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An approximation is presented for the projectile-bound nucleon scattering amplitude in terms of a “quasi-
free” amplitude that minimizes corrections. This optimal choice permits factorization of the impulse term into
a free on-shell amplitude and a form factor. The first nonvanishing correction terms are estimated.
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I. INTRODUCTION

The major ingredient in a multiple scattering

theory of projectile nucleus scattering is the pro-

jectile-nucleon ¢ matrix for scattering from a
bound nucleon.! In impulse approximation this is
represented as an integral over the free, but off-
shell projectile-nucleon amplitude.? There are
other schemes for expressing the bound amplitude
in terms of the free one.® In this paper we develop
the “optimal” prescription for doing this, that is,
we find an approximation for the bound scattering
amplitude such that the first order correction
terms vanish. Our approximate amplitude is kin-
ematically, but not dynamically a free projectile
nucleon amplitude. Nevertheless, when used in
on-shell projectile bound state scattering, it re-
duces to the usual on-shell, free amplitude (in

the Breit frame) and factors out of the impulse ap-
proximation integral. Such factorized forms have
been used before,* but we believe ours is the first
derivation of them and the first demonstration that
they are the first terms in a systematic expansion
designed to minimize corrections.

Since our derivation is systematic we can esti-
mate correction terms and find the parameter that
controls the validity of the approximation. That
parameter turns out to be the ratio of internal nu-
cleon (virtual) velocity to projectile velocity so
long as the elementary { matrix does not vary ‘rap-
idly with energy. This is reasonable since we
would expect to be able to factor projectile and nu-
cleon motion so long as the first is fast and the
interaction time short. (The interaction time is
related to the energy derivative of the elementary
t matrix.!

In Sec. II we derive our major results and in Sec.

III discuss the correction terms. Generalization
of our result to nonlocal interactions is treated in
the Appendix.

II. DERIVATION

The first step in a theory of projectile-nucleus
scattering, considered as a multiple scattering
problem, is to construct the ¢ matrix for the scat-
tering of the projectile from one nucleon bound in
the field of the others. That ¢ matrix 7 satisfies

T,=V,;+ V,GT,, (1)

where V, is the potential between the projectile
and nucleon i and G is the full Green’s function

G'=E-H-K,, (2)

where E is the total energy, H the full target Ham-
iltonian, and K, the projectile kinetic energy.
Solving (1) is equivalent to solving the nuclear
many body problem; hence, for practical applica-
tions we seek an approximation to 7,, A common
approximation is to replace 7, by ¢, a f matrix cal-
culated with a Green’s function that does not in-
volve the full nuclear Hamiltonian. For elastic
scattering from the target bound state we will
show (within the context of a few simplifying as-
sumptions) how best to choose the Green’s function
defining ¢, that is, what choice makes the first
correction to 7, — ¢, vanish. As a bonus we will
find that for our choice the projectile-nucleus am-
plitude factors into an elementary on-shell projec-
tile-nucleon amplitude and a form factor, that is,
there is no integral over target nucleon wave func-
tions to be done. Since our derivation is in terms
of the scattering integral equations, we can easily
display the higher order nonvanishing correction
terms as well as estimate the parameters (or pa-
rameter) that must be small to justify their neg-
lect.

Rather than carry out our argument for the gen-
eral case—with all the corresponding notational
confusion—we will present it for a very simple
model and state the generalizations to more real-
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istic examples afterwards.

Consider the scattering of a projectile of mass
u from a single nucleon of mass m bound to an
infinitely massive core. We take both the nucleon-
projectile potential V and the nucleon-core poten-
tial ¥ to be local and assume as in 7 of Eq. (1) that
there is no projectile core interaction. We wish
to find an approximation to the 7 matrix of Eq. (1)
(now without the index i) of the form

t,= V+ VG,t, (3)

a“a?’

where G, is a Green’s function to be chosen so that
Eq. (3) is more easily ‘solved than Eq. (1), but ¢,

is a good approximation to 7. Given (1) and (3) we
can write

T=t,+1(G~-G)T (4)
=14+ (G =Gt + (G =Gt (G =G, )t +*** (5)

and
G -G,=G,hG (6)
= GG+ GGG, +* * (7

where
h=G,* ~G™. | (8)

Putting (7) into (5) we see that the ¢ matrix 7 can
be expressed as a double power series, the first
two terms of which are

T=t,+ 1, GhG t,+ =t + Dt +°0 . (9)

We wish to choose G, so that for on-shell elastic
scattering from a target bound state, the second
term on the right-hand side of Eq. (9) vanishes.

