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Validity and accuracy of separable potentials in three-body calculations
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The three-body problem is reconsidered using separable potentials for the two-body interactions. Using the
separable approximation, the Faddeev equations reduce to coupled integral equations in one continuous
variable. The separable two-body interactions used are taken as consisting of two parts to include both
attraction and repulsion. Each part of the potential is a spin-dependent central force together with tensor
forces. Numerical calculations for the resulting integral equations are carried out to calculate the binding
energies of the nuclei 'H, 'He, Li, 'Be, and "C, using separable potentials of the Yamaguchi, Tabakin,
Mongan, and Reid forms, The present calculations show the validity of the separable approximation and that
the separable potentials extract accurate binding energies,

NUCLEAB STBUCTUBE H, 3He, Li, ~ae, C; three-body model. Calculated
binding energiea.

I. INTRODUCTION

The three-body problem has been proved to be
one of the most interesting in the study of the nu-
clear static properties of nuclei. The different
approaches used in solving the three-body problem
lead to a well-behaved set of three-body integral
equations. Faddeev" and Love lace' for mulations
are one of the successful approaches to solving
the three-body problem. Faddeev' successfully in-
troduced an exact solution for the three-body prob-
lem. In this solution, Faddeev has shown that a
mell-behaved set of three-body equations involves
the two-body T matrix rather than the potential.
So, the Faddeev equations" remain a well-defined
system whatever the potential form is.

Separable potentials are found jo be very useful
in studying the three-nucleon system because they
entail great simplicity in the analysis of the three-
body problem. These potentials have. been widely
used in calculating the three-nucleon binding ener-
gy, rdius, Coulomb energy, form factor, and
also the neutron-deuteron scattering cross section.
This simplicity appears by using separable poten-
tials which reduce the Faddeev equations to a set
of coupled, one-dimensional integral equations.
Thus the Faddeev equations are reduced to a set
of coupled integral equations in one continuous
variable by using nonlocal separable potentials.
While, in the case of using local potentials, the
Faddeev equations are reduced to equations in two
continuous variables.

We study in the present work the nuclei 'H, 'He,
Li, . 'Be, and '2C. e use the e-particle model

by taking the n cluster as a single entity since it

is tightly bound without internal structure. Thus
each of these nuclei is taken as a bound state of
three particles. This brought out the more inter-
esting problem of studying each one of these nuclei
as a three-body problem. The two-body interac-
tions used in the present work include both attrac-
tion arid repulsion potentials. Each of the attrac-
tion and repulsion potentials consists of spin-
dependent central forces together with tensor
forces. The spin-orbit terms are small and are
taken in such a way that they fit the corresponding
phase shifts. For the nucleon-n interaction, we
used a suitable separable form, which was intro-
duced by Mitra et al. and applied by Osman' ' in
extracting the binding energies of light nuclei.
For the o.-n interactions, we use separable po-
tentials, which are obtained by fitting the o, -o.
scattering length and effective range. In the pres-
ent work, we use five different forms for the dif-
ferent parts of the two-body interactions. The
different forms for the potential functions are the
Yamaguchi, ' the Gaussian, the Tabakin, " the
Mongan, "'"and the acid'3 potentials. Further-
more, the Coulomb forces in the cases of proton-
+ and a-n interactions are taken into account. '4 "
The effects of both the Coulomb forces and the
tensor forces should be included. We follow, in
the present work, the Faddeev and Lovelace for-
mulations. Direct numerical calculations are per-
formed for the resulting integral equations. The
validity of introducing a separable approximation
in the Faddeev equation is studied. Also, by using
separable two-body interactions in the resulting
integral equations, the binding energies of the
finite nuclei are calculated. The ability of the
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separable potentials to reproduce the binding en-
ergy values of finite nuclei is tested. Comparing
our results obtained for the binding energies with
the previous calculations, we investigate the accu-
racy of using separable potentials in the three-
body calculations.

In Sec. II, we introduce the Faddeev equations
together with the separable approximation. Nu-
merical calculations and results are given in Sec.

III. Section IV is left for discussion and conclu-
sions.

II. FADDEEV. EQUATIONS AND SEPARABLE
APPROXIMATION

Faddeev" has successfully represented in a
matrix form the three-particle system by his
equations

0

T„(ZI'
TT2(Z)

T„(Z) T„(Z)) (T "(Z)i
0 T„(Z) G,(Z) T@)(z)

T (Z) 0 ') (T"(Z))

where

G,(Z) = (H, —Z)-',

Taz(Z) = V„—V2zGo(Z)T2z(Z),

and the total T matrix T(Z) is given by

T (Z) = T"'(Z) +T"'(Z) + T"'(Z),

with

T(')( Z) = V„V„G,(Z)T—(Z), (5)

where

f(p) =&pl v;, Ic &=-(~+p')&pIc &

D(Z) =-+4m dk
0

, At a point for which the energy Z= -e, satisfying

(lO)

and where U;, is the two-body interaction between
the particles i and j. Also, the Faddeev equations
can be interpreted diagrammatically. '

Since the Faddeev equations do not include the
potentials, then the solutions we are interested in
are the off-energy-shell. In the vicinity of the
bound-state pole, the T matrix factorizes in the
initial and final momenta and it becomes just the
same as that calculated from a separable poten-
tial. Thus if the separable potentials are chosen
such that they give the correct two-particle wave
functions, then the separable potentials correctly
give the three-body system properties.

