Generalized Fermi sea for plane-wave Hartree-Fock theory: One dimensional model calculation

M. de Llano

Instituto de Física, Universidad de México, México 20, D. F.

J. P. Vary

Instituto de Física, Universidad de México, México 20, D. F.

and Ames Laboratory, Department of Energy and Department of Physics, Iowa State University, Ames, Iowa 50011

(Received 18 August 1978)

The Hartree-Fock theory for many fermions with plane-wave orbitals but with abnormal occupation is studied. A one-dimensional problem with an interparticle interaction of finite range which saturates the N body system at a fixed density and finite binding energy is solved explicitly. A direct variation of the resulting Hartree-Fock energy with respect to the additional variational parameters introduced is carried out numerically and results reminiscent of a gas-to-liquid phase transition are found.

NUCLEAR STRUCTURE plane-wave Hartree-Fock; model calculation; nuclear matter.

I. INTRODUCTION

The exact solution, analytically or numerically, of an *N*-fermion problem with realistic interparticle interactions is apparently still far away. Two general microscopic approaches to the problem exist: (1) variational,¹ of the Jastrow-type, Fermi-hypernetted-chain approximation methods, etc., and (2) perturbation theory,² based mainly on diagrammatic methods of the "ladder," "ring," or other infinite partial summations.

Both of these general approaches begin with an assumed unperturbed one-particle state, about which one then perturbs in one manner or another. The usual such state is a single Slater determinant of plane-wave one-particle "orbitals" with occupied \vec{k} vectors spanning a sphere (the "Fermi sphere") in \vec{k} space. As a Slater determinant of plane waves is a Hartree-Fock (HF) state *re-gardless of which N single-particle states are occupied*, we wish to examine the possibility of achieving a "better" (i.e., stabler or lower-energy) HF state, with a different (or "abnormal") occupancy of the plane-wave orbitals.

II. DEFINITION OF THE PROBLEM: ANY DIMENSIONALITY

The Hartree-Fock (HF) approximation for the ground state consists in writing, for the ground state of the *N*-particle Hamiltonian,

$$H = \sum_{i=1}^{N} T_{i} + \sum_{i < j}^{N} v_{ij}, \quad T_{i} \equiv -\frac{\hbar^{2}}{2m} \nabla_{i}^{2}, \quad (1)$$

a single Slater determinant

$$\begin{split} \Phi_0 &= (N!)^{-1/2} \det_{n_k} [\varphi_k(x_i)], \\ n_k &= 0 \text{ or } 1, \\ \sum_k n_k &= N, \end{split}$$

$$(2)$$

of as yet unknown single-particle orbitals $\varphi_k(x_i)$, labeled by the state index k which takes on N different values. The occupation in that determinant is, of course, specified by the set of numbers (of value 0 or 1) n_k called the "occupation numbers." Extremizing³ the expectation value of (1) with (2), with respect to the functions $\varphi_k(x_i)$, and subject to the restriction that these functions be normalized during the variation finally leads to the N coupled, nonlinear, integrodifferential HF equations for the unknown orbitals $\varphi_k(x_i)$:

$$T_{i}\varphi_{k}(x_{1}) + \sum_{i} n_{i} \int dx_{2} |\varphi_{i}(x_{2})|^{2} v_{12}\varphi_{k}(x_{1}) - \sum_{i} n_{i} \int dx_{2}\varphi_{i}^{*}(x_{2}) v_{12}\varphi_{i}(x_{1})\varphi_{k}(x_{2}) = \epsilon_{k}\varphi_{k}(x_{1}), \quad (3)$$

where the N Lagrange multipliers ϵ_k play the role of eigenvalue energies, and where the occupation numbers of the problem have been explicitly displayed.