A natural choice for the Green’s function G,
would seem to be G,, the free projectile-nucleon
propagator. With that choice (3) becomes the
)

P, p, (Gt -GN IP,p) (B,IF1P)

-~ R -
P_p ———— ey
v T
= -
p p’

FIG. 1. Graph for the scattering of projectile (dashed
line) on the nucleon (solid line) bound by an infinitely
heavy core.

elementary projectile-nucleon ¢ matrix off and
on shell. Unfortunately, that choice does not make
the correction Af, of Eq. (9) vanish. We still wish
to retain some features of the free Green’s func-
tion G, and, therefore, choose G, so that it is
diagonal in the projectile (§) and nucleon (P -p)
momenta, and so as not to depend on the total pro-
jectile-nucleon momentum P (Fig. 1). We write
63(5_ p"/)és(-_'p’ _:‘5/)

€ - p2/2“ ’
where € is to be determined so that A¢, is zero.
The quantity € may depend on the projectile mo-
mentum [ and on external parameters, but it does
not depend on the total projectile-nucleon momen-
tum P. With this form for the propagator G,, and
with a local potential for the nucleon-projectile
interaction V (so that in momentum space V is a
function only of §~’), the scattering matrix ¢,
will conserve total momentum and be independent
of P so we can write

(3, P |t,|p, By= (p'|7|pyo%P -P). (11)

Let us now consider the matrix element of A¢ de-
fined in Eq. (9) for elastic projectile nucleus scat-
tering from projectile momentum p to p’ with the
nucleus in the bound state y,. Using Egs. (10) and
(11) this becomes

(8, P|G,|p", B")=

(10)

V(P —P)d®p,d®p,d°Pd°P"

<§"¢0[Ata|5,zpo)=fq;g('ﬁr_i)’,)<p Itlp,

~

€ -p%/2p

€ "pzz/zU'
(12)

where the index on € reminds us that €; may depend on p,. In Eq. (12), zpo(E) is the momentum space wave
function of the bound nucleon with binding energy B. It satisfies Hy,= —By,, which reads in momentum

space

B2 . P -
)+ [ HE - )a% = By,

(13)

where we have used explicitly the fact that the nucleon potential V is local. For the matrix element of z in

Eq. (12) we have

- - ' - . - N 2
<Pl’p1'(Ga-1 ‘G~1)|P7pz>= 63(1’1 ‘pz)[ (51 —-1-)L -E+

2u

2m

TR L) oB B0+ 75 -] (14)

When we substitute (14) in (12) we can use the Schridinger equation (13) to do the P integration on the V
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term’and the 6%P -P’) to do it in the remaining term to give finally

-, N B <p I£18,) (Br-8): B -5 (5,IF] ,
(B, ol a1, 5,90 = W -5 ol R R A T e e ey z/pzit ¥ -,
(15)

Now introduce the variables
=3(p+p"), d=p-p', (16)

with K- q 0 by energy conservation. If we further use the definite parity of ¥,, which implies that
(A)zpo(B) vE —A)z/;o( —B), Eq. (15) can be transformed into

- - =, =y ('IF] 2 (R-p)?] (0, 171D) 4 (30 =
5, ol ot 5, 09= [ w3 ) (BB 2. [¢ 5B -L.! 0V B g5 5yppay,,

€ -p1%/ 21 2m - D"/ 2m
(17)
which vanishes if we chooée
2 - - 2 - - 2 :
_ g (K-p)? p* ¢* (K-p)
=E+B+ 8m Zm Zu *8m T 2m (18)

where in this last step we put E=%%/2u - B the on-shell projectile nucleus scattering energy. Equation
(18) gives the special form € should have in the propagator G, of Eq. (10) in order that the scattering op-
erator 7, of Eq. (3) be defined so that the elastic scattering matrlx element of A¢, vanish. The propagator
G, of Eq (10) with € defined by Eq. (18) is certainly an unfamiliar propagator. It is not invariant in the
usual sense because it mcludes external momenta, but it is a perfectly allowable propagator, and the
scattering operator ¢, (or t) calculated with it satisfies all the conditions we have placed upon it along the
way.

