E0 matrix elements in 40,42,44Ca

H. T. Fortune* and A. E. L. Dieperink Kernfysisch Versneller Instituut, Groningen, The Netherlands (Received 12 July 1978)

Simple wave functions for ⁴⁰Ca from Gerace and Green and for ^{42,44}Ca derived from (d,p) data give a remarkably good fit to recently measured E0 matrix elements in ^{40,42,44}Ca.

NUCLEAR STRUCTURE ^{40,42,44}Ca. Calculated E0 matrix elements in the threecomponent model.

A recent high resolution (e, e') study of several Ca isotopes by Gräf *et al.*¹ reported accurate E0matrix elements between the ground and first excited 0⁺ states of ^{40, 42, 44, 48}Ca. Their results. which are summarized in Table I for 40,42,44Ca, are in agreement with earlier measurements,²⁻⁵ but are much more accurate. Prior to the work of Gräf et al. the E0 matrix element had been calculated⁶⁻⁸ for ⁴⁰Ca and ⁴²Ca. Only the calculations of Gerace and Green⁶ are in reasonable accord with the data. In an attempt to describe the trend of E0 matrix elements in all even Ca isotopes. Gräf et al. performed a shell model calculation in a $(1d_{3/2})^{-m}(1f_{7/2})^{m-m}$ model space and found it to be incapable of reproducing the E0 magnitudes or the observed A dependence. This failure prompted them to introduce a simple model in which the first two 0⁺ states of ⁴⁰⁺ ⁿCa are orthogonal linear combinations of an $(fp)^n$ configuration and a collective state. The ratio of collective to $(fp)^n$ amplitudes in the various ground states is v/δ_n , where v is the interaction matrix element between the two basis states (assumed independent of n) and δ_n is obtained for each isotope separately by fitting¹ to the excitation energy Δ_n of the excited 0⁺ state $\delta_n = \frac{1}{2} [(\Delta_n^2 - 4v^2)^{1/2} + \Delta_n]$. The model appears to fit the data, but close inspection reveals an inconsistency, simultaneously requiring $v/\delta_{n} \ll 1$ and $v/\delta_n \approx 1$. Furthermore, the model of Ref. 1 gives $\approx 50\%$ core excitation in the ground states of ^{42,44}Ca, much larger than is thought to be the case, and only 8% in ⁴⁰Ca, much smaller than expected. Another deficiency is that their model cannot account for the third 0^+ level, which lies about 1.5 MeV above the second in most of the even Ca nuclei. We report here on an even simpler model⁹ that does not have these deficiencies and does fit the E0 data.

In ^{40,42,44}Ca, a large body of data on γ decay and transfer experiments (for summary, see Ref. 10) has demonstrated the need for at least two separate core-excited components in the ground state. These, together with $(fp)^n$, then give three low-

lying 0⁺ states. In ${}^{42}Ca$, e.g., for the 0_i^+ states in terms of the dominant components we have

 $0_i^* = a_i (fp)_{01}^2 + b_i (fp)_{00}^4 (sd)_{01}^{-2} + c_i (fp)_{01}^6 (sd)_{00}^{04},$

where the double subscripts denote JT. We show below that the E0 matrix element connecting the first two 0⁺ states at ⁴²Ca depends only on the a's which are known⁹ from ratios of spectroscopic factors in the ⁴¹Ca(d, p) reaction.¹¹

Since each core-excited component in 42 Ca involves exactly two protons, we have (using orthogonality: $b_0b_1 + c_0c_1 = -a_0a_1$)

$$\left\langle 0_{1}^{*} \middle| E 0 \middle| 0_{0}^{*} \right\rangle = \left\langle 0_{1}^{*} \middle| \sum r_{p}^{2} \middle| 0_{0}^{*} \right\rangle$$

i.e.,

$$E0({}^{42}Ca) = + 2a_0a_1(r_{fb}{}^2 - r_{sf}{}^2)$$

Analysis of data¹¹ from ⁴¹Ca(*d*,*p*) gives^{9,10} $a_1^2 = 0.18$, $a_0^2 = 0.76$, i.e., $76\%(fp)^2$ in the ⁴²Ca(g.s.). Thus for ⁴²Ca, $\langle 0_1^* | E0 | 0_0^* \rangle = 0.74(r_{fp}^2 - r_{sf}^2)$.

For ${}^{44}Ca$, the three 0^{*} states are expected to be of the form

 $0_i^* = a_i (fp)_{02}^4 + b_i (fp)_{01}^6 (sd)_{01}^{-2} + c_i (fp)_{01}^6 (sd)_{00}^{-4} .$

Again each of the core-excited components involves the excitation of two protons, so that $E0({}^{44}Ca) = 2a_0a_1(r_{fp}{}^2 - r_{sd}{}^2)$. Data¹² from ${}^{43}Ca(d,p)$ give $a_0{}^2 = 0.83$, $a_1{}^2 = 0.17$, and hence $E0({}^{44}Ca) = 0.75(r_{fp}{}^2 - r_{sd}{}^2)$.

Thus, the ratio of E0's for ⁴²Ca and ⁴⁴Ca de-

TABLE I. Monopole transition matrix elements connecting ground and first-excited 0^+ states in 40, 42, 44Ca.

	$E0 \ (\mathrm{fm}^2)$			
Nucleus	Measured ^a	Calculated ^b		
⁴⁰ Ca	2.53 ± 0.41	2.11		
⁴² Ca	5.24 ± 0.39	5.38		
⁴⁴ Ca	5.45 ± 0.41	5.45		

^aReference 1.

