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Generalized Fermi sea for plane-wave Hartree-Fock theory:One dimensional model calculation
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The Hartree-Fock theory for many fermions with plane-wave orbitals but with abnormal occupation is

studied. A one-dimensional problem with an interparticle interaction of finite range which saturates the X
body system at a fixed density and finite binding energy is solved explicitly. A direct variation of the

resulting Hartree-Fock energy with respect to the additional variational parameters introduced is carried out
numerically and results reminiscent of a gas-to-liquid phase transition are found.

NUCLE AB STRUCTURE plane-wave Hartree-Pock; model calculation; nuclear
matter.

I. INTRODUCTION
1

The exact solution, analytically or numerically,
of an N-fermion problem with realistic interpar-
ticle interactions is apparently still far away.
Two general microscopic approaches to the
problem exist: (1) variational, ' of the Jastrow-
type, Fermi-hype rnetted- chain approximation
methods, etc., and (2) perturbation theory, '
based mainly on diagrammatic methods of the
"ladder, " "ring, " or other infinite partial summa-
tions.

Both of these general approaches begin with an
assumed unperturbed one-particle state, about
which one then perturbs in one manner or another.
The usual such state is a single Slater determin-
ant of plane-wave one-particle "orbitals" with
occupied k vectors spanning a sphere (the "Fermi
sphere" ) in k space. As a Slater determinant of
plane waves is a Hartree-Fock (HF) state re-
gardless of mhick N single Particle states a-re

occupied, we wish to examine the possibility of
achieving a "better" (i.e., stabler or lower-
energy) HF state, with a different (or "abnor-
mal") occupancy of the plane-wave orbitals.

II. DEFINITION OF THE PROBLEM:

ANY DIMENSIONALITY

The Hartree-Fock (HF) approximation for the
ground state consists in writing, for the ground
state of the N-particle Hamiltonian,
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where the Ã Lagrange multipliers q~ play the role
of eigenvalue energies, and where the occupation
numbers of the problem hgve been explicitly dis-
Played.

Placing the N particles in a box of "volume"
V and applying periodic boundary conditions to
this box along all "d" dimensions then, providing
that the range of (v») «V't~ (a condition easily
fulfilled by taking a large enough box) and if v&2

is independent of the center of mass of the par-
ticle pair (1,2), one can easily show that the N
orbitals

of as yet unknown single-particle orbitals cp~(x, ),
labeled by the state index k which takes on N
different values. The occupgti on in that deter-
minant is, of course, specified by the set of
numbers (of value 0 or 1) n~ called the "occupa-
tion numbers. " Extremizing the expectation
value of (1) with (2), with respect to the functions
q&~(x, ), and subject to the restriction that these
functions be normalized during the variation fin-
ally leads to the N coupled, nonlinear, integro-
differential HF equations for the unknown orbitals

a single Slater determinant q (x)=V' '8' "& kx -=k.x (4)
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allowed to exist by the nonzero values of the rele-
vant set n„do indeed satisfy the HF equations (3).
This is true regardless of what the set n„ is,
subject only to the restrictions (2). Thus the na.
may be treated as separate variational para-
meters to find that set giving the los@est value for
the HF energy,

E=&c,(afe, &

The (normal) occupation number set (10), of
course, gives the (absolute) minimum of the
kinetic energy of the system, i.e., its ground
state, and the Rayleigh-Ritz variational principle
would give for any other set nk the bound

(v)., (v).(= a -(Z h')

(5)
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In the present case "direct" and "exchange" ma-
trix elements, respectively, are

(cpxivhia VR)=V fee f"x~deb ie )vvh'
V V

the last result being for d=l, and where &k~ T, ~k&

=h 0'/'2m was used
Since from (12) the normal na (10) minimizes

the energy for the noninteracting N particle sys-
tem, the question we address is whether one can
find an al)normal nanna which minimizes the (HF)
energy, but within the plane waves (PW) orbital
picture, of a jul/ yinfexacting system, and gives
a lower HF energy than the nk case would give.
Obviously, this could only be accomplished by
the "exchange, " since

dx& dh2 v&2

=V ' dxv(x),

( , ~
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X eik2x(eikgs2

(6)

&v&s,. «v&s, .o

and since from (9)

&v&v .,=&v)n.o.

Clearly, the single-particle density

p(x) =g I p (x)
~

n =N/V

(13)

(15)

=7 ~ dx e $(k& k2~xv x

assuming that the interaction potential v, 2 is
local. Vfriting the total HF energy as

2

(v) =-,' V'f Chv(x)(px,

=—'N 't/ ' dx v x

(10)

which define the normal Fermi sea of "size"
(length, radius, etc. ) ko which determines the
particle density of the system since

,fd'v e(a, —~a~),
a targe v'

p==(k()/m)(for one dimension) .L

regardless of what set of nk's are used, subject
only to (2).

