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Variational description of the nuclear free energy
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By means of a variational calculation, we place an upper bound on the finite-temperature free energy for
nuclear systems which can be described by pseudospin Hamiltonians. The trial states are irreducible

permutation invariant Gibbs states. The best trial state is the one which minimizes the free energy operator.
We compare the upper bound with the numerically computed free energy for the Meshkov-61ick-Lipkin
Hamiltonian for various values of nucleon number Pf and nuclear interaction strength V. For large X
and/or P(= 1/ kT) the best trial Gibbs state becomes a good approximation to the actual density operator.
Somewhat surprisingly, the variational approach reveals the presence of a second order thermodynamic phase
transition much more clearly than the numerical computation does, even though the former is only an

approximation to the latter.

NUCLEAR STRUCTURE Finite-temperature free energy, pseudospin Hamil-
tonian, variational description and phase transitions, atomic coherent states.

I. INTRODUCTION

The study of finite-temperature nuclear physics
has recently generated a great deal of interest. '
The appearance of heavy-ion collision data' has
been a major factor encouraging such investiga-
tions. In this work, we study primarily the be-
havior of nuclear matter at finite temperatures
by studying the behavior of the associated nuclear
free energy. The nuclear free energy can be
estimated accurately for a large class of nuclear
systems describable by pseudospin Hamilto-
nians. ' '

This class of Hamiltonians consists of all sym-
metrized Hermitian polynomials in the pseudospin
operators. A general Hamiltonian $C in the class
studied has the form'

f,=X/X= P g A'„P'„(Z/V).
L= 1 4= -L

Here N is the number of nucleons present, the
nuclear interaction parameters A.L~ have order of
magnitude unity and are independent of Ã, the
'JJ„are irreducible spherical tensor operators,
and the homogeneous form of fC/N is required by
thermodynamic considerations, in particular,
by the requirement that a thermodynamic limit
exists." The study of the general pseudospin
Hamiltonian (1.1) is facilitated by introducing the
atomic coherent state representation. '

Upper and lower bounds on the ground state en-
ergy E, were constructed' for the general Hamil-
tonian (1.1) using the atomic coherent state Q and

P representations. These bounds differ by a
number of order in'. Bounds on the finite-tem-

perature free energy p(p) (p =1/k~T) were also
constructed'; these bounds also differ by a num-
ber of order in+, . As a result, in the nuclear
matter limit (Ã- ~), these bounds (divided by N)
converge to exact expressions for the ground state
energy per nucleon and the free energy per nu-
cleon.

In the case of finite N the upper and lower bounds
on the ground state energy were compared with
the exact ground state energy eigenvalue for the
pseudospin Hamiltonian (1.1) with A, ' = e, A', =A',
= p/2, , A~~= 0 otherwise, studied originally by
Meshkov, Glick, and Lipkin (MGL). ' It was
found that the upper limit, provided by the mini-
mum of the Q representation of the MGL Hamil-
tonian, was a good approximation to the ground
state energy eigenvalue. This, in turn, suggested
that the atomic coherent states )J, Q), with Z=N/2,
provided a useful set of trial wave functions for a
variational treatment of this problem. This al-
lows for a particularly vivid representation of
both the ground state and the ground state energy
phase transition, since the atomic coherent
states for fixed J exist in one to one correspon-
dence with the points on the surface of the (Bloch)
sphere.

In the absence of interactions (A', =A', =0 in
the MGL Hamiltonian) the variational ground
state "points to" the South Pole. When the inter-
action parameters are sufficiently large, the
variational ground state ceases to point toward
the South Pole. A second order ground state en-
ergy (nuclear shape) phase transition occurs as
the ratio i&~/e increases through 1.' This is
evident already both from the exact ground state
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energies~ and the estimated ground state en-
ergies~ but it becomes especially, clear in the nu-
clear matter»mit. '

Although we now have a very vivid picture of
the ground state energy phase transition in terms
of variational states, we have no corresponding
picture for the accompanying thermodynamic
pbase transition. It is the purpose of the present
work to provide such a picture.