Let us now see the consequence of using our scattering operator £, as an approximation for the ¢ matrix
7. We have for the contribution to elastic scattering for the 7~¢, term

~

(B, %ol 1,5, ¥ = [ @PEPus(B - 51%B - B3| [5)wo(B -5)

—(|715) [ WP -p0(B -F)aP= (5 |7 |D)SF -5, | (19)

where So(q) is the ground state form factor for momentum q As promised, the amplitude factors and
that comes about from the fact that 7 is mdependent of the total projectile-nucleon momentum B

Let us now look at the equation satisfied by (p It |p) with the definition of € given by Eq. (18). We will
use the variables defined in Eq. (16)

- - Al > - V(K'&/2_5)<5‘21§+€/2>
-q/2 2)= - = = . "1 hy Py 20
® -a/2[F[K+a/2)=V(-q)+ f(K—q/2)2/2#+q2/8m SR - 2m —pam .

The matrix element (K —q/2|#|K+q/2) is just the at the effective energy
on-shell elementary projectile-nucleon scattering 2 g2 K2
amplitude expressed in the Breit frame, , from E°ti= 42’2— B " m i)
projectile momentum K+ q/ 2to K - q/ 2 and nucleon poom m+ i
momentum -q/2 to /2. with q and K defined in Eq. (186).
In terms of a more familiar invariant ¢ matrix It is instructive to compare this prescription
we can write with recent work that shows how to write the pro-

-, - A B T _ T T jectile-nucleus amplitude in terms of an on-shell
®’, ‘Il"l tf'lp’ ¥o)= (B, p’ 1K, b - nK)S,@) , amplitude in the case of peripheral scattering.®
(21) Using p?= K2+ ¢q?/4 we can rewrite the effective en-

> SR in Eq. (21) a
where {E*,p’ —7K,p -7K) is the on-shell invari- ergy in Eq. (21) as

ant projectile -nucleoP t r_r.latriic for _.scattering from Eett= ﬁ_ - P2 42 + q°
relative momentum p —7K to p’ —nK, [n=p/(m+ u)] 20 " 2Am+m) 8m 8m+ w) -
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The leading peripheral contribution comes from
the longest range part of the form factor So(éf) in
Eq. (19). As is shown in Ref. 5 the leading term
is obtained by evaluating all terms other than Sy(q)
at the value of ¢® corresponding to the largest
range singularity of Sy(q). If the bound state wave
function falls asymptotically like e *" so that the
binding energy is B= o/ 2m, Sy(q) is singular at
g*= —40a? [the factor 4 comes from the fact that
So(i ) involves the square of the wave function].
Using this value for ¢® in E®!! gives the same re-
sult as Ref. 5 for the peripheral region treated in
the closure approximation.

It is easy to see that our result may be extended
to m-nucleus scattering using the customary, ad
hoc, relativistic kinetic energy terms for the pion.

The extension of our method to the case of finite
nucleus mass (M) is straightforward. The deriva-
tion is simplest in the Breit projectile-nucleus
frame. It requires-only replacing the nucleon mo-
mentum in the nucleon wave function by the rela-
tive nucleon-core momenta and the nucleon mass
m in the Schrddinger equation (13) by the reduced
nucleon-core mass. This changes our result (21)
only by replacing S,(q) with S{q (M —m)/M). The
¢ matrix in Eq. (21) now corresponds to on-shell
scattering when the struck nucleon has all the mo-
mentum of the nucleus and the core remains at
rest. :

Formally, the first correction term will also
vanish for a many-body system so long as the nu-

—J

cleon-nucleon interactions in the target are local,
but expansion in that interaction is presumably
not valid. If instead we use an optical potential
for the bound nucleon dynamics, there will be con-
tributions to the first correction term from the
energy dependence of the optical potential even if
it is local. These corrections will be small if the
energy dependence is weak. Correction terms to
At coming from multiple scattering on different
nucleons are part of the problem of how one goes
from Eq. (1) to the full projectile-nucleus ¢ ma-
trix. Nonlocal projectile-nucleons potentials are
treated in the Appendix.

III. CORRECTION TERMS

In this section we estimate the correction terms
to 7 —¢, with our “optimal” choice of ¢,. In par-
ticular,. by examining the first nonvanishing order
we attempt to isolate the dimensionless param-
eters that control the expansion. (We are aware of
the fact that a study of the “next” order is not a
proof of convergence, but we hope it will shed
some light on the physics of the expansion.)