Let us start by using the separable two-body po-
tential introduced by Yamaguchi. ' This separable
potential could be represented in a form

V;, = ~f(P)f(q).

The potential U;; should be strong enough to give
a bound state. The potential strength X and the
form factor f(P) are chosen such that the corre-
sponding Schrodinger equation gives a bound state
at energy eigenvalue -e and a bound-state eigen-
function

I
c &.

'

Then the off-shell T matrix can easily be written
in a closed form as

the separable potential will have a bound state.
The T matrices given by Eqs. (1)-(5) could be

expressed by T;, , where i and j are taken as 1, 2,
and 3 in cyclic permutation. Then using the same
notations as introduced by Lovelace we can write
for the T matrix

(P)., qz I T;, (Z) I pg'„(h, &

=()(q~-ql)(p~ IT;,(z-v&')IR&. (ll)

From this equation, we see that if T,;(Z) has a
bound-state pole at Z = -e„ the T;,(Z) will have a
branch point there, with a cut going from -c& to
+~. This is the right-hand cut. We follow the
Faddeev formalism in the present case because
the square of the kernel in the Faddeev equations
is compact. For Z on the right-hand cuts, Fad-
deev' has shown that the fifth power of the kernel
is compact.

The two-body interactions used in the present
work contain both attraction and repulsion. The
interactions are represented as a short-range re-
pulsive potential surrounded by a long-range at-
tr active potential. The two-body interactions used
in the present work have potential functions of the
Yamaguchi, Gaussian, Tabakin, Mongan, and Reid
forms. The explicit forms of these interactions
are represented in Refs. 8-13. These representa-
tions for the two-body interactions have been used
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by us in some calculations for light nuclei, which
are introduced with the different parameters in
Refs. 5-7. The two-body intera, ctions used con-
sist of both repulsive and attractive forces. Each
part of these forces is a. separable potential. The
T matrix for a separable two-body interaction with
repulsive potential is treated by us" using a sepa-
rable approxi. mation.

Thus, using separable two-body interactions, we
get the separable expansion for the T matrix. In-
troducing these separable approximations into the
Faddeev equations, we get coupled integral equa-
tions in one continuous variable. The resulting
integral equations from the Faddeev equations are
given in detail by us. ' Keeping the sum in the sep-
arable expansion as a finite number of terms and
owing to the fact tha. t the wave functions a,re square
integrable, these equations are ordinary Fredholm
equations. Qnce the equation is of the ordinary
Fredholm type, it can be solved by numerica, l
methods. This is done when one can find the ener-
gy Z for which the eigenvalue of the kernel is uni-
ty. This means that the homogeneous equation
possesses a, solution. This value of the energy
would then correspond to a bound state of the
three -body system.

III. NUMERICAL CALCULATIONS AND RESULTS

The three-body binding energies are obtained by
a numerical solution of the resulting three-body
integral equations. In the present work, we use
separable two-body intera, ctions with separable
approximation for the T matrices. We use two-
body interactions with potential functions of the
Yamaguchi, Gaussian, Tabakin, Mongan, and also
of the Reid forms. The different values of the pa-
rameters of the different two-body interactions
are taken to fit the corresponding phase shifts.
The values of the parameters obtained for the dif-
ferent two-body interactions, which fit the corre-
sponding phase shifts, are given in Refs. 5-7, 15,
a.nd 16. The phase shifts to which they were fitted
are taken from Refs. 18-20. Each of the hbove-
mentioned two-body interactions ha.s two terms,
which stand for attractive and repulsive potentials,
each of which also includes tensor forces. With
the above-mentioned potentials, the three-body
ground-state energies are calculated with very
high accuracy, using only a very limited number
of summation terms. The well-behaved Schmidt-
Hilbert" theory of integral equations is applied in
the present calculations due to the features of the
potential used. A 36-point Gaussian integration is
used in the present numerical calculations of the
three-body integral equations. To convert the in-
tegral equation into a matrix eigenva, lue equation,

appropriate weights and abscissas are chosen for
the rapid convergence at infinity. The eigenvalues
are given a.s a function of the energy Z. The val-
ues of the energy Z for which a matrix eigenvalue
takes the value one are the three-body bound-state
ener gies.