In order to make the present work as self-con-
tained as possible, we collect in Sec. II the pro-
perties of SU(2) coherent states which are re-
quired. In Sec. III we review the variational cal-
culation of the upper bound for the ground state
free energy. This calculation is used as a model
for the computation of the upper bound on the nu-
clear free energy, which is carried out in Sec. IV.
The upper bound is compared with the exact free
energy, computed for the Meshkov-Glick-I ipkin
Hamiltonian in Sec. V. The thermodynamic second
order phase transition is discussed in Sec. VI.
%e relegate to Appendix A a derivation of the
most general form for an N-particle permutation-
invariant operator, and the description of such
irreducible operators in the atomic coherent state
representation. tn Appendix 8 we describe how

the piecewise linear upper bound on the nuclear
free energy is constructed.

(2J+ I+1,)!P,S~ ( )~&)-
(2 1),2~ &~(&),

(2J)!
QASN( }&P} (2J L ) ~ 2L yN(~) '.

(2.3)

(3} The P and Q representatives of G can be
used to put bounds on the trace of Hermitian
operators exp@ in the space of dimension 2&+1
as follows:

2J+1
4n

dQ ~ Trge

eP~(G; A)dg

(2.4)

The lower bound is due to Bogoliubov, the upper
bound 1s due to Lleb.

The P and Q representatives of the general
pseudospin Hamiltonian are easily constructed
using (2.3) and the homogeneity relation 'JJ„(J/N}
=x-'g'„(J).

where dQ = sin 8d 8 dg
The P and Q representatives of 0 are functions

defined over the surface of the Bloeh sphere.
(2) The P and Q representatives of the irreduc

ible spherical tensor operators'JJ~(J) are propor-
tional to the corresponding spherical harmonic
functions"

II. ATOMIC COHERENT STATES

The atomic coherent state
~
J, Q) is obtained by

applying the SU(2) rotation 0 to the spin state
i J,J) (Ref. 9):

I«) =U(n)IJ J)
(2.1)

IJ(n) =exp —(e' J —e '~J, ).
2

The coherent states ~J, Q) exists in one to one
correspondence with points (8, p) on the surface
of the Bloch sphere. These states are nonorthog-
onal and overcomplete. They have a host of in-
teresting properties which have been extensively
summarized elsewhere. For the purpose of the
present work only the following three properties
are required. They are as follows:

(1) Every operator G which maps a J-invariant
subspace into itself has both a p representative
P~(G; 0) and a Q representative Q~(G; Q) which
are defined as follows:

) g) = f(Q)dQ. (3 1)

For the MGL Hamiltonian, it i.'s known that the
ground state lies in the SU(2)-invariant subspace
with maximum allowed J=N/2. This is true for
all psuedospin Hamiltonians (1.1).' In particular,
the ground state eigenfunction can always be
represented in the form (3.1) with J=N/2.

If we choose a class of trial states of the form

(3.2)

for a variational calculation, then we find

III. TRIAL STATES FOR A VARIATIONAL

CALCULATION: T = 0

Since the atomic coherent states
~ J, 0) are over-

complete, any state ~!!t) in the (2J+1) dimensional
subspace has an integral representation of the
form

2@+1
G

4m
P, (G; n)

(2.2)
(3.3)

Q~(G; ~) = G

Thus, the existence of the Q representative of
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X as the upper bound on the ground state energy
is tantamount to choosing the coherent states (3.2)
as trial state for a variational calculation. Fur-
thermore, the near equality' between p, and

qN), (X;Qo), where Q, minimizes QN&, (fC;Q), sug-
gests that !J=N/2, Qo) is a good approximation to
the exact ground state eigenfunction (3.1) for the
MGL Hamiltonian. This in turn suggests that the
function f(Q) is sharply peaked around Qo.