Placing the N particles in a box of "volume" V and applying periodic boundary conditions to this box along all "d" dimensions then, providing that the range of $(v_{12}) \ll V^{1/d}$ (a condition easily fulfilled by taking a large enough box) and if v_{12} is independent of the center of mass of the particle pair (1,2), one can easily show that the N orbitals

$$P_{k}(x_{1}) = V^{1/2} e^{ikx_{1}}, \quad kx_{1} \equiv \vec{k} \cdot \vec{x}_{1}$$
 (4)

1083

19

a

©1979 The American Physical Society

1084

allowed to exist by the nonzero values of the relevant set n_k do indeed satisfy the HF equations (3). This is true regardless of what the set n_k is, subject only to the restrictions (2). Thus the n_{μ} may be treated as separate variational parameters to find that set giving the lowest value for the HF energy,

$$E = \langle \Phi_0 | H | \Phi_0 \rangle$$

= $\sum_{k} n_k \langle k | T_1 | k \rangle$
+ $\frac{1}{2} \sum_{k_1 k_2} n_{k_1} n_{k_2} \langle k_1 k_2 | v_{12} | k_1 k_2 - k_2 k_1 \rangle.$ (5)

In the present case "direct" and "exchange" matrix elements, respectively, are

$$\langle k_{1}k_{2} | v_{12} | k_{1}k_{2} \rangle \equiv V^{-2} \int_{V} dx_{1} \int_{V} dx_{2} e^{-ik_{1}x_{1}} e^{-ik_{2}x_{2}} v_{12}$$

$$\times e^{ik_{1}x_{1}} e^{ik_{2}x_{2}}$$

$$= V^{-2} \int_{V} dx_{1} \int_{V} dx_{2} v_{12}$$

$$= V^{-1} \int dx v(x) , \qquad (6)$$

$$\langle k_1 k_2 | v_{12} | k_2 k_1 \rangle \equiv V^{-2} \int_V dx_1 \int_V dx_2 e^{-ik_1 x_1} e^{-ik_2 x_2} v_{12}$$

×е ***1*e***1*2

$$=V^{-1}\int dx \, e^{-i(k_1-k_2)x}v(x) \,, \qquad (7)$$

assuming that the interaction potential v_{12} is local. Writing the total HF energy as

$$E = \langle T \rangle + \langle v \rangle_D - \langle v \rangle_E \tag{8}$$

then

$$\langle v \rangle_D = \frac{1}{2} V^{-1} \int dx \, v(x) \left(\sum_{k} n_k\right)^2$$
$$= \frac{1}{2} N^2 V^{-1} \int dx \, v(x)$$
(9)

regardless of what set of n_k 's are used, subject only to (2).

The usual (or normal) set of n_k 's employed are

$$n_k^0 = \theta(k_0 - |k|), \qquad (10)$$

which define the normal Fermi sea of "size" (length, radius, etc.) k_0 which determines the particle density of the system since

$$N = \sum_{k} n_{k}^{0} \xrightarrow{V} \frac{V}{(2\pi)^{d}} \int d^{d}k \; \theta(k_{0} - |k|) ,$$

$$\rho = \frac{N}{L} = (k_{0}/\pi) \text{(for one dimension)} .$$
(11)

The (normal) occupation number set (10), of course, gives the (absolute) minimum of the kinetic energy of the system, i.e., its ground state, and the Rayleigh-Ritz variational principle would give for any other set n_k the bound

$$\langle T \rangle_{\boldsymbol{n}_{\boldsymbol{k}}} \geq \langle T \rangle_{\boldsymbol{n}_{\boldsymbol{k}}^{0}} = \frac{\hbar^{2}}{2m} \left(\sum_{\boldsymbol{k}} n_{\boldsymbol{k}}^{0} \right)^{-1} \int d^{\boldsymbol{a}} k \, k^{2} \theta(k_{0} - |\boldsymbol{k}|)$$

$$= \frac{\hbar^{2} k_{0}^{2}}{6m},$$
(12)

the last result being for d=1, and where $\langle k | T_1 | k \rangle$ $=\hbar^2 k^2/2m$ was used.