^b Using $r_{fb}^2 - r_{sd}^2 = 7.27 \text{ fm}^2$.

1112

19

	$1 - a_0^2$		R_n (fm)		$R_n - R_0$ (fm)		
Nucleus	Ref. 1	Present	Ref. 1	Present	Exp	Ref. 1	Present
⁴⁰ Ca	0.08	0.18	3.43	3.430	3.43		
⁴² Ca	0.50	0.24	3.46	3.445	3.46	0.032	0.015
⁴⁴ Ca	0.39	0.16	3.45	3.442	3.46	0.023	0.012

TABLE II. Percentages of core excitation and magnitudes of charge radii R_n for ground states of $^{40, 42, 44}$ Ca.

pends only on the (d,p) data and is predicted to be about unity. To fit the absolute magnitude for ⁴⁴Ca requires $r_{fp}^2 - r_{sd}^2 = 7.27$ fm². For wave functions in a standard Woods-Saxon well $(r_0 = 1.26$ fm, a = 0.60 fm, $\lambda = 25$), this value of Δr^2 corresponds to a $1f_{7/2} - 1d_{3/2}$ binding-energy difference of about 5 MeV.

The situation in ⁴⁰Ca is only slightly more complicated. Here, to be consistent we use $0_i^* = a_i (fp)^0 (sd)^{-0} + b_i (fp)^2 (sd)^{-2} + c_i (fp)^4 (sd)^{-4}$, but now the effective number of proton excitations is one for the 2p-2h part and two for the 4p-4h component, so that

$$E0({}^{40}Ca) = (b_0b_1 + 2c_0c_1)(r_{fb}^2 - r_{sf}^2),$$

and orthogonality alone is not sufficient to reduce it to a single term. Instead we use the wave functions of Gerace and Green⁶ in this basis for ⁴⁰Ca. The result is $E0(^{40}Ca) = 0.29(r_{fp}^2 - r_{sd}^2)$. Using the value of $r_{fp}^2 - r_{sd}^2$ needed to fit ⁴⁴Ca gives $E0(^{40}Ca)$ = 2.11 fm², close to the experimental value (see Table I). Unlike Ref. 1, we find no need to include 6p-6h and 8p-8h components in order to get the experimental value for ⁴⁰Ca. We can also use this model to compute ground state charge radii

$$\begin{aligned} R^{2(^{42}\text{Ca})} &= 2a_{0}^{2}(r_{fp}^{2} - r_{st}^{2})/20 + R_{\text{core}}^{2}, \\ R^{2(^{44}\text{Ca})} &= 2a_{0}^{2}(r_{fp}^{2} - r_{st}^{2})/20 + R_{\text{core}}^{2}, \\ R^{2(^{40}\text{Ca})} &= (b_{0}^{2} + 2c_{0}^{2})(r_{fp}^{2} - r_{st}^{2})/20 + R_{\text{core}}^{2}. \end{aligned}$$

We have used the measured ground state charge radius of ${}^{40}\text{Ca}(R_o=3.43 \text{ fm})$ and the above expression to evaluate $R_{\text{core}}(3.42 \text{ fm})$ and then used this value of R_{core} to compute the other radii. R_n results are given in Table II, where they are compared with similar results from Ref. 1. (We have corrected a small arithmetical error for the ${}^{44}\text{Ca}$ entry in Ref. 1.)

It can be seen that not all of the isotope shift can be accounted for in this model. This is expected, since other effects, such as coupling to the breathing mode, are known to make small contributions also.

In summary, the wave functions of Gerace and Green for 40 Ca and the ones derived from (d, p) data for ${}^{42, 44}$ Ca, which give reasonable fits^{9,10} to a variety of data, also quite adequately reproduce the measured E0's in these nuclei.

- *On leave from University of Pennsylvania, Philadelphia, PA.
- ¹H. D. Gräf et al., Nucl. Phys. A295, 319 (1978).
- ²P. Strehl, Z. Phys. <u>234</u>, 416 (1970).
- ³P. M. Endt and C. van der Leun, Nucl. Phys. <u>A235</u>, 27 (1974).
- ⁴M. Ulrickson, N. Benczer-Koller, J. R. MacDonald, and J. W. Tape, Phys. Rev. C <u>15</u>, 186 (1977).
- ⁵J. D. McCullen and D. J. Donahue, Phys. Rev. C <u>8</u>, 1406 (1973).
- ⁶W. J. Gerace and A. M. Green, Nucl. Phys. <u>A93</u>, 110 (1967); <u>A113</u>, 641 (1968); A123, 241 (1969).
- ⁷P. Federman and S. Pittel, Phys. Rev. <u>186</u>, 1106 (1969); Nucl. Phys. <u>A139</u>, 108 (1969).
- ⁸L. D. Skouras, Nucl. Phys. A220, 604 (1974).
- ⁹H. T. Fortune and M. E. Cobern, Phys. Lett. <u>77B</u>, 21 (1978).
- ¹⁰H. T. Fortune, in *Proceedings of the International Conference on Nuclear Structure*, *Tokyo 1977*, edited by T. Marumori (Physical Society of Japan, Tokyo, 1978), Vol. II, p. 99.
- ¹¹O. Hansen et al., Nucl. Phys. A243, 100 (1975).
- ¹²H. Bjerregaard and O. Hansen, Phys. Rev. 155, 1229
- (1967).