2J+1
4.J= OOIQ/2

Y(N J)
PJ 0 dQ

0.=1 Q

(4.1)

in the atomic coherent state representation. The
outer sum is over all J values which can occur by
combining + pseudospin —,

' nucleons;

IV. TRIAL STATES FOR A VARIATIONAL

CALCULATION' T) 0

At finite temperatures a quantum mechanical
system is not in a pure state, but rather a statis-
tical superposition of states. The state of such a
system must be represented by a density opera-
tor p (known as the "Gibbs state"). '

We show in Appendix A that the most general
permutation-invariant operator for a system of
N identical particles can be represented in the
form

and

E = (H) = TrpH (4.5)

S = -ka Trp lnp = Trp(-ka lnp), (4.6)

the entropy operator is -k~ lnp and the free en-
ergy operator is

E=H —T( ks 1-np} =H+ p lnp. (4.7)

For a variational calculation, the trial states
(4.3) provide an upper bound on the free energy

E=(P) =TrpI
~ Trp„H+ k~T Trp„ lnp

~ Trpt, H+k~T Trp„ input, . (4 8)

Y(N, J )

Trp„=»d g lp &(tj.l

n= 1

Y(W,J )
=d ~ (tj„lq,)=dY=1,

(4 9)

Trp = Tr 6f ~ f!( 8 o!' e'
n= 1 a'= 1

The second term on the right hand side of (4.8)
can be computed as follows. We note that

Y(N, J)
p„=d P II.&((.l,

Y(N, J)= (2Z+'1)N! [(,'N+ j1)+!(—'' —V—J)'!] '

(4.2)

Y(Pr, J) Y(N, J )

I 0.&(t.l 0. &= d'Y
,
= d

is the number of times the angular momentum J
occurs, and o = 1, 2, . . . , Y(V, Z) indexes the
Y(iV, J) different SU(2)-invariant subspaces of
dimension ~+1. Expression (4.1) is the finite-
temperature analog of the zero-temperature state-
ment (3.1). The analogs of the trial pure state
(3.2) are the trial Gibbs states

Y(N, J), Jt)„=d g, (4.3)
n i Qn Qe

where g is a constant to be computed.
The corresponding pictorial representation of

these trial states is apparent: The states (4.3)
exist in one to one correspondence with points
on spherical shells of radii &. =J/N. In the nuclear
matter limit, the states (4.3) exist in one to one
correspondence with points in the interior of, or
on the boundary of, a sphere of radius 2. .

The appropriate trial Gibbs state is the state
which minimizes the free energy operator

= Pc, [Y(N, Z)]-'

= -ln Y(N, J) . (4.10)

The first term on the right hand side of (4.8) is

Y(N,J)
Trp„H = Trl d

Q,

Y(W, J) J J
H (4.11)

~ ~ ~

Trp,","=d"= [Y(N, Z))-".

The second line of (4.9) comes from the nor-
malization condition on density operators (Trp = 1}.
If lnX=Q cjx~ is any convergent expansion for lnX,

t

Trp, lnp = Trp g c&(p„)'
j

I' =lJ —TS.
Since

(4.4)
The expectation values are independent of the in-
dex o, so the summation in (4.11) is just the
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Q representative of &. Therefore the inequality
on the free energy in (4.8) becomes

-l.2—
N= 50

F ~ Q~ (H; 0) —T(k~ ln Y(N, J)}. (4.12) —l4—

This estimate must hold for all trial Gibbs states
(4.3), so that

F& Min Q~ (H; 0) —ksT ln Y(N, J) . (4.13)

-I 4— N =50

This is the upper bound on the free energy de-
rived previously'. in the nuclear matter limit,
where k~ ln Y(N, J) has been interpreted as the
nuclear entropy. As in Sec. III, the existence of
the Q representative of F as the upper bound on

the free energy is tantamount to using the Gibbs
states (4.3) as trial states for a variational cal-
culation. Further, if the free energy estimate
from the variational calculati. on agrees closely
with the exact free energy computed by diago-
nalizing the Hamiltonian, then for the Jp Qp

which minimizes (4.4), p„ is a good approxima-
tion to the nuclear Gibbs state and the weighting
function &J(Q) is sharply peaked around J„IIO.