Since from (12) the normal n_k^0 (10) minimizes the energy for the noninteracting N particle system, the question we address is whether one can find an *abnormal* $n_k \neq n_k^0$ which minimizes the (HF) energy, but within the plane waves (PW) orbital picture, of a fully interacting system, and gives a lower HF energy than the n_k^0 case would give. Obviously, this could only be accomplished by the "exchange," since

$$\langle v \rangle_{E,n_{k}} \neq \langle v \rangle_{E,n_{k}^{0}}$$
 (13)
and since from (9)

$$\langle v \rangle_{\boldsymbol{D}, \boldsymbol{n}_{\boldsymbol{k}}} = \langle v \rangle_{\boldsymbol{D}, \boldsymbol{n}_{\boldsymbol{k}}}^{0} .$$
(14)

Clearly, the single-particle density

$$\mathbf{p}(\mathbf{x}) = \sum_{\mathbf{k}} \left| \varphi_{\mathbf{k}}(\mathbf{x}) \right|^2 n_{\mathbf{k}} = N/V \tag{15}$$

would be space independent, or homogeneous, regardless of what the set n_k is, subject only to (2).

We finally note that for such a lower-energy, PW-HF state to be found, the two-particle potential must be finite-ranged, for if $v_{12} = v_0 \delta(x_{12})$, and one has g species of fermions, one easily sees from (7) and (5) that

$$\langle v \rangle_{E,n_b} = g^{-1} \langle v \rangle_{D,n_b}, \tag{16}$$

so that using (14) one has no dependence with $n_{\rm b}$ in the total potential energy expectation value, and in view of (12) one finally arrives, in this case, at

$$E_{\boldsymbol{n}_{\boldsymbol{b}}} \geq E_{\boldsymbol{n}_{\boldsymbol{b}}}^{0} \,. \tag{17}$$

We must thus look to finite-range interactions.

III. ILLUSTRATION OF THE PROBLEM: ONE-DIMENSIONAL MODEL

Although a desired goal is to know the set n_{μ} which minimizes the PW-HF energy of a threedimensional system of particles interacting via *realistic* potentials, this undertaking is best preceded by an example simple enough so as to minimize heavy numerical work which often

obscures the problem. For this purpose we propose a one-dimensional problem which has several realistic features: (a) It has a finiterange interaction, (b) the interaction is capable of *two*-body bound states, (c) the exact (so far unknown) *N*-body ground state is a self-bound condensed system which, moreover, (d) does *not* collapse, and thus (e) *saturates* at some fixed density. These properties make the model at least a suggestive one for studying numerous physical systems such as nuclear matter, liquid helium, liquid metals, etc.

19

We consider a one-dimensional system of N spinless (g=1) fermions in a box of length L (with periodic boundary conditions), with Hamiltonian given by (1) where $(x \equiv x_1 - x_2)$

$$v(x) = v_0 e^{-|x|/\gamma} \cos \overline{k}x, \quad v_0, \gamma, \overline{k} \ge 0$$
(18)

which for sufficiently large v_0 will be capable of supporting a two-body bound state. The Fourier transform of (18) is then

$$\nu(q) \equiv \int_{-\infty}^{\infty} dx \ e^{-iqx} v(x)$$

= $\gamma v_0 \left\{ \left[\gamma^2 (q - \overline{k})^2 + 1 \right]^{-1} + \left[\gamma^2 (q + \overline{k})^2 + 1 \right]^{-1} \right\}$
 $\ge 0 \quad \text{for all } q \; .$ (19)

This condition, together with the fact that $v(0) \equiv v_0 < \infty$ (for finite v_0), allows the establishment⁴ of a rigorous *lower* bound to the exact energy per particle of the system (for any *d*, in fact) given by

$$E_{\text{exact}}/N \ge C_{d} \rho^{2/d} + \frac{1}{2} \rho \nu(0) - \frac{1}{2} \nu(0), \quad C_{1} \equiv \frac{\hbar^{2} \pi^{2}}{6m}$$
(20)

which ensures against collapse.