Consider the double power series for the # ma-
trix 7 of Egs. (5)-(9). Since the propagator G, is
diagonal in the projectile and nucleon momenta
and does not depend on the total projectile-nucleon
momenta (10), and since the nucleon-core poten-
tial ¥ is local, G, and » commute. Hence, the ex-
pansion (9) can be written

T=t,[L4+(G+ G2h%+ *  * )Gt + (G h+ G2HP+ * )Gt (Gl + G 2R 2+ )Gyty+ 0 ] . (22)

We have chosen G, so that for scattering from a nuclear bound state, the contribution of the first correc-
tion Eq. (22) (~G ) is zero. The first nonvanishing term [~(Gh)?] is

(5"1I0 l AZta I 5’ \I‘O) = <pI! q’O | tah'zGaata + tahGaztahGazta l p, \Il0>

= [ W@ -5 17 |5Be, B |15, B, B 115, 5B, 6.2 5.5, | 7|5

+(p’| T 9y )(py, B’ | 2| By, PPy | G2| BBy | T | B

X (Day B” | 1| B, D) 55| G2 D05 | F |90 ] ¥o(B = P)d®p,d®p,d* P d®P'd°P . (23)

Since G, and f do not depend on the total projectile-nucleon momentum ﬁ, the intégration over the P’s can
be done first. Using Eqgs. (13) and (14) and applying one operator % to |y,) and one to (|, we find after

some algebra

[ @ 505, 115, B, B [ B, 5o -Daprarpaps [45(3-1)w,(34E)

where the momentum ff is defined in Eq. (16).

y [-Q.(i).l —5);!”[?(52 ‘S,)] a&Q, (24)
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Using Eqgs. (10), (18), and (21) we find for (23) (writing A,f,= A%, + AZ¢,)

->

- . . &k
(' Wol 83,15, W)= [ KB KR s

2/2“')3 t(Eeft’ kl’ kl)

« [us(a-

and

) ( é’\[é-(ﬁ,-i)][ii-(li -k')]

5 a‘Q (25)

) <ﬁ',wo|Agt]5,wo>=ft(Eeufi:Ex)_eﬂl—“:‘ ’ 1’ )_—‘“‘@i‘——_
(E°t —k,%/2)? (E°tt —k,2/21)2
X { E*t1, K, K') fwo* <Q' -%)wo(§+%> @& 'Ez,iz[é'(ﬁz =K)] a’Q, (26)
where
K=p-nK, K=p'-nK, E*M=k¥2L=Fk%/2L, GL=mu/(m+y).

These exact expressions for the first nonvanish-
ing correction to 7~ £, do not explicitly contain the
nucleon potential V but rather require only the
off-shell behavior of our amplitude 7, and know-
ledge of the wave function ¢,. It is not possible to
go beyond Eqs. (25) and (26) without some input,
but rather than make detailed assumptions we will
estimate the order of magnitude of these terms to
extract the expansion parameters. First, we study
the part that depends on the bound state wave func-
tions. We have integrals of the form

A= [ u(3-2)0,(3+) 2% g

S,(a)8,
=__¢2§;1n)2 , (27)

where we have used the symmetry of the wave
functions to obtain the §;; and introduced the quan-

Alt, 1 - >
—= S— Eett k
t(Eeff k k,)s( ) t(Eet‘,k,kl) ft( ’ ’k'],)

> >

n
zta

A f
-~ > > - t(Eeff’ k ) ——
HE®,k,k")S(q) HE®! K, K’ & (R%/ 20 —k2/2)?

X { K, K')(K, —K)- (K, -

-
tity

(@)= [ 1@ -a/29,@+ T/ De°Pq.  (29)

SAq) is a second moment of the form factor So(@),
and we can estimate it as

540) = (@%)S,a), (29)

which is exact for harmonic oscillator wave func-
tions. The form (29) is useful since it expresses
the correction in terms of SO((I ), and it is then
easy to compare with the leading term, given in
Eq. (21). Inthis comparison, the quantity that
enters is

SAq) (Q2> P
SmeS(q) 3mt N 50
where V is the rms velocity of the bound nucleon.
Inserting Eq. (25) and (26) and dividing by the lead-
ing term given in Eq. (21), we obtain

P ett v Rk — ). (i = Sy(d)
(k2/2E _klz /2‘7)3 t(E ,knk )(k'l k) (k1 -k ) 3m230(q) ’
: (31)
d*ky - - dky
Eeft k
t( ’kl.z 2)(k2/2ﬁ _kzz/z'ﬁ)z
S,@)
B s, 2

The integrals remaining in Egs. (31) and (32) depend only on the projectile-nucleon parameters and are
more difficult to estimate. In the evaluation of the integral (31) the following identity is useful®:

dt(E,k, k') ([ #E,k,K"){E,K" K’

3 n
dE - (E -R"2/2)? k"

We can write (using 27) after some algebra

Aéta ~ Sz(q)
UE", K, K')Sy(q)

