was obtained with the s tandard
prescription w'=(u/2. On the other hand, the
dashed curve was obtained when keeping the value
of e' at the threshold value j/2 with p" =&3p/2.
While the matrix elements J», are indeed rapidly
varying with the value of w', this variation is
almost completely compensated for by the change
in the value for the factor (p, *)' in front of the
expression (27). The net result is the relative
insensitivity to the value for ~ . This insen-
sitivity, noted already in Ref. 8, is fortunate
since it shows that the artificial singularity of
the pion propagator at q = v 3p, obtained when setting
&u'=.

, e/2 is of little practical importance.
If one, on the other hand, sets ~'=0 and employs

the static pion propagator as was done in Ref.
8 the results for ImB, turn out to be =20% smaller
than those obtained with p*=&3p, /2. Since the
value fox ImBp is anyway somewhat too small
this method would make the discrepancy between
the calculated and phenomenologically obtained
value for ImBO worse. The results for the cross

TABLE I. Values contributed to ImBO by the most im-
portant integrals ~&I. (units p, ).

q (fm ') ImBO (tot)

0.0
0 4
0.8
1.2
1.6
2.0

0.248-1
0.335-1
0.582-1
0.953-1
0.140
0.191

0.122-2
0.167—2
0.349—2

0.677-2
0.114-1
0.146—1

0.2 9-1
0.39-1
0.71-1
0.125
0.206
0.312

section for the reaction 7l'd-Pp reported in Ref.
8 do indeed indicate that the cross section is
somewhat too small near threshold which may be
a reflection of this fact.

Only a small number of the functions J», in
Eq. (27) contribute appreciable amounts to the
value of ImB„as most of these integrals are
very small. In fact the integral J„, i.e. , one
of the functions involving an initial S-state pair
wave function contributes of the order of 90% and
the integral J„, which involves an initial P-state
wa, ve function contributes of the order 5% of the
value of ImB, . In Table I we list the contributions
to ImB, of the most important integrals J», .
The other integrals which are not listed in Table
I can actually be neglected.

Iri order to illustrate the remarkable cancellation
of the energy dependence of the integrals J~~, by
the factor p,

*' in the expression (27) for ImB, we
plot in Fig. 3 the largest integral J» as a func-
tion of pion kinetic energy and the relevant prod-
uct p, ~'J„. Despite the singularity in J«at q
= & 3', , the product of the two factors is essentially
independent of energy. This result leads to the
important conclusion that the resulting energy
dependence in ImB, is due to the explicit pion
energy factors which are associated with the terms
involving X, in Eq. (27). The nuclear structure
part of ImB, is almost independent of energy.

The results above have all been obtained with
Fermi gas pair wave functions without inclusion
of short range correlations. %e justify the neg-
lect of short range correlations by the obser-
vation made in Befs. 4 and 12 that the threshold
absorption rate is insensitive to such correlations
because of the relatively long range of the two-
body absorption operator. In Ref. 4 it was dem-
onstrated that while the repulsive nucleon-nu-
cleon interaction in the P waves does reduce the
matrix elements considered somewhat, the at-
tractive tensor correlations more or less com-
pensate this reduction leaving the net change in

ImB, small. Although one might suppose that
the importance of short range correlations could
grow with increased pion momentum, this turns
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FIG. 3. The dominant integral Jo& and the combination
p *

Jo& as functions of pion momentum.

FIG. 4. The values for Imago as calculated without (A)
and with inclusion of the vertex form factor effect {B),
Curves C and D are the corresponding results when the
energy dependence of the coupling parameters A. is taken
into account.

ii. —p ~

A
(32)

where A is a mass scale and k' the momentum
of the exchanged meson, the function Y,()i ~r)
in the integrals (19) should be replaced by"

A2
Y,( p. ~r) -Y,( p, ~r) — „, Y,(Ar)

(33)

hile the proper value for the mass scale A is
not very well known, recent results indicate that
it should be well above 1 GeV jc'." In order to
have an estimate of the effect of this form factor
modification we evaluate the matrix elements
using (33) and A=1.4 GeV/c'. This value for A

is between the natural mass scale 2m and the
threshold value m„+ p. for the contribution from
the m'& vertex triangle diagram. In Fig. 4 we
compare the results as obtained with and without
the form factor correction for ImBO as functions
of pion momentum. At threshold inclusion of the

out not to be so because of the rapid increase
of the range of the absorption operator with pion
energy.