V. COMPARISON WITH EXACT FREE ENERGY

-l.6—

-I 8—

-2.0—
V=5.0

I I I I I I I I I I I I I

4 .8 I.2 l.6 2.0 2 4

In order to estimate how good an approximation
the best trial Gibbs state (4.3) is to the exact
Gibbs state expP(F-3C) we have chosen once again
to work with the MQL Hamiltonian

(5.1)

The free energy F(p) was computed numerically
according to

N j2 + J
RF —

Q Y(N J) Q e-RE( N;Jv)

J = Oorj. f2 M= -J
(5.2)

Min(Q~(k; 0) —p 'InY(N, J))/N

for N= 14, 30, 50, and 70, and &=0.25, 0.5, 1.0,
1.2, 1.4, 1.6, 1.8, 2.0, 2.5, and 5. 0. In each of
these cases we have compared the free energy
computed according to (5.2) with the upper bounds

computed according to (4.13). The actual method
for constructing the piecewise linear upper bound

is described in Appendix B. The free energy and

its upper bound are compared in the worst case
(p'=0. 5) in Fig. 1 for N =30, 50, 70. It is clear
from these figures that the difference between the

upper bound and F(p) is of the order of lnN, so
that

FIG. 1. The free energy per nucleon I'(P)/N (solid
curve) is compared with the upper bound provided by the
variational estimate (4.13) (long dashed curve). The
function obtained by the substitution Q J (X;&) I g(K; &)
does not provide a rigorous lower bound on the free en-
ergy (short dashed curve). As N increases the varia-
tional estimate for I (P )/N becomes an increasingly
good approximation to the exact value of E(P )/N. These
calculations were done for the MGL Hamiltonian with
V = 5.0 and N = 30, 50, 70.

rigorous upper and lower bounds on the nuclear
ground state energy, by the Bogoliubov and Lieb
inequalities (2.4) for J=N/2, G =-pk, in the T-0
limit. The Q representative of F provides a
rigorous upper bound on the free energy by the
variational computation (4.13). However, there
is no argument that can be used to show that the
P representative of + is a rigorous lower bound
on F(p). [Such an argument could be made only
if there were a factor such as p or N in the expo-
nent in (2.4) which became very large. This is
why the P representative is a rigorous lower
bound only for the ground state (P- ~) and in the
thermodynamic limit (N- a&).] The short dashed
lines in Fig. 1 are the curves

becomes a better approximation to F(p)/N as N
increases. In the thermodynamic limit their dif-
ference vanishes. '

The Q and p representatives of X provide

(5.3)Min P~(X.; 0) —p 'ln Y(N, J) .
J,Q

It is certainly clear that (5.3) does not provide a
lower bound for F(p). However, in the T-0
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limit, (5.3) does, in fact, provide a, rigorous
lower bound on the ground state energy. It is
clear that the upper bound [(4.13) with T- 0] is
a much better approximation to the ground state
energy.

From Fig. 1 we see that for fixed N, the best
trial Gibbs state becomes an increasingly poor
approximation to the correct density operator as
the temperature increases. This is because the
trial Gibbs state involves only a single value of
J at any temperature T whereas the exact density
operator includes not only that J value, but
others as well. Moreover, the other J values
occur with increasing probability as the tempera-
ture increases.

For fixed temperature the trial Qibbs state be-
comes an increasingly good approximation as the
particle number increases. This is because the
width of the distribution P~(g) [in (4.1)] increases
around the most probable J only like lnN, so that
the relative width of the distribution P~(Q) de-
creases like inN/N

Figure 1 reveals that the best trial Gibbs state
is a reasonable approximation to the density oper-
ator when either p is large or N is large.