N _(K d . o,
e 2% 1)dE n[4E, 7]

(33)

(34)

b
E=getf=p2/2ii=x %/ 25
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where K = %(k’+ E’) and b is a numerical factor that
enters from angular integration. For backward
scattering (K=0) Eq. (34) is exact. For nonback-
ward scattering (34) gives the order of magnitude
of the correction. The derivative in Eq. (34) can
be expressed in terms of the scattering time delay
T T,=(1/t)(dt/dE)] (Ref. 1), and using Eq. (30)
we can estimate the magnitude of correction

Agt,

—_—2 >V FuT,. 35
(E R ks #9

The derivative of ¢ is a dynamical quantity. If ¢
is relatively slowly varying we can approximate
T, as 1/E. In that case we get

aflt, VA u/k)? - -
eff -—2-— - = Nezf(iu-u ?.I ft(Ee’t’k’k1)
HE®,k,K)S(q) 4E*,Kk,k)

where C, is a factor (or order one) coming from
angular integrations. If the ¢ matrices in (37) are
slowly varying, we may use

17 f tGotd%k, ~ 1

based on the optical theorem and again get (35) as
our estimate. If the ¢ matrix is not slowly vary-
ing, again the approximation may fail.

The higher order corrections can be found in
the same way as Eqs. (25) and (26). The third or-
der correction depends explicitly on the second
derivative of the nucleon potential V in the coor-
dinate representation. Assuming that the nuclear
potential is not a strongly varying function, we
can hope that our expansion parameter controls
the higher order terms as well.
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APPENDIX

We consider now the case of a nonlocal separ-
able S-wave projectile-nucleon potential. Galilean
invariance implies that it depends only on the rel-

ek, - - ke
Eet! _k12 /ZH

adt, 4%
—_—t o A 36
l(E“’, k, k')So(q) ng ( )

which is the satisfying result that the approxima-
tion parameter is the relative nucleon to projec-
tile velocity. It enters in the square since the
first order term has been made to vanish. It is
precisely when this parameter is small that the
factorization should be possible. Howéver, this
depends on the derivative of ¢ being small. If it
is large, as it will be near a resonance, that im-
plies a large time delay 7,, and the parameter of
expansion (35) may be large. In that case we can
no longer use our approximation (21) for the 7
matrix.

The second term (32) is even more difficult to
estimate. After some algebra it can be written

{E*, Kk, k,) — {E°!,k,,kK')C,, (37)

Eetf _ k22/2p.

I
ative projectile-nucleon momenta

V(p-1P,p’ —1P")= %P ~Pg(p -nP)g(p’ -nP"),
(A1)

where X is the strength of the interaction.

The potential now depends e:gplicitly on the total
projectile nucleon momentum P, which in turn
means that the scattering operator f defined by
Eq. (11) depends on this momentum P. Equation
(3) becomes

(p|E(®)|p"y=2g(p -1B)g(p’ —nP)

dspu
€ _pIIZ/ZlJ'
x (p"|E(B)|p). (A2)

Using for € the expression (18) found in the case
of a local projectile-nucleon potential, we have

irg(@ 1) [ 2@ 1)

Pt K2 & (p-nK)?
T T Hmem e w0 A
The solution of Eq. (A2) then reads
(p|2(P)|p"
N g (B —1P)g (" —nP)
2 -b,' _ -
1-x [a®p” £Xp” ~1P) -
P_K g (@ kP
2u " 2km+ ) 8m - 2
(A4)

If we now introduce this matrix element in Eq.
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(12), we note that the matrix element of A¢, is not
zero because of the Explicit dependence of the
scattering operator ¢ on the total projectile nu-
cleon momentum P. However, the nucleon wave
function g, has a small extension in momentum
space (of the order of k., where k. is Fermi mo-
mentum) we may hence assume that the differ-
ence AP= P -K is small and of the same order.
The projectile nucleon form factor depends on the
relative momentum p nP p nK nAP and we
suppose that in this form factor we can neglect
the dependence on n]API ~(u/m)kp. This is

equivalent to assuming that the range of the pro-

jectile nucleon interaction is very small com-

pared to (m/u)k;™. In Eq. (A4) we therefore sim-
ly replace in the form factors g the momentum

P by K. Inthat case all the results derived in the

main text hold.

These results can easily be extended to the case
of a superposition of separable potentials. One
can also easily calculate corrections due to the
range of the projectile-nucleon mterachon (i.e.,
due to neglecting the dependence on nAP in the
form factor g).
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