Another modification to the present results
rather similar in consequences to that caused
by short range correlations would be the effect
of hadronic form factors at the vertices of the
rescattered meson. The effect of such form fac-
tors is relatively straightforward to estimate.
Assuming that both vertices of the rescattered
pion in Fig. 1 would require a form factor of the
monopole type

T T
~, = 0.003+ 0.0334 ——0.0058

X = 0.050 ——0.0334 —-0.0058p T T
(34)

Here T is the pion laboratory kinetic energy in
the pion-nucleon system, and ~ the total pion en-

form factor leads to a, 25% reduction of the value
for ImB, . At higher energies the reduction is
somewhat larger. This large effect of the form
factor is a consequence of the use of uncorrelated
Fermi gas pair wa, ve functions. If the depletion
of the wave functions at short range were taken
into account the form factor modification would
be considerably smaller. We therefore regard
the present estimates of the form factor modi-
fication as maximal. In any case the form factor
modification does not change the result that ImB,
is a, rapidly increasing function of energy.

We finally turn to the question of the energy
dependence of the coupling parameters ~ in the
rescattering interaction (5). The constant values
X, =0.003 and X, =0.050 whi. ch were determined by
the S-wave pion-nucleon scattering lengths do lead
to an adequate fit for the isospin 2 pion-nucleon
phase shift S» up to 250 MeV pion laboratory ki-
netic energy but lead to a large overrestimate of
the isospin —,

' phase shift S» above 5o MeV. If
one allows the X's to be energy dependent pa-
rameters one may of course obtain a good fit to
both phase shifts even above 5o MeV. A para-
metrization for the X's which leaves the fit to the

S» phase shift unchanged but improves that for
the Syj phase shift would be
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ergy in the center-of-mass system.
In the pion-nucleus system the pion kinetic en-

ergy is the same in both the laboratory and center-
of-mass systems. QJith this modification we have
used the pa. rametrization (34) to calculate ImB,
as a function of the momentum of the absorbed
pion with and without the form factor modification
mentioned above. The results are also shown in
Fig. 4 (curves C and D). At high energies the
result for ImBp is considerably smaller than the
value obtained with constant parameters X. The
reason for the slower increase with energy for
ImB, in this case can be traced to the fact that
with this parametrization (34) the parameter X,
which is very small compared to X, at threshold
rapidly grows with energy and becomes compa-
rable to X, which is correspondingly reduced.
As in the expression for ImB, the terms involving

a.re not mu ltip lied by exp lic it ene rgy factors
('d as are the terms involving ~„any increase of
X, and decrease of X, will reduce the energy de-
pendence of ImB, . This situation is so much
clearer once account is taken of the very weak
energy dependence of the nuclear matrix elements.
The pion form factor modification is of a similar
magnitude as in the case of constant coupling pa-

rameters.
It is clear, however, that the introduction of

energy dependence into the coupling parameters
destroys the invariance of the Hamiltonian (5),
thus introducing the problem of the transformation
of the energy variable between the pion-nucleon
and pion-nucleus center-of-mass systems. In
particular that transformation when applied to
P-wave rescattering mechanisms not considered
here could lead to additional contributions to
Im Bp.

e finally note that our result that the energy
dependence of the optical potential parameter
ImBp is explicitly related to the pion-nucleon
rescattering vertex and not to the structure of
the nuclear matrix elements gives a nice justi-
fication for the method in which the energy de-
pendence was estimated on the basis of the S-
wave pion-nucleon phase shifts in the phenome-
nological model for the pion-nucleus optical po-
tentials in Ref. 5.
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