=N/2, then at some'intermediate temperature
the minimum will move from g =v (spherical) to
gw V (deformed). For the MGL Hamiltonian this
transition occurs for 2J —1=Ã/IVI. The tem-
perature at which this second order thermody-
namic phase transition occurs is given approxi-
mately by

(6.2)

(5.3)

The phase transition temperatures for N = 70 and

&=2.5, 3.5, 5.0 are compared with the phase

p, =»[Y'(N, J)/Y'(N, J+ I)] I~=„g2i &i, &y2.

We show in Fig. 2 the upper bound on F(P)/N
for &=0.25, 0.5, 5.0, and N=70. The point of
departure of the upper bound from the zero inter-
action bound (P =0} indicates the rough location of
the phase transition. These estimates for the

'location of the second order thermodynamic phase
transition are close to the thermodynamic phase
transition temperatures which can be determined
exactly in the tht„rmodynamic limit from the an-
alytic expression'

VI. PHASE TRANSITION TEMPERATURE

In the nuclear matter limit (N- ~}, the thermo-
dynamic phase transition has a very graphic
representation. In the case of finite N, the free
energy F(P) (5.2) is a smooth function of p. It is
as difficult to make statements about thermo-
dynamic phase transitions in this numerical cal-
culation case as it was to make statements about
ground state energy phase transitions from the
numerical ground state energy calculations car-
ried out initially by Meshkov, Qlick, and I.ipkin.

As in the ground state case, so also in the
thermodynamic case, the variational calculation
very clearly exhibits the phase transition when it
occurs. In the ground state case, the second
order ground state energy phase transition occurs
as a, function of increasing nuclear interaction
parameter p when the minimum of

Ming (30Mo„;II)= Min Zcosg+ J(j—~)
J=N/2 2N

0

F/N

-0,5

-07

-09

-I 5

-l7

-I 9
I

0.5
il

1.0
I

1.5

N=70

2.0
I

25 p-I

xsin'g(e" ~+e "~)

moves from g=m to gow. This occurs for Ipi
= (1 —N ') ' In the thermod. ynamic case, the
most likely value of J decreases from g=~N/2
at very high temperatures, to J =N/2 at T = 0.
If Ming~(X;0) occurs at g=p for high tempera-
tures when J= WN /2, but at ge p at T = 0 when J

FIG. 2. The uPper bound'on I'(P)/N is plotted for the
MGL Hamiltonian with N=70 and V=O, 2.5, 3.5, 5.0.
For 0 & V& 1.0, the upper bound is that given for V= 0.
For V & (1-70), the temperature at which the upper
bound departs from the V= 0 upper bound indicates the
approximate temperature at which the thermodynamic
phase transition takes place (solid lines). The thermody-
namic phase transition temperature in the nuclear mat-
ter limit is shown by a dashed curve, which is not re-
solved for V=5.0.
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transition temperatures for pf- ~ in Fig. 2.
We would like to point out that the phase transi-

tion problem has also been studied by Holzwarth. "
and (b) a second order thermodynamic phase
transition.

APPENDIX A

VII. SUMMARY AND CONCLUSIONS

For pseudospin Hamiltonians the nuclear ground
state can be represented exactly by a superposi-
tion (3.1) of atomic coherent states drawn from
the subspace with J =N/2. The atomic coherent
states themselves can be used as trial states for
a variational estimate of the nuclear ground state
energy (3.2). The estimate is a good approxima-
tion to the exact ground state energy, suggesting
that the corresponding atomic coherent state is a
good approximation to the exact ground state wave
function, or alternatively, that the weighting func-
tion f (0) appearing in (3.1) is sharply peaked
about the value 0, which minimizes Q~(&; Q).