Next we propose a specific (abnormal) functional form for n_k given by

$$n_{k}=\theta(\beta k_{0}-|k|)+\theta(\alpha k_{0}-|k|)\theta(|k|-(\alpha+\beta-1)k_{0}),$$

$$\alpha \ge 1$$
, $0 \le \beta \le 1$, $\theta(x) \equiv \frac{1}{2}(1 + \operatorname{sgn} x)$.

which becomes n_{k}^{0} for $\alpha = \beta = 1$ and which is com-

FIG. 1. "Normal" Fermi sea in one dimension (above) Eq. (10) and "abnormal" generalization thereof considered in this paper Eq. (21) (below), where the parameters α and β are to be varied numerically.

pared with the normal n_k^0 in Fig. 1. It clearly satisfies the conditions in (2). The parameters α and β will be additional variational parameters. This functional form ensures that n_k and n_k^0 will have the same particle density for fixed k_0 .

The kinetic energy will thus become, after simple integrations,

$$\langle T \rangle_{n_k} = N \frac{\hbar^2 k_0^2}{6m} \left[\alpha^3 + \beta^3 - (\alpha + \beta - 1)^3 \right].$$
 (22)

The "direct" potential energy, on the other hand, is

$$\langle v \rangle_{D,n_k} = N \frac{1}{2} \rho \nu(0) = N \rho \gamma v_0 [\gamma^2 \overline{k} + 1]^{-1}$$
 (23)

independent of α and β .

The calculation for the "exchange" potential energy is lengthy and tedious, though direct and analytical: It involves essentially integrals such as $(a, b, c, and d \equiv constants)$

$$\int_{a}^{b} dk_{1} \int_{c}^{d} dk_{2} [\gamma^{2} (k_{1} - k_{2} \pm \overline{k})^{2} + 1]^{-1} = \gamma^{-1} \int_{a}^{b} dk_{1} [\tan^{-1} \gamma_{y}]_{k_{1} - c \pm \overline{k}}^{k_{1} - d \pm \overline{k}}$$

TABLE I. Definitions of constants ω_i and functions f_i .

(21)

i	1	2	3	4	5	6	7	8	9
$\omega_i \\ f_i$	-1 2β	$\frac{2}{\beta - \alpha}$	$\frac{-2}{\beta + \alpha}$	$\frac{-2}{1-\alpha}$	$\frac{2}{\alpha+2\beta-1}$	$\frac{2}{2\alpha + \beta - 1}$	$\frac{-1}{2(\alpha+\beta-1)}$	-1 2α	-2 $\beta - 1$

which in turn can be reduced to integrals such as $(K \equiv \text{constant})$

$$\int_{a-K\pm\overline{k}}^{a-K\pm\overline{k}} dz \tan^{-1}\gamma z = \left[z \tan^{-1}\gamma z - \frac{1}{2\gamma}\ln(1+\gamma^2 z^2)\right]_{a-K\pm\overline{k}}^{b-K\pm\overline{k}}$$

One finally has

$$N^{-1} \langle v \rangle_{E,n_{k}} = -\frac{v_{0}\overline{k}}{4\pi k_{0}} \left(6 \tan^{-1}\gamma \overline{k} - \frac{3}{\gamma \overline{k}} \ln(1 + \gamma^{2} \overline{k}^{2}) + \sum_{i=1}^{9} \omega_{i} \left\{ \left(\frac{k_{0}}{\overline{k}} f_{i} + 1 \right) \tan^{-1}\gamma \overline{k} \left(\frac{k_{0}}{\overline{k}} f_{i} + 1 \right) + \left(\frac{k_{0}}{\overline{k}} f_{i} - 1 \right) \tan^{-1}\gamma \overline{k} \left(\frac{k_{0}}{\overline{k}} f_{i} - 1 \right) - \frac{1}{2\gamma \overline{k}} \ln \left[1 + \gamma^{2} \overline{k}^{2} \left(\frac{k_{0}}{\overline{k}} f_{i} + 1 \right)^{2} \right] \left[1 + \gamma^{2} \overline{k}^{2} \left(\frac{k_{0}}{\overline{k}} f_{i} - 1 \right)^{2} \right] \right\} \right),$$

$$(24)$$

where the constants ω_i and functions f_i are defined in Table I.