The Faddeev-Lovelace formalism is used in the
present work for calculating the binding energies
of the nuclei H, 'He, 'Li, 'Be, and "C. The
structure of these nuclei is described using the
n -cluster model. The 'H nucleus is taken as a
bound state of a proton and two neutrons. The 'He
nucleus is composed of two protons and a neutron.
The 'Li nucleus is considered as composed of an
n particle, a proton, and a neutron. The 'Be nu-
cleus is taken as composed of two n particles and
a neutron. The "C nucleus is considered as com-
posed of three bound ~ particles. The above-men-
tioned method is used in numeriea, l calculations
for the nuclear binding energies for these nuclei.
In these calculations, we get only the nuclear
ground-state energies. Coulomb energies result-
ing from Coulomb repulsion should be added to the
ca.lculated nuclear energies. The actual three-
body ground-state energies are obtained by adding
the corrections due to the Coulomb energies to our
theoretically calcula, ted values. The results ob-
tained for the three-body binding energies for the
nuclei 'H, 'He, 'Li, 'Be, and "C, using the dif-
ferent two-body interactions are listed in Table I.
The experimental values" ~ are introduced in
Table I for the purpose of comparison with the
theor etically calculated va, lues. From Table I we
see that our theoretically calculated values for the
ground-state energies for the 'H, 'He, 'Li, 'Be,
and "C nuclei are quite reasonable and in good
agreement with the experimentally observed val-
ues.

IV. DISCUSSION AND CONCL'USIONS

The separable potentials used in the present
ca.lculations contain both attraction and repulsion.
With these separable potentials, the separable ex-
pansion obtained for the T matrix converges rap-
idly. This property is a genera. 1 characteristic of
separable potentials. The inclusion of the attrac-
tion and repulsion in the separable two-body in-
teractions reduces the number of separable terms
needed to reproduce the two-body data, and this in
turn simplifies considerably the three-body calcu-
la.tions.

The o. -cluster model is suggested here for the
nuclei 'Li, 'Be, and "C. According to this model
the n particles are taken as rigid entities. " The
size effect of the n particle is already included
with the potentials considered here, since the re-
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TABLE I. Calculated binding energies in Me V.

Nucleus Yam aguchi Gaussian Tabakin Mong an acid Exper imental

H
3He

'ae
12C

8.615
8.194
5.614
1.798
7.416

8.189
7.618
4.989
1.419
6.329

8.563
8.089
4.824
1.674
7.388

8.446
7.816
4.587
1.583
7.299

8.512
7.972
4.683
1.625
7.316

8.48
7.72
4.53
1.57
7.28

pulsive parts of the potentials originate from the
exclusion principle operating between two com-
posite particles. We have solved numerically the
integral equations resulting from the Faddeev
equations using the separable two-body interac-
tions of potential functions of the Yamaguchi,
Gaussia, n, Tabakin, Mongan, and Reid forms. In
the case of nonseparable potentials for the Reid
form, the N-N interaction is taken just of the Reid
form. It is taken as two terms, one attractive and
one repulsive.

In the present calculations we are concerned
with the three-body nuclear binding energies of the
nuclei H, He, Li, Be, and ' C. The Coulomb
energies are roughly estimated and their approxi-
mate values are added to the nuclear values ob-
tained, expressing the ground-state energies
which are introduced in Table I and are not far
from the observed experimental values. However,
ihe Coulomb forces could be treated accurately by
treating the pure Coulomb T matrix in the integral
equation. Explicit treatment of the pure Coulomb
T matrix is found' to improve more accurate val-
ues for the binding energies.

One of the more important physical observables
of the nuclei, i.e., the binding energies, -is de-
duced in the present calculations from the theory
which employs the two-body data only. Thus the
three-body model structure presented here pro-
vides a good description of the composition of the
nuclei 'H, 'He, 'Li, 'Be, and "C. Thus the pres-
ent calculations lead to a consistent picture of
these nuclei. The Faddeev equations iA the pres-
ent calculations are solved with two-body T ma-
trix. Thus the method of the present calculations
is also one of the useful methods for solving the
three-body problem. Table I shows that our theo-
retically calculated values for the binding energies
are in good agreement with the experimentally ob-
served values.

Thus from the agreement between the present
theoretical calculations for the binding ener gies
and the experimental values we can draw some
interesting conclusions. The two-body T matrix
in the three-body Faddeev equations plays the role
which a potential has in the two-body Lippmann-
Schwinger equation. In the present calculations
the kernel of the three-particle equations resulting
from the Faddeev equations depends upon the T
matrix and not on the potentials. Thus choosing
separable potentials which correctly give the two-
particle data, we could obtain the properties of the
three-particle system using separable potentials.
As long as each of the two-particle subsystems is
dominated by a limited number of bound states,
then the Faddeev kernel will surely converge to
the correct three-particle amplitude as the number
of separable terms is increased.

Previous authors" '2 have verified the accuracy
of separable approximations in reproducing the
properties of nonseparable (e.g. , local) interac-
tions, which is also true of the potentials in the
present work. This payer has also demonstrated
that the empirical binding energies of several light
nuclei can be satisfactorily predicted by using sep-
arable potentials in the Faddeev equations for
three-body models of these nuclei.
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