The nuclear density operator p = expP(E —fC) can
be represented exactly by a superposition (4.1) of
irreducible Gibbs states. These Gibbs states
themselves can be used as trial states for a varia-
tional estimate of the nuclear free energy. This
estimate is a reasonable approximation to the
exactly computed free energy. The approximation
becomes better as T —0 or as N- ~. This sug-
gests that the corresponding Qibbs state is a
good approximation to the exact density operator,
or alternatively, that the weighting function
P~(Q) appearing in (4.1) is sharply peaked about
the values Zo, g, which minimize (4.13).

The free energy upper bound is a piecewise
linear function which is easily conStructed. The
temperature at which the second order thermody-
namic phase transition occurs may be deter-
mined more easily from the upper bound than
from the exactly computed free energy. For large
W the phase transition temperature is given to
good approximation by (6.3), which determines
the critical temperature T, = I/kP, for ~P~ &I in
the thermodynamic limit.

Both for finite N and in the thermodynamic
limit, the atomic coherent state representation
provides a very graphic description of both the
nuclear ground state and the nuclear Gibbs state.
The point (a) on the Bloch sphere surface which
minimizes the Hamiltonian corresponds to the
best trial ground state, and the point (b) in the
Bloch sphere which minimizes the free energy
operator corresponds to the best trial Gibbs
state. These points move as (a) the nuclear in-
teraction parameters change and as (b) the tem-
perature changes. The departure of the point
from the south polar axis g=!!indicates (a) a
second order ground state energy phase transition

In this appendix, we derive the expression for
the density operator ("Qibbs" state) expanded in
the AC GT' representation.

The most general operator on the N-particle
pseudospinor Hilbert space 3C of the Hamiltonian
can be written as

(Al)

¹!(24+ 1) = 1'@ J) . (A2)

The label ~ indexes the orthogonal basis vectors
for the representations. It should be noted that
the label ~ is, in fact, redundant, since9

(A3)

The pseudospin operators are invariant under the
operations of the permutation group P„. There-
fore, the Hamiltonian and density operator must
also be invariant under P~. The subset of oper-
ators (Al) invariant under P„obeys pQ p

' =
p~ or

P0~ —OpP, P C.Pg . (A4)

The permutation group operation on the bra and
ket vectors in (Al) is

(A5)

Here the invariant condition of (A4) may now be
written as

In the above expression, J indexes an SU(2) ir-
reducible representation of dimension 2J+1 and
jg indexes the orthornormal basis vectors for the
representation. The pseudospinor space is in-
variant under the permutation group P„which
permutes the labels of the N-fold degenerate
states in the upper and lower levels. The label
j, = (p.„g,) indexes a P„ irreducible representation
of dimension
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JJ1'8-(P»~-~- where the integral extends throughout a sphere
of radius —,

' with a slightly altered measure.

JA, JJt yl
&~ ~nf'a8(p)

M'p'
(A6) The upper bound on the finite-temperature free

energy of the MGI Hamiltonian for an pf-nucleon
system is given by (4.1S)

The outer products i)('
i

are linearly independent
basis vectors which span the linear vector space
of operators on the Ã-particle pseudospin space.
By standard theorems of linear vector space

,theory, the coefficients of corresponding basis
vectors can be equated:

&'-s(f) ra~. = ~".~ ~ &a n(P» P~I'N

(A7)

~NaN'n ~NN'~J J'~nn'

Therefore, the most general permutation in-
variant operator is

(A8)

j
J,NN' n

(A9)

Since every projector of the form
i J,M)(J, M

can be written in diagonal form in the atomic
coherent state representation, ' we have the
alternative representation to (A9)

It is useful to regard the coefficients A, for fixed
J,M, j',M', as a matrix with p, o ' (or o, p') as
the row and column indices. Then (A7) is a
matrix equation. Since p ~ and I' ~ are irredu-
cible, we can exploit Schur's lemmas:

l. A=O when Xw&', or equivalently from (AS),
J4J'.

2. If ~=g', ANJJ„,
&

is a multiple of a unit ma-
trix.