For $\alpha = 1 = \beta$ we have $n_k = n_k^0$, and

$$N^{-1} \langle v \rangle_{E, n_{\bar{k}}^{0}} = -\frac{v_{0}}{4\pi\gamma} \left\{ 2\bar{k} \tan^{-1}\gamma \bar{k} - (2k_{0} + \bar{k}) \tan^{-1}\gamma (2k_{0} + \bar{k}) - (2k_{0} - \bar{k}) \tan^{-1}\gamma (2k_{0} - \bar{k}) + \frac{1}{2\gamma} \ln \frac{\left[1 + \gamma^{2} (2k_{0} + \bar{k})^{2}\right](1 + \gamma^{2} 2k_{0} - \bar{k})}{(1 + \gamma^{2} \bar{k}^{2})^{2}} \right\}$$
(25)

Putting Eqs. (22), (23), and (24) together one finally has the explicit function

 $\epsilon(\alpha, \beta; v_0, \gamma, \overline{k}; k_0) \equiv E/N \ge E_{\text{exact}}/N, \qquad (26)$

which is a rigorous *upper* bound to the exact energy per particle of the problem.

Before proceeding to the numerical analysis of Eq. (26) let us note its large and small density behavior. For large k_0 one can verify, using the sum rule $\sum_{i=1}^{9} \omega_i f_i = -2$, that

$$N^{-1} \langle v \rangle_{E, n_k} \xrightarrow{\frac{1}{2} v_0} \frac{1}{2} v_0 + O(1/k_0)$$
(27)

independent of α and β , just as is $\langle v \rangle_{D,n_k}/N$. Hence, the minimum of (26) with respect to α, β at high density is just, from Eq. (22), the $\alpha = \beta = 1$ total energy per particle. Since this, also being an upper bound, is identical with the lower bound Eq. (20), the exact energy per particle for the system is known exactly. [Indeed, this occurs² for any N-fermion system whose interparticle interaction satisfies the quite general restrictions (i) $|v(0)| < \infty$ and (ii) $v(q) \ge 0$ for all q.] For small k_0 , on the other hand, one must Taylor-expand Eq. (24) and use the second sum rule $\sum_{i=1}^{9} \omega_i f_i^2 = -4$. One finally obtains

$$N^{-1}\langle v \rangle_{E, n_{k}} \xrightarrow{}_{k_{0} \to 0} \langle v \rangle_{E, n_{k}^{0}} / N + O(k_{0}^{3}) , \qquad (28)$$

or, that all the α, β dependence is of order k_0^3 , and *not* k_0^2 as might be expected, so that since $\langle v \rangle_{D,n_k}/N$ is order k_0^2 while $\langle T \rangle_{n_k}/N$ is order k_0^2 , the minimum in (26) with respect to α, β for small enough k_0 must occur for $\alpha = 1 = \beta$, independent of the dynamical parameters $v_0, \gamma, \overline{k}$. A direct variation of Eq. (26) in α and β was carried out numerically for many values of $(v_0, \gamma, \overline{k})$ and of density $\rho = k_0/\pi$, and indeed we found that $(\hbar^2/6m \equiv 1)$

$$\min_{\alpha \ge 1, \ 0 \le \beta \le 1} \epsilon(\alpha, \beta; v_0, \gamma, \overline{k}; k_0) \equiv \epsilon(\alpha_0, \beta_0; v_0, \gamma, \overline{k}; k_0) < \epsilon(1, 1; v_0, \gamma, \overline{k}; k_0)$$
(29)

for intermediate values of density and many families of $(v_0, \gamma, \overline{k})$. Figures 2, 3, and 4 are typical cases corresponding, respectively, to $\gamma \overline{k}$

FIG. 2. Energy-per-particle, Eq. (29), divided by v_0 , i.e., $e \equiv v_0^{-1}\epsilon$, as a function of $k_0 \equiv \pi \rho$ which results upon minimizing numerically in α and β , for each density for a typical value of the force parameters (v_0, γ, k) shown. The dashed curve refers to the (lower energy) HF state obtained with the "abnormal" occupation, Eq. (21). The associated values of α and β which minimized Eq. (29), α_0 and β_0 , are graphed above the k_0 axis.