The usual (or normal) set of na's employed are

'ne(u, —oui),.

would be space independent, or homogeneous,
regardless of what the set nk is, subject only to
(2)

Vfe finally note that for such a lower-energy,
P%-HF state to be found, the two-particle po-
tential must be finite-ranged, for if v&2

——v06(x„),
and one has g species of fermions, one easily
sees from (7) and (5) that

so that using (14) one has no dePendence anth n„
in the total potential energy expectation value,
and in view of (12) one finally arrives, in this
case, at

«g p
nk nk

Vfe must thus look to finite-range interactions.

III. ILLUSTRATION OF THE PROBLEM:
ONE-DIMENSIONAL MODEL

Although a desired goal is to know the set nk
which minimizes the PW-HF energy of a three-
dimensional system of particles interacting via
realistic potentials, this undertaking is best
preceded by an example simple enough so as to
minimize heavy numeric, al work which often
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(18)

obscures the problem. For this purpose we
propose a one-dimensional problem which has
several realistic features: (a) It has a finite-
range interaction, (b) the interaction is capable
of taboo bod-y bound states, (c) the exact (so far
unknown) N b-ody ground state is a self-bound
condensed system which, moreover, (d) does
not collapse, and thus (e) saturates at some
fixed density. These properties make the model
at least a suggestive one for studying numerous
physical systems such as nuclear matter, liquid
helium, liquid metals, etc.

We consider a one-dimensional system of N
spinless (g=l) fermions in a box of length I.
(with periodic boundary conditions), with Hamil-
tonian given by (1) where (x—=x, —x2)

v(x) =voe i"' I" cos kx, v„y, k ~ 0 0'

k

normal

abnorrna I

(&+P - i)

= fklyI,

+~ = it(/i,

=yv, ([y'(q —k) +1] +[y (q+k)2+1] '}
~ 0 for all q.

This condition, together with the fact that v(0)
—:vo &~ (for finite vo), allows the establishment4
of a rigorous loner bound to the exact energy per
particle of the system (for any d, in fact) given
by

h2 2

E,„~,/N~ C~p /" +a pv(0) ——,
' v(0), C, =—

6 (20)

which ensures against collapse.
Next we propose a specific (abnormal) func-

tional form for n„given by

~.=e(pk —
I
k

I ) +«nk —lk I)«lk I
—.(n+p - 1)k )

(21)
n & 1, 0- p -1, e(x) =--,'(1+sgnx),

which becomes n~~ for n =p =1 and which is com-

which for sufficiently large vo will be capable of
supporting a two-body bound state. The Fourier
transform of (18) is then

v(q) fdh e "*a=-(x)

i, 0&19&i

FTQ. 1. "Normal" Fermi sea in one dimension {above)
Eq. (10) and "abnormal' general. ization thereof con-
sidered in this paper Eq. (21) {below), where the para-
meters cv and P are to be varied numerically,

pared with the normal n"„ in Fig. 1. It clearly
satisfies the conditions in (2). The parameters
n and p will be additional variational parameters.
This functional form ensures that rs~ and n~ will
have the same particle density for -fixed k, .

The kinetic energy will thus become, after
simple integrations,

0(».,=~, '
[ '+p'-( +p-1)'] (22)

independent of n and p.
The calculation for the "exchange" potential

energy is lengthy and tedious, though direct and
analytical: It involves essentially integrals such
as (a, k, c, and d=—constants)

The "direct" potential energy, on the other hand,
is

(v&, „,=X-,' pv(0) =&pyvo[y'k+1] '

a

dk, dk2[y'(k) —kg+k)'+I] '=y ' dk) [tan y, ]),I
",',g )

a C a

TABLE I. Definitions of constants &; and functions f;.

co& —1 2 —2

f; 2P P -~ 0+0'
-2 2 2 -1 -1 -2

1 —n e+ 2P —1 20!+P —1 2{e+P—1) 2e P —:1
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which in turn. can be reduced to integrals such as (E=—constant)
a-K+A

-1 -1dz tan 'yz= z tan 'yz ——ln(1+y'z')
a-K+Tr 2y

One finally has

eu '
N '(v)z, „,=-4

k
I 6tan 'yk —=ln(1+y'k )

7Tp

—a-X+X

+K+~I(=f&+1)tBn'yk(~ f&+1)+(5f&
—1)tan'yk(~ f& —I)

ln 1+y2u2 =0 +1 1+y2k2 =I .-1 (24)

where the constants v; and functions f, are defined in Table I.
For a=l=P we have n»=n», and

N '(v) p=- 2k tan ~yk —(2kp+k)tan 'y(2kp+k) —(2kp —k)tan 'y(2kp —k)B,n»

1 rl+y(2k&+k) j(1+y24, —k)

I'2y '" (1+y'k')' (26)

Putting Eqs. (22), (23), and (24) together one
finally has the explicit function

e(n, p;vp, y, k;kp) =E/N-E ~t/N, (26)

which is a rigorous upper bound to the exact
energy per particle of the problem.