Combining the results of these two lemmas, we-

find

2j Q+ -3jg
E(p} (Min jcose+pj(J ——,)sin'e

J,N 2

—ke T ln Y(N, j) .
This bound is easily constructed for all tempera-
tures as follows. First, we find the minimum
value of Q~(fC; Q) for each value of j. For the
MGL Hamiltonian

«nq, (tC; Q) = -j 21~1(j-—.') &1

(~2)

Minq, (fc;Q) = —— 2iyi (j--,') +J 1

21 VI(j- l)» ~

For fixed J, the upper bound Min„q~(SC; Q)
kT in''(N-, j) is simply a straight line for which

the y intercept is Min„q~(k Q) and the slope is
—ka in'(N, J'). As j decreases from its maxi-
mum value N/2, the y intercept increases (be-
comes less negative) while the slope becomes
more negative.

Thb free energy is bounded above by the en-
velope of straight lines. This envelope is most
easily computed by determining the intersection
points of successive lines. The straight line as-
sociated with J=N/2 is horizontal because
lnY'(N, N/2) =Inl =O. The value of ksT at which
the horizontal line intersects the straight line
associated with J=N -1 is easily computed from

2J+ 1
z, (Q)

Qo.
dA.

Min Q„»(SC; Q) = Min Q„i, ,(R; Q)
0 Q

—k Tl Fn(,N/N2 —1). (BS)

(A10)

In the nuclear matter limit, it is possible to con-
vert the sum over J into an integral over y = J/N
to give the following expression for the permuta-
tion-invariant operator in the atomic coherent
state representation

More generally, the temperature at which the suc-
cessive straight lines associated with J and J-1
intersect is given by

Min Q ~ (fC; Q) —keT ln F(N, j) = Min Q z, (fC; Q)

-keT 1n&(N, J —1),

n 0 n 0 n

(A11)
Min „Q~,(X; Q) —Min „QI |iC; Q)

lnF(N, J —1) —in&(N, j)

(B4)
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This result can be simplified further by noting
that the difference of the logarithmic multiplicity
factors is simply the logarithm of a ratio:

in[ Y(N, J —1)/Y(N, J)]= ln
2J —1 2N+J+1

0.9

0.5 1.0
I

l.5 2.0
I

2.5
I

N =30

V =5.0

&.0
I

This construction is illustrated in Fig. 3 for &
= 30.

From this figure we can see that as the tem-
perature increases the most probable value of J
becomes smaller. This occurs physically be-
cause the system moves toward increasing en-
tropy (s =.ln Y(N, J)) and Y(N, J) increases' as J
decreases, up to a point. The value of J for
which the entropy is maximum is given approxi-
mately by J =IN/2. For smaller values of J,
the multiplicity Y(N, J) decreases. As a result,
in the high temperature limit the best trial Gibbs
state (4.2) has J=WK/2.

This upper bound construction gives a better
indication of the thermodynamic phase transition
than does the numerical computation (5.2) of

F(P) The ph. ase transition occurs when the mini-
mum of Q~(fC; 0) moves off the south polar axis
0=7t' as a function of decreasing temperature.
For the MGL Hamiltonian, this occurs for a J
value determined from 2I Yl (J ——,') =1 (cf. B.2).
Thus, this piecewise linear approximation to the
upper board on F(P) reveals clearly that a
second order thermodynamic phase transition

I.5

I.9

FIG. 3. The upper bound on I'(P)/N is computed here
for the MGL Hamiltonian with N= 30 and V=5.0. For
fixed J, the upper bound (4.13) is a straight line with
slope -k~ln F(V,J) and zero intercept Mi~Q(${,'; Q).
The (I'/N, P ') intersection points of all adjacent (J,J
+1) pairs of lines are computed, and the piecewise lin-
ear upper bound is drawn by "connecting the dots, " as
in a child's coloring book.

occurs at the temperature at which the two
straight lines with J =J', = [1/2I Vl+-,'] and J
=J, +1 intersect ([g] is the greater integer or
half integer in g, depending on whether g is
even or odd).
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