<u>19</u>

FIG. 3. Same as Fig. 2 for another set of force parameters $(v_0, \gamma, \overline{k})$.

=2, 16, and 144, for which the two-body interaction potential is shown in Figs. 5 and 6. Moreover, we also found that for some $(v_0, \gamma, \overline{k})$ the left-hand side of (29) can be *lower* for some k_0 than the lowest value of the right-hand side for *any* k_0 : See Fig. 4. This is reminiscent of a gas-to-liquid phase transition but the rather large value of $\gamma \overline{k} = 144$, meaning many oscillations in the two-body interaction potential, as seen in Fig. 6, was needed to achieve it with the present generalization of the Fermi sea.

IV. DISCUSSION

Although many oscillations in the two-body potential were needed to give a lower energy with the generalized Fermi sea than with the normal one, Eq. (10), the present study shows that even

FIG. 4. Same as Fig. 2 for the set of force parameters $(v_0, \gamma, \overline{k})$ shown. Note that the minimum in k_0 of the abnormally occupied state is now *lower* than that for the normally occupied one.

FIG. 5. The two-particle potential function Eq. (18) with $y \equiv x/\gamma$ for $\overline{k}\gamma = 2$.

with such a simple, two-part Fermi sea, Eq. (21), one obtains a new (plane-wave) HF state which is stabler at densities moderately lower than the normal Fermi sea saturation density. This in itself appears to be a stimulating invitation to further study of "abnormal" Fermi sea occupation functions for both one- and three-dimensional *N*-fermion systems.

Finally, let us consider the two-body correlation function $g(x_1, x_2)$ defined through

FIG. 6. Same as Fig. 5 but also for $\alpha \equiv \overline{k}\gamma = 16$ and 144.

For the problem at hand then

$$g(x_1, x_2) = 1 - \rho_0^{-2} |\rho(x_1, x_2)|^2$$

where

$$\rho(x_1, x_2) \equiv \sum_k \varphi_k^*(x_1) \varphi_k(x_2) n_k.$$

Thus, if $x \equiv x_1 - x_2$ and using Eq. (21), one has

- ¹E. Feenberg, *Theory of Quantum Fluids* (Academic, New York, 1969); J. W. Clark, Prog. Part. Nucl. Phys. (to be published).
- ²B. Day, Rev. Mod. Phys. <u>39</u>, 719 (1967); H. A. Bethe, Annu. Rev. Nucl. Sci. <u>21</u>, <u>93</u> (1971); G. E. Brown, Unified Theory of Nuclear Models and Forces (North-

```
g(x) \equiv g(x_1 - x_2)
```

$$=1 - (k_0 x)^{-2} [\sin\beta k_0 x + \sin\alpha k_0 x - \sin(\alpha + \beta - 1)k_0 x]^2$$

$$\xrightarrow{k_0 x - 0} \frac{1}{3} [\alpha^3 + \beta^3 - (\alpha + \beta - 1)^3] (k_0 x)^2 + O[(k_0 x)^3].$$

But since we know from Eq. (22) that the bracket coefficient of $\frac{1}{3}(k_0x)^2$ is greater than or equal to unity (equality only for $\alpha = \beta = 1$), we arrive at the conclusion that *short-range correlations are suppressed* in the generalized Fermi sea considered here and that most likely it is the intermediate-range correlations which have been enhanced.

This work was supported in part by INEN and CONACYT-PNCB (Mexico).

Holland, Amsterdam, 1971); D. W. L. Sprung, Adv. Nucl. Phys. 5, 225 (1972).

- ³N. H. March, W. H. Young, and S. Sampanthar, *The Many-Body Problem in Quantum Mechanics* (Cambridge, Univ. Press, London, England, 1967).
- ⁴E. H. Lieb and M. de Llano, Phys. Lett. 37B, 47 (1971).

1088