Before proceeding to the numerical analysis of
Eq. (26) let us note its large and small density
behavior. For large k, one can verify, using the
sum rule P=, a,f, =-2, that.

(2V)

(26)

N" (v)z „=p vp+O(1/kp)E nI

indePendent of n and P, just as is (v)v „/N.
Hence, the minimum of (26) with respect to
n, P at high density is just, from Eq. (22), the
n=P=1 total energy per particle Since this,
also being an upper bound, is identical with the
lower bound Eq. (20), the exact energy per par-
ticle for the system is known exactly. [Indeed,
this occurs' for any N-fermion system whose
interparticle interaction satisfies the quite gen-
eral restrictions (i) ~v(0)

~

&- and (ii) v(q) ~0 for
all q. ] For small k„on the other hand, one
must Taylor-expand Eq. (24) and use the second
sum rule P &&u,f,.'=-4. One finally obtains

N'(v)z „=(v)z „p/N+O(k, '),
Epng, Spni

0

or, that all the n, P dependence is of order kp',
and rsot kp as might be expected, so that since
(v)D „/N is order kp' while (T)„/N is order kp',
the minimum in (26) with respect to n, P for
small enough 4p must. occur for z =1=p, inde-

pendent of the dynamical parameters vp p k'.

A direct variation of Eq. (26) in a and P was
carried out numerically for many values of
(vp, y, k) and of density p=kp/x, and indeed we
found that (hP/Gm —= 1)

mn e(, P; „,y, k;k ) —= e(ap Pp' p y k'kp)
6=I ~ 0=)=1

&e(1, 1;vp, y, k;kp) (29)

3
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/0
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—.05

(~„g, k } =(},000, .5,4}

FIG. 2. Energy-per-particle, Eq. (29), divided by vp,
i.e. , e—= vp" e, as a function of kp —=mp which results
upon minimizing numerically in e and p, for each den-
sity for a typical value of the force parameters (vp, y,
Q shown. The dashed curve refers to the gower energy)
HF state obtained with the "abnormal" occupation, Eq.
(21). The associated values of e and P which minimized
Eq. (29), at p and Pp are graphed above the kp axis.

for intermediate values of density and many
families of (v„y, k). Figures 2, 3, and 4 are typi-
cal cases corresponding, respectively, to yk
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exp(-yj cos 2y

8 ko

FIG. 5. The bvo-particle potential function Eq. (18)
with y =x/y for Xy=&.

FIG. 8. Same as Fig. 2 for another set of force para-
meters (vo,

=2, 16, and 144, for which the two-body inter-
action potential is shown in Figs. 5 and 6. More-
over, we also found that for some (v„y, k) the
left-hand side of (29) can be louer for some k,
than the lowest value of the right-hand side for
guy ko: See Fig. 4. This is reminiscent of a
gas-to-liquid phase transition but the rather
large value of ye=144, meaning many oscilla-
tions in the two-body interaction potential, as
seen in Fig. 6, was needed to achieve it with
the present generalization of the Fermi sea.

IV. DISCUSSION

Although many oscillBtions in the two-body po-
tential were needed to give a lower energy with
the generalized Fermi sea than with the normal
one, Eq. (10), the present study shows that even

I) f {))
+ l-'

f„{y}= e "cos cty

(X = IG

= 144

with such a simple, two-part Fermi sea, Eq. (21),
one obtains a new (plane-wave) HF state which is
stabler at densities moderately lower than the nor-
mal Fermi sea saturation density. This in itself
appears to be a stimulating invitation to further
study of "abnormal" Fermi sea occupation func-
tions for both one- and three-dimensional N-
fermion systems.

Finally, let us consider the two-body correla-
tion function g(x„x,) defined through

(v) -=,'-p, ' dx, fCh, U(x, —x,)g(x„x,) .

6 7 8 9 g 1~0 11 ko

abnormal ~
('Vo, 'f, k ) = (600, 12, 12 )

FIG. 4. Same as Fig. 2 for the set of force parameters
(v, , y, X) shown. vote that the mmimum in a, of the ab-
normally occupied state is noir lowe~ than that for the
normally occupied one.

FIG. 6. Same as Fig. 5 but also for n =—.$y = 16 and.
f44
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For the problem at hand then

g(x, ) x,) —1 —p, i p(x„x,) i

where

g(x) =—g(x, —x2)

=1—(kox)
' [sinPkox+sinnkox —sin(a +P —1)k, x]~

= —,'[o3+P'- (o. +P —1)'](kox)'+0[(kox)3].
pox-0

But since we know from Eq. (22) that the bracket
coefficient of —,'(k, x)' is greater than or equal to
unity (equality only for n =P =1), we arrive at the
conclusion that short-range coxxelgtions axe
suppressed in the generalized Fermi sea con-
sidered here and that most likely it is the inter-
mediate- range correlations which have been en-
hanced.

Thus, if x-=x& —x& and using Eq. (